import re import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.tree import export_graphviz from io import StringIO from IPython.display import Image from sklearn.tree import plot_tree import pydotplus from IPython.display import Image from sklearn.pipeline import Pipeline from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_val_score from sklearn.preprocessing import OrdinalEncoder, LabelEncoder from sklearn.compose import make_column_transformer from sklearn.impute import SimpleImputer pd.options.display.max_columns = None pd.options.display.max_rows = None import sklearn print('The scikit-learn version is {}.'.format(sklearn.__version__)) df = pd.read_csv('archive/data.csv') b_age = df['B_age'] # we replace B_age to put it among B features df.drop(['B_age'], axis = 1, inplace = True) df.insert(76, "B_age", b_age) df_fe = df.copy() # We make a copy of the dataframe for the feature engineering part later #print(df.head(5)) limit_date = '2001-04-01' df = df[(df['date'] > limit_date)] # print("Total NaN in dataframe :" , df.isna().sum().sum()) # print("Total NaN in each column of the dataframe") na = [] for index, col in enumerate(df): na.append((index, df[col].isna().sum())) na_sorted = na.copy() na_sorted.sort(key = lambda x: x[1], reverse = True) # for i in range(len(df.columns)): # print(df.columns[na_sorted[i][0]],":", na_sorted[i][1], "NaN") imp_features = ['R_Weight_lbs', 'R_Height_cms', 'B_Height_cms', 'R_age', 'B_age', 'R_Reach_cms', 'B_Reach_cms'] imp_median = SimpleImputer(missing_values=np.nan, strategy='median') for feature in imp_features: imp_feature = imp_median.fit_transform(df[feature].values.reshape(-1,1)) df[feature] = imp_feature imp_stance_R = SimpleImputer(missing_values=np.nan, strategy='most_frequent') imp_R_stance = imp_stance_R.fit_transform(df['R_Stance'].values.reshape(-1,1)) imp_stance_B = SimpleImputer(missing_values=np.nan, strategy='most_frequent') imp_B_stance = imp_stance_B.fit_transform(df['B_Stance'].values.reshape(-1,1)) df_R_stance_imputed = pd.DataFrame(imp_R_stance, columns=['R_Stance']) df_B_stance_imputed = pd.DataFrame(imp_B_stance, columns=['B_Stance']) # Assign the imputed values to the original DataFrame df['R_Stance'] = df_R_stance_imputed['R_Stance'] df['B_Stance'] = df_B_stance_imputed['B_Stance'] print('Number of features with NaN values :', len([x[1] for x in na if x[1] > 0])) na_features = ['B_avg_BODY_att', 'R_avg_BODY_att'] df.dropna(subset = na_features, inplace = True) df.drop(['Referee', 'location'], axis = 1, inplace = True) # print(df.shape) # print("Total NaN in dataframe :" , df.isna().sum().sum()) df.drop(['B_draw', 'R_draw'], axis=1, inplace=True) df = df[df['Winner'] != 'Draw'] df = df[df['weight_class'] != 'Catch Weight'] # Supprimez les colonnes non numériques df_numeric = df.select_dtypes(include=['float64', 'int64']) # Tracez la matrice de corrélation plt.figure(figsize=(50, 40)) corr_matrix = df_numeric.corr(method='pearson').abs() sns.heatmap(corr_matrix, annot=True) # plt.show() # i = index of the fighter's fight, 0 means the last fight, -1 means first fight def select_fight_row(df, name, i): df_temp = df[(df['R_fighter'] == name) | (df['B_fighter'] == name)] # filter df on fighter's name df_temp.reset_index(drop=True, inplace=True) # as we created a new temporary dataframe, we have to reset indexes idx = max(df_temp.index) # get the index of the oldest fight if i > idx: # if we are looking for a fight that didn't exist, we return nothing return arr = df_temp.iloc[i,:].values return arr # print(select_fight_row(df, 'Amanda Nunes', 0)) # we get the last fight of Amanda Nunes # get all active UFC fighters (according to the limit_date parameter) def list_fighters(df, limit_date): df_temp = df[df['date'] > limit_date] set_R = set(df_temp['R_fighter']) set_B = set(df_temp['B_fighter']) fighters = list(set_R.union(set_B)) return fighters fighters = list_fighters(df, '2017-01-01') print(len(fighters)) def build_df(df, fighters, i): arr = [select_fight_row(df, fighters[f], i) for f in range(len(fighters)) if select_fight_row(df, fighters[f], i) is not None] cols = [col for col in df] df_fights = pd.DataFrame(data=arr, columns=cols) df_fights.drop_duplicates(inplace=True) df_fights['title_bout'] = df_fights['title_bout'].map({True: 1, False: 0}) df_fights.drop(['R_fighter', 'B_fighter', 'date'], axis=1, inplace=True) return df_fights df_train = build_df(df, fighters, 0) df_test = build_df(df, fighters, 1) # print(df_train.head(5)) preprocessor = make_column_transformer((OrdinalEncoder(), ['weight_class', 'B_Stance', 'R_Stance']), remainder='passthrough') # If the winner is from the Red corner, Winner label will be encoded as 1, otherwise it will be 0 (Blue corner) label_encoder = LabelEncoder() y_train = label_encoder.fit_transform(df_train['Winner']) y_test = label_encoder.transform(df_test['Winner']) X_train, X_test = df_train.drop(['Winner'], axis=1), df_test.drop(['Winner'], axis=1) # Random Forest composed of 100 decision trees. We optimized parameters using cross-validation and GridSearch tool paired together random_forest = RandomForestClassifier(n_estimators=100, criterion='entropy', max_depth=10, min_samples_split=2, min_samples_leaf=1, random_state=0) model = Pipeline([('encoding', preprocessor), ('random_forest', random_forest)]) model.fit(X_train, y_train) # We use cross-validation with 5-folds to have a more precise accuracy (reduce variation) accuracies = cross_val_score(estimator=model, X=X_train, y=y_train, cv=5) print('Accuracy mean : ', accuracies.mean()) print('Accuracy standard deviation : ', accuracies.std()) y_pred = model.predict(X_test) print('Testing accuracy : ', accuracy_score(y_test, y_pred), '\n') target_names = ["Blue","Red"] print(classification_report(y_test, y_pred, labels=[0,1], target_names=target_names)) # cm = confusion_matrix(y_test, y_pred) # ax = plt.subplot() # sns.heatmap(cm, annot = True, ax = ax, fmt = "d") # ax.set_xlabel('Actual') # ax.set_ylabel('Predicted') # ax.set_title("Confusion Matrix") # ax.xaxis.set_ticklabels(['Blue', 'Red']) # ax.yaxis.set_ticklabels(['Blue', 'Red']) # plt.show() feature_names = [col for col in X_train] feature_importances = model['random_forest'].feature_importances_ indices = np.argsort(feature_importances)[::-1] n = 30 # maximum feature importances displayed idx = indices[0:n] std = np.std([tree.feature_importances_ for tree in model['random_forest'].estimators_], axis=0) #for f in range(n): # print("%d. feature %s (%f)" % (f + 1, feature_names[idx[f]], feature_importances[idx[f]])) # plt.figure(figsize=(30, 8)) # plt.title("Feature importances") # plt.bar(range(n), feature_importances[idx], color="r", yerr=std[idx], align="center") # plt.xticks(range(n), [feature_names[id] for id in idx], rotation = 45) # plt.xlim([-1, n]) # plt.show() # Sélectionnez un arbre de votre modèle tree_estimator = model['random_forest'].estimators_[10] # Tracez l'arbre # plt.figure(figsize=(1, 1)) # plot_tree(tree_estimator, feature_names=df_train.columns, filled=True, rounded=True, fontsize=10) # plt.savefig('tree.png', dpi=600) # Enregistrez l'image au format PNG # plt.show() def predict(df, pipeline, blue_fighter, red_fighter, weightclass, rounds, title_bout=False): #We build two dataframes, one for each figther f1 = df[(df['R_fighter'] == blue_fighter) | (df['B_fighter'] == blue_fighter)].copy() f1.reset_index(drop=True, inplace=True) f1 = f1[:1] f2 = df[(df['R_fighter'] == red_fighter) | (df['B_fighter'] == red_fighter)].copy() f2.reset_index(drop=True, inplace=True) f2 = f2[:1] # if the fighter was red/blue corner on his last fight, we filter columns to only keep his statistics (and not the other fighter) # then we rename columns according to the color of the corner in the parameters using re.sub() if (f1.loc[0, ['R_fighter']].values[0]) == blue_fighter: result1 = f1.filter(regex='^R', axis=1).copy() #here we keep the red corner stats result1.rename(columns = lambda x: re.sub('^R','B', x), inplace=True) #we rename it with "B_" prefix because he's in the blue_corner else: result1 = f1.filter(regex='^B', axis=1).copy() if (f2.loc[0, ['R_fighter']].values[0]) == red_fighter: result2 = f2.filter(regex='^R', axis=1).copy() else: result2 = f2.filter(regex='^B', axis=1).copy() result2.rename(columns = lambda x: re.sub('^B','R', x), inplace=True) fight = pd.concat([result1, result2], axis = 1) # we concatenate the red and blue fighter dataframes (in columns) fight.drop(['R_fighter','B_fighter'], axis = 1, inplace = True) # we remove fighter names fight.insert(0, 'title_bout', title_bout) # we add tittle_bout, weight class and number of rounds data to the dataframe fight.insert(1, 'weight_class', weightclass) fight.insert(2, 'no_of_rounds', rounds) fight['title_bout'] = fight['title_bout'].map({True: 1, False: 0}) pred = pipeline.predict(fight) proba = pipeline.predict_proba(fight) if (pred == 1.0): print("The predicted winner is", red_fighter, 'with a probability of', round(proba[0][1] * 100, 2), "%") else: print("The predicted winner is", blue_fighter, 'with a probability of ', round(proba[0][0] * 100, 2), "%") return proba predict(df, model, 'Kamaru Usman', 'Colby Covington', 'Welterweight', 3, True) predict(df, model, 'Leon Edwards', 'Belal Muhammad', 'Welterweight', 3, True) predict(df, model, 'Conor McGregor', 'Khabib Nurmagomedov', 'Lightweight', 5, True)