remrem 1 year ago
commit 92e60055e8

File diff suppressed because it is too large Load Diff

@ -97,11 +97,13 @@ def model_switch(choice):
def plot_columns_hist(columns):
x.hist()
plt.show()
def printPredictedValues(ypredit,ytest):
for i in range(0,len(ypredit)):
print("✅ Prédit/Réel: ",ypredit[i],ytest[i]) if ypredit[i]==ytest[i] else print("🔴 Prédit/Réel: ",ypredit[i], ytest[i])
# Affiche le pourcentage d'apparition dans les résultats faux du modèle pour chacune des classes
def printStatValues(ypredit,ytest):
galaxyStats = 0
starStats = 0
@ -122,6 +124,7 @@ def printStatValues(ypredit,ytest):
# Train model
def training(model, x, y):
# Sépare les données test (25%) des données d'entrainement (65%)
Xtrain, Xtest, ytrain, ytest = train_test_split(x, y,test_size=0.25, random_state=0)
Xtrain = Xtrain.values
Xtest = Xtest.values
@ -130,12 +133,11 @@ def training(model, x, y):
Xtrain = Xtrain.reshape(-1, 1)
if len(Xtest.shape) < 2:
Xtest = Xtest.reshape(-1, 1)
# Entrainement du model choisi
model.fit(Xtrain,ytrain)
ypredict = model.predict(Xtest)
# confusion_matrix(ytrain, ypredict)
# os.system("clear")
res = -1
while(res != 0):
print(" Rentre un chiffre:\n\n1 - Stats %\n2 - Stats raw\n3 - accuracy_score")
@ -155,6 +157,9 @@ def training(model, x, y):
else:
raise Exception('Wrong entry')
# Divise par 1.5 le nombre de galaxy
# (On a essayé d'équilibrer les différentes classes mais ça a affaiblit nos modèles à chaque fois)
def clearData(df):
res = df["class"].value_counts()
dtemp = df.sort_values(by=['class'])
@ -163,6 +168,7 @@ def clearData(df):
dtemp = dtemp.iloc[34000:]
return dtemp
# Affiche un camembert de la répartition des classes présentes dans le csv
def showData(df):
res = df["class"].value_counts()
x = [res["GALAXY"],res["QSO"],res["STAR"]]
@ -184,7 +190,14 @@ def rfecv_test(x, y, model):
rfe.fit(x,y)
for i in range(x.shape[1]):
print('Column: %d, Selected %s, Rank: %.3f' % (i, rfe.support_[i], rfe.ranking_[i]))
# Entraine "tout" les modèles en itérant sur les colonnes fournis (pas tous les cas car trop long).
# Seulement sur les modèles KNN et TreeClassifier car trop long
# EXEMPLE => colonnes = [A,B,C]
# itèrations :
# [A], [A,B], [A,B,C]
# [B], [B,C]
# [C]
def allModels(df):
dfClone = df.copy()
# Aditionnale model randomforestclassifier(n_estimators=100 ,criterion='entropy', n_jobs=-1)
@ -193,25 +206,41 @@ def allModels(df):
y = df['class'].values
x = list(dfTemp.columns.values)
datas = []
# Itère sur les colonnes
for i in range(0,len(x)):
arrayColumns = [x[i]]
for j in range(i+1,len(x)):
xValues = dfTemp[arrayColumns]
for k in range(0,len(modelArray)):
if modelArray[k] == "KNN":
model = model_switch(1)
elif modelArray[k] == "Classifier":
model = model_switch(2)
else:
model = model_switch(1)
print("Model used : ",modelArray[k], "---- Case : ",model)
print("X values used : ",arrayColumns)
accu = customTrainingRaw(model,xValues,y,3)
it = [modelArray[k],arrayColumns,accu]
datas.append(it)
# Knn model train
model = model_switch(1)
accuKnn = customTrainingRaw(model,xValues,y,3)
print("Model used : Knn ---- Case : ",model)
print("X values used : ",arrayColumns)
# Tree model train
model = model_switch(3)
accuTree = customTrainingRaw(model,xValues,y,3)
print("Model used : Tree ---- Case : ",model)
print("X values used : ",arrayColumns)
dico = dict()
setUp = [arrayColumns.copy(),dico]
setUp[1]['Knn'] = accuKnn
setUp[1]['Tree'] = accuTree
datas.append(setUp.copy())
arrayColumns.append(x[j])
# datas est de la forme suivante :
# datas =
# [
# [Listes_des_colonnes],
# {'KNN': acccuray,'Tree': accuracy}
# ]
return datas
# Permet d'entrainer un model et retourne l'accuracy score
def customTrainingRaw(model, x, y,res=-1):
Xtrain, Xtest, ytrain, ytest = train_test_split(x, y,test_size=0.25, random_state=0)
Xtrain = Xtrain.values
@ -225,25 +254,48 @@ def customTrainingRaw(model, x, y,res=-1):
print(accuracy_score(ytest, ypredit))
return accuracy_score(ytest, ypredit)
def bestModelFinder(datas):
maxi = 0
knnMean= 0
treeMean= 0
# Créer un nuiage de points de l'accuracy en fonction des colonnes itérées pour Knn et Tree
def showStat(datas):
fig, ax = plt.subplots()
x_data = []
y_dataKnn = []
y_dataTree = []
for i in range(0,len(datas)):
if datas[i][0] == 'KNN':
knnMean += datas[i][2]
else:
treeMean += datas[i][2]
if (datas[i][2] > maxi):
maxi = datas[i][2]
x_data.append("/".join(datas[i][0]))
y_dataKnn.append(datas[i][1]['Knn'])
y_dataTree.append(datas[i][1]['Tree'])
ax.scatter(x_data, y_dataKnn, label=f'Y = Knn')
ax.scatter(x_data, y_dataTree, label=f'Y = Tree')
ax.set_xlabel('Axe X')
ax.set_ylabel('Axe Y')
ax.legend()
plt.show()
# Trouve la meilleur accuracy et print le model + les colonnes
def bestModel(datas):
max = 0
min = 1
for i in range(0,len(datas)):
if(datas[i][1]['Knn'] < min):
min = datas[i][1]['Knn']
resMin = datas[i]
modelMin = 'Knn'
elif datas[i][1]['Tree'] < min:
min = datas[i][1]['Tree']
resMin = datas[i]
modelMin = 'Tree'
if(datas[i][1]['Knn'] > max):
max = datas[i][1]['Knn']
res = datas[i]
print("BEST CHOICE IS :", res)
print("Knn mean accuracy_score : ", mean(knnMean))
print("Knn variance accuracy_score : ", variance(knnMean))
print("Knn ecart-type accuracy_score : ", stdev(knnMean))
print("Tree mean accuracy_score : ", mean(treeMean))
print("Tree variance accuracy_score : ", variance(treeMean))
print("Tree ecart-type accuracy_score : ", stdev(treeMean))
model = 'Knn'
elif datas[i][1]['Tree'] > max:
max = datas[i][1]['Tree']
res = datas[i]
model = 'Tree'
print("Best model : ",model," columns : ",res[0]," Accuracy : ", res[1][model])
print("Worst model : ",modelMin," columns : ",resMin[0]," Accuracy : ", resMin[1][model])
def auto_sklearn():
df = read_dataset('data.csv')
@ -262,7 +314,7 @@ def auto_sklearn():
print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat))
def plotAll():
df = read_dataset('data.csv')
x,df,y = read_dataset('data.csv')
plotHistograms(df)
plotDensity(df)
@ -299,4 +351,17 @@ def plotScatterMatrix(df):
scatter_matrix(df)
plt.show()
# Affiche la répartitions des objets stélaires dans la base de données
#showData(df)
# Affiche le meilleur models avec les meilleurs colonnes entre KNeighborsClassifier et DecisionTreeClassifier
#datas = allModels(df)
#bestModel(datas)
# Génère un nuage de points affichant l'accuracy du model Knn et TreeClassifier en fonction des colonnes utilisées.
# datas = allModels(df)
# showStat(datas)
# bestModel(datas)
# Affiche un menu permettant de choisir le model à entrainer, ainsi que des stats suplémentaires
main()

Loading…
Cancel
Save