from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import SGDClassifier from sklearn import svm def RandomForest(X_train, X_test, y_train): random_forest = RandomForestClassifier(n_estimators=100, criterion='entropy', max_depth=10, min_samples_split=2, min_samples_leaf=1, random_state=0) random_forest.fit(X_train, y_train) return random_forest.predict(X_test), random_forest def KNN(X_train, X_test, y_train): knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train, y_train) return knn.predict(X_test),knn def SVM(X_train, X_test, y_train): clf = svm.SVC(gamma=0.001) clf.fit(X_train,y_train) return clf.predict(X_test),clf def DecisionTree(X_train, X_test, y_train): decisionTree = DecisionTreeClassifier() decisionTree = decisionTree.fit(X_train,y_train) return decisionTree.predict(X_test),decisionTree def LogisticRegress(X_train, X_test, y_train): logistic = LogisticRegression() logistic.fit(X_train,y_train) return logistic.predict(X_test),logistic