diff --git a/frontend/pages/clustering.py b/frontend/pages/clustering.py index 037780d..97698ec 100644 --- a/frontend/pages/clustering.py +++ b/frontend/pages/clustering.py @@ -2,47 +2,34 @@ import streamlit as st from sklearn.cluster import KMeans import matplotlib.pyplot as plt -st.header("clustering et Prediction") +st.header("Clustering") if "data" in st.session_state: data = st.session_state.data with st.form("my_form"): - header = st.columns([2,1,2]) - header[0].subheader("Dispersion") - header[1].subheader("Number of clusters") - header[2].subheader("Data Name") + row1 = st.columns([1,1,1]) + n_clusters = row1[0].selectbox("Number of clusters", range(1, 10)) + data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=2) + n_init = row1[2].number_input("n_init",step=1,min_value=1) - row1 = st.columns([2,1,2]) - cluster_std = row1[0].slider("", 0.2, 3.0, 0.2, 0.2) - n_clusters = row1[1].selectbox("", range(1, 10)) - data_name = row1[2].selectbox("", data.columns) + row2 = st.columns([1,1]) + max_iter = row1[0].number_input("max_iter",step=1,min_value=1) - st.form_submit_button('launch') - - from sklearn.datasets import make_blobs - from sklearn.cluster import KMeans - import matplotlib.pyplot as plt - import streamlit as st - import random - # Points generator - x, _ = make_blobs(n_samples=200, n_features=2, centers=5, cluster_std=cluster_std, shuffle=True, random_state=10) + st.form_submit_button('launch') - x = data[["Unit Price","Unit Cost"]].to_numpy() + if len(data_name) == 2: + x = data[data_name].to_numpy() - # k-means algorithm - kmeans = KMeans(n_clusters=n_clusters, init='random', n_init=10, max_iter=300, random_state=111) - y_kmeans = kmeans.fit_predict(x) + kmeans = KMeans(n_clusters=n_clusters, init='random', n_init=n_init, max_iter=max_iter, random_state=111) + y_kmeans = kmeans.fit_predict(x) - # Plotting colored clusters - fig, ax = plt.subplots(figsize=(12,8)) - plt.scatter(x[:, 0], x[:, 1], s=100, c=kmeans.labels_, cmap='Set1') - plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=400, marker='*', color='k') - st.pyplot(fig) + fig, ax = plt.subplots(figsize=(12,8)) + plt.scatter(x[:, 0], x[:, 1], s=100, c=kmeans.labels_, cmap='Set1') + plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=400, marker='*', color='k') + st.pyplot(fig) else: st.error("file not loaded") - -# Cached function that returns a mutable object with a random number in the range 0-10 \ No newline at end of file