You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

66 lines
2.5 KiB

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sklearn as sk
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error
# dfRatingsTropGrand = pd.read_csv("processedData/actorsRatingsPerMovie.tsv",sep='\t')
# tconst ratings actorNames averageRatingMovie
# dfRatings = dfRatingsTropGrand[dfRatingsTropGrand['ratings'].apply(lambda x: len(eval(x)) >= 4)]
# dfRatings.to_csv("processedData/actorsRatingsPerMovieGoodToUse.tsv", index=False, sep="\t")
dfRatings = pd.read_csv("processedData/actorsRatingsPerMovieGoodToUse.tsv", sep="\t")
dfActeurs = pd.read_csv("processedData/actorsRatingsGroupedWithName.tsv", sep="\t")
print("Veuillez entrer un entier positif inférieur ou égal à ",len(dfRatings))
print("(Plus le nombre est petit, le temps de préparation sera moins long, mais la précision du modèle sera plus petite)")
val = input(": ")
val = int(val)
listMovies = dfRatings.sample(val)['tconst'].values
# listMovies = dfRatings['tconst'].values
listRatingsA = []
listRatingsM = []
datas = []
nbDiese = 0
for i in range(len(listMovies)):
valPrct = i / len(listMovies) * 100
print("{:.2f}".format(valPrct), "%", end="\r")
film = listMovies[i]
bob = (dfRatings.averageRatingMovie.loc[dfRatings.tconst == film].values[0],
eval(dfRatings.ratings.loc[dfRatings.tconst == film].values[0]))
listRatingsA.append(bob[1][:4])
listRatingsM.append(bob[0])
print("")
x = listRatingsA
y = listRatingsM
xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.3)
lnrg = LinearRegression()
# clf = lnrg.fit(xtrain,ytrain)
xtrain = np.array(xtrain)
clf = lnrg.fit(x, y)
predictions = lnrg.predict(xtest)
print("\nPréparation du modèle de regréssion linéaire terminée\n")
print('Erreur quadratique : ', mean_squared_error(ytest, predictions))
print('Écart moyen : ', mean_absolute_error(ytest, predictions),"\n")
def calculPrevision(listNomsActeurs):
if len(listNomsActeurs) == 4:
print('\nPrédiction en cours...\n')
notesActeurs = []
for nom in listNomsActeurs:
note = dfActeurs.loc[dfActeurs.primaryName == nom].averageRatingMean.values[0]
print(nom, " a pour note moyenne : ", note)
notesActeurs.append(note)
prediction = clf.predict([notesActeurs])[0]
print("\nNote prédite : ", "{:.2f}".format(prediction), "\n")
else:
print("La liste d'acteurs n'est pas de la bonne taille")