You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

50 lines
1.8 KiB

from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import SGDClassifier
from sklearn import svm
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import GaussianNB
def RandomForest(X_train, X_test, y_train):
random_forest = RandomForestClassifier(n_estimators=100,
criterion='entropy',
max_depth=10,
min_samples_split=2,
min_samples_leaf=1,
random_state=0)
random_forest.fit(X_train, y_train)
return random_forest.predict(X_test), random_forest
def KNN(X_train, X_test, y_train):
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
return knn.predict(X_test),knn
def SVM(X_train, X_test, y_train):
clf = svm.SVC(gamma=0.001)
clf.fit(X_train,y_train)
return clf.predict(X_test),clf
def DecisionTree(X_train, X_test, y_train):
decisionTree = DecisionTreeClassifier()
decisionTree = decisionTree.fit(X_train,y_train)
return decisionTree.predict(X_test),decisionTree
def LogisticRegress(X_train, X_test, y_train):
logistic = LogisticRegression()
logistic.fit(X_train,y_train)
return logistic.predict(X_test),logistic
def Linearsvc(X_train, X_test, y_train):
svc = LinearSVC(C=1.0, dual=False, verbose=True, loss="squared_hinge", multi_class="crammer_singer")
svc.fit(X_train,y_train)
return svc.predict(X_test),svc
def GaussianNaiveBayes(X_train, X_test, y_train):
gnb = GaussianNB()
gnb.fit(X_train, y_train)
return gnb.predict(X_test),gnb