from models import * from analise import * def report(accuracy,confMatrix,classReport): print(f'Accuracy: {accuracy}') print(f'Confusion Matrix:\n{confMatrix}') print(f'Classification Report:\n{classReport}') def startRandomForest(X_train,X_test,y_train,y_test): y_pred, rf = RandomForest(X_train, X_test, y_train) rf_ac, rf_matrix, rf_class_report = calculateMatrix(y_test, y_pred) report(rf_ac, rf_matrix, rf_class_report) seeMatrix(rf_matrix, rf.classes_) #rocCurve(y_test, y_pred) #seeRocCurve(rf, X_train, y_train, 10) def startKNN(X_train,X_test,y_train,y_test): y_pred, knn = KNN(X_train, X_test, y_train) knn_ac, knn_matrix, knn_class_report = calculateMatrix(y_test, y_pred) report(knn_ac, knn_matrix, knn_class_report) seeMatrix(knn_matrix, knn.classes_) #rocCurve(y_test, y_pred) #seeRocCurve(rf, X_train, y_train, 10) def startSVM(X_train,X_test,y_train,y_test): y_pred, svm = SVM(X_train, X_test, y_train) svm_ac, svm_matrix, svm_class_report = calculateMatrix(y_test, y_pred) report(svm_ac, svm_matrix, svm_class_report) seeMatrix(svm_matrix, svm.classes_) #rocCurve(y_test, y_pred) #seeRocCurve(rf, X_train, y_train, 10) def startDecisionTree(X_train,X_test,y_train,y_test): y_pred, dt = DecisionTree(X_train, X_test, y_train) dt_ac, dt_matrix, dt_class_report = calculateMatrix(y_test, y_pred) report(dt_ac, dt_matrix, dt_class_report) seeMatrix(dt_matrix, dt.classes_) #rocCurve(y_test, y_pred) #seeRocCurve(rf, X_train, y_train, 10) def startLogisticRegression(X_train,X_test,y_train,y_test): y_pred, lr = LogisticRegress(X_train, X_test, y_train) lr_ac, lr_matrix, lr_class_report = calculateMatrix(y_test, y_pred) report(lr_ac, lr_matrix, lr_class_report) seeMatrix(lr_matrix, lr.classes_) #rocCurve(y_test, y_pred) #seeRocCurve(rf, X_train, y_train, 10)