From c1dfaa7b6836222abbbfd7fd64a152d4de9a4ebe Mon Sep 17 00:00:00 2001 From: "aurian.jault" Date: Wed, 19 Jun 2024 08:08:00 +0200 Subject: [PATCH] adding stuff --- main.py | 7 ++++++- src/back/load_csv.py | 5 +++-- src/back/show_csv.py | 16 ++++++++++++++++ 3 files changed, 25 insertions(+), 3 deletions(-) create mode 100644 src/back/show_csv.py diff --git a/main.py b/main.py index 8a8212c..31aa73b 100755 --- a/main.py +++ b/main.py @@ -3,10 +3,15 @@ import sys sys.path.append('./src/back/') import load_csv as l +import show_csv as s df = l.return_csv("./data.csv") l.csv_value(df) l.csv_value(df) -l.csv_stadadisation_Z(df,"Vehicle Year") +# l.csv_stadardisation_Z(df,"Vehicle Year") + +s.histo_col(df,"Speed Limit") + +s.plotBoxWhisker(df) diff --git a/src/back/load_csv.py b/src/back/load_csv.py index 4438e2b..870fe72 100644 --- a/src/back/load_csv.py +++ b/src/back/load_csv.py @@ -1,5 +1,6 @@ import pandas as pd import numpy as np +import matplotlib.pyplot as plt def return_csv(path): df = pd.read_csv(path) @@ -27,9 +28,9 @@ def csv_norm_min_max(df,col): df[col] = (df[col] - df[col].min()) / (df[col].max() - df[col].min()) return df -def csv_stadadisation_Z(df,col): +def csv_stadardisation_Z(df,col): mean_col1 = df[col].mean() std_col1 = df[col].std() df[col] = (df[col] - mean_col1) / std_col1 return df[col] - + diff --git a/src/back/show_csv.py b/src/back/show_csv.py new file mode 100644 index 0000000..93d9973 --- /dev/null +++ b/src/back/show_csv.py @@ -0,0 +1,16 @@ +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt + +def histo_col(df,colonne): + plt.figure() + plt.hist(df[colonne], bins=int(df[colonne].nunique()/4), alpha=0.7, color='blue', edgecolor='black') + plt.title(f"Histogramme de la colonne '{colonne}'") + plt.xlabel(colonne) + plt.ylabel("Fréquence") + plt.grid(True) + plt.show() + +def plotBoxWhisker(df): + df.plot(kind='box', subplots=True, sharex=False, sharey=False) + plt.show()