[![Build Status](https://codefirst.iut.uca.fr/api/badges/PyPloteam/PlotaFakeNews/status.svg)](https://codefirst.iut.uca.fr/PyPloteam/PlotaFakeNews) ### Built with ![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54) ![Django](https://img.shields.io/badge/django-%23092E20.svg?style=for-the-badge&logo=django&logoColor=white) ![scikit-learn](https://img.shields.io/badge/scikit--learn-%23F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=white) # Fake News Detector ## Getting started Clone repo: ```shell git clone https://codefirst.iut.uca.fr/git/PyPloteam/PlotaFakeNews.git ``` Install requirements using: ```shell pip install -r requirements.txt ``` ## Training script ```shell cd src/ ``` ```shell python3 main.py ``` ## Launch web app ```shell cd src/app/ ``` ```shell python3 manage.py runserver ``` ## Dataset informations [FakeNews Dataset](https://www.kaggle.com/datasets/algord/fake-news) | **title** | **news_url** | **source_domain** | _tweet_num_ | **real** | |---|---|---|---|---| | title of the article | URL of the article | web domain where article was posted | _number of retweets for this article_ | 1 is real and 0 is fake | _(N.B. Italic columns are not used for learning models)_ ## References - [scikit-learn models](https://scikit-learn.org/stable/supervised_learning.html) - [Label encoder _with scikit-learn_](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html) - [Django documentation](https://www.djangoproject.com/en/5.0/) - [Datas provenance](https://github.com/KaiDMML/FakeNewsNet) ## Authors [LIVET Hugo](https://codefirst.iut.uca.fr/git/hugo.livet) [DE LA FUENTE Axel](https://codefirst.iut.uca.fr/git/axel.de_la_fuente) ## Acknowledgements Thanks to our professor for his guidance and feedback throughout the development of this project. - SAMIR Chafik