import pandas as pd import numpy as np def return_csv(path): df = pd.read_csv(path) return df def csv_value(df): #print all detail df.info() # Print number of missing value for each column print(df.isna().sum()) # Useless values def csv_check(df): for col in df: print("-"*12) print(col) print("-"*12) print(df[col].unique()) def csv_norm_min_max(df,col): maValue = df[col].max miValue = df[col].min df[col] = (df[col] - df[col].min()) / (df[col].max() - df[col].min()) return df def csv_stadadisation_Z(df,col): mean_col1 = df[col].mean() std_col1 = df[col].std() df[col] = (df[col] - mean_col1) / std_col1 return df[col]