Add scaling strategies

feature/missing-values
Clément FRÉVILLE 10 months ago
parent 5f960df838
commit a325603fd9

@ -3,16 +3,20 @@ from pandas import DataFrame, Series
from pandas.api.types import is_numeric_dtype
from typing import Any, Union
class MVStrategy(ABC):
"""A way to handle missing values in a dataframe."""
class DataFrameFunction(ABC):
"""A command that may be applied in-place to a dataframe."""
@abstractmethod
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
"""Apply the current strategy to the given series.
"""Apply the current function to the given dataframe, in-place.
The series is described by its label and dataframe."""
return df
class MVStrategy(DataFrameFunction):
"""A way to handle missing values in a dataframe."""
@staticmethod
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
"""Get all the strategies that can be used."""
@ -22,6 +26,20 @@ class MVStrategy(ABC):
return choices
class ScalingStrategy(DataFrameFunction):
"""A way to handle missing values in a dataframe."""
@staticmethod
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
"""Get all the strategies that can be used."""
choices = [KeepStrategy()]
if is_numeric_dtype(series):
choices.extend((MinMaxStrategy(), ZScoreStrategy()))
if series.sum() != 0:
choices.append(UnitLengthStrategy())
return choices
class DropStrategy(MVStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
@ -77,3 +95,44 @@ class LinearRegressionStrategy(MVStrategy):
def __str__(self) -> str:
return "Use linear regression"
class KeepStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
return df
def __str__(self) -> str:
return "No-op"
class MinMaxStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
minimum = series.min()
maximum = series.max()
df[label] = (series - minimum) / (maximum - minimum)
return df
def __str__(self) -> str:
return "Min-max"
class ZScoreStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
df[label] = (series - series.mean()) / series.std()
return df
def __str__(self) -> str:
return "Z-Score"
class UnitLengthStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
df[label] = series / series.sum()
return df
def __str__(self) -> str:
return "Unit length"

@ -1,14 +1,15 @@
import streamlit as st
from mvstrategy import MVStrategy
from normstrategy import MVStrategy, ScalingStrategy
if "data" in st.session_state:
data = st.session_state.data
st.session_state.data = data.copy()
for column, series in data.items():
col1, col2 = st.columns(2)
missing_count = series.isna().sum()
choices = MVStrategy.list_available(data, series)
option = st.selectbox(
option = col1.selectbox(
f"Missing values of {column} ({missing_count})",
choices,
index=1,
@ -17,6 +18,14 @@ if "data" in st.session_state:
# Always re-get the series to avoid reusing an invalidated series pointer
data = option.apply(data, column, data[column])
choices = ScalingStrategy.list_available(data, series)
option = col2.selectbox(
"Scaling",
choices,
key=f"scaling-{column}",
)
data = option.apply(data, column, data[column])
st.write(data)
st.session_state.working_data = data
else:

Loading…
Cancel
Save