diff --git a/main.py b/main.py index b00f3e0..51e80d2 100755 --- a/main.py +++ b/main.py @@ -20,4 +20,4 @@ l.csv_value(df) # s.plotBoxWhisker(df) -# c.launch_cluster(df,['Speed Limit','Vehicle Year']) +c.launch_cluster(df,['Speed Limit','Vehicle Year']) diff --git a/src/back/clustering_csv.py b/src/back/clustering_csv.py index 94ca7d9..497d38f 100644 --- a/src/back/clustering_csv.py +++ b/src/back/clustering_csv.py @@ -70,7 +70,7 @@ def launch_cluster(df,array_columns): # Appliquer DBSCAN dbscan = DBSCAN(eps=0.2, min_samples=5) labels_dbscan = dbscan.fit_predict(X) - # stats_dbscan = calculate_cluster_statistics_dbscan(X, labels_dbscan) + stats_dbscan = calculate_cluster_statistics_dbscan(X, labels_dbscan) # for stat in stats_dbscan: # print(f"Cluster {stat['cluster']}: {stat['num_points']} points, Density: {stat['density']}") if len(array_columns) == 3: @@ -79,4 +79,5 @@ def launch_cluster(df,array_columns): else: visualize_clusters_2d(X, labels_kmeans, centers_kmeans, title="K-Means Clustering") visualize_clusters_2d(X, labels_dbscan, title="DBSCAN Clustering") + return stats_kmeans,stats_dbscan