You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
pow/src/pages/prediction.py

72 lines
2.3 KiB

import streamlit as st
import pandas as pd
import sys
sys.path.append('./back/')
import clustering_csv as cc
import prediction as p
def handle_column_multiselect(df, method_name):
selected_columns = st.multiselect(f"Select the columns you want for {method_name}:", df.columns.tolist(), placeholder="Select dataset columns")
return selected_columns
def display_prediction_results(df, targetCol, sourceColumns, method):
original_col = df[targetCol]
predicted_col = p.getColumnsForPredictionAndPredict(df, sourceColumns, targetCol, method)
new_df = pd.DataFrame()
new_df['Original'] = original_col
new_df['Predicted'] = predicted_col
st.dataframe(new_df)
if 'df' in st.session_state:
df = st.session_state.df
st.write("# 🔮 Prediction")
tab1, tab2 = st.tabs(["Clustering", "Predictions"])
with tab1:
st.header("Clustering")
selected_columns = handle_column_multiselect(df, "clustering")
tab_names = ["K-means", "DBSCAN"]
tab11, tab12 = st.tabs(tab_names)
with tab11:
if st.button(f"Start {tab_names[0]}"):
st.pyplot(cc.launch_cluster_knn(df, selected_columns))
with tab12:
if st.button(f"Start {tab_names[1]}"):
st.pyplot(cc.launch_cluster_dbscan(df, selected_columns))
with tab2:
st.header("Predictions")
target_column = st.selectbox(
"Target column:",
df.columns.tolist(),
index=None,
placeholder="Select target column"
)
if target_column != None:
selected_columns_p = handle_column_multiselect(df, "predictions")
tab_names = ["Linear Regression", "Random Forest"]
tab21, tab22 = st.tabs(tab_names)
with tab21:
if st.button(f"Start {tab_names[0]}"):
st.write(target_column)
st.write(selected_columns_p)
display_prediction_results(df, target_column, selected_columns_p, tab_names[0])
with tab22:
if st.button(f"Start {tab_names[1]}"):
display_prediction_results(df, target_column, selected_columns_p, tab_names[1])
else:
st.write("Please clean your dataset.")