diff --git a/frontend/pages/clustering:_dbscan.py b/frontend/pages/clustering:_dbscan.py new file mode 100644 index 0000000..02fde08 --- /dev/null +++ b/frontend/pages/clustering:_dbscan.py @@ -0,0 +1,18 @@ +import streamlit as st +import matplotlib.pyplot as plt +from sklearn.cluster import DBSCAN +import numpy as np + +st.header("Clustering: dbscan") + + +if "data" in st.session_state: + data = st.session_state.data + + with st.form("my_form"): + data_name = st.multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=2) + st.form_submit_button('launch') + + +else: + st.error("file not loaded") \ No newline at end of file diff --git a/frontend/pages/clustering.py b/frontend/pages/clustering:_kmeans.py similarity index 80% rename from frontend/pages/clustering.py rename to frontend/pages/clustering:_kmeans.py index 97698ec..ce34e66 100644 --- a/frontend/pages/clustering.py +++ b/frontend/pages/clustering:_kmeans.py @@ -2,7 +2,7 @@ import streamlit as st from sklearn.cluster import KMeans import matplotlib.pyplot as plt -st.header("Clustering") +st.header("Clustering: kmeans") if "data" in st.session_state: @@ -27,8 +27,9 @@ if "data" in st.session_state: y_kmeans = kmeans.fit_predict(x) fig, ax = plt.subplots(figsize=(12,8)) - plt.scatter(x[:, 0], x[:, 1], s=100, c=kmeans.labels_, cmap='Set1') - plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=400, marker='*', color='k') + plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap='viridis') + centers = kmeans.cluster_centers_ + plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, marker='X') st.pyplot(fig) else: