diff --git a/frontend/pages/clustering:_dbscan.py b/frontend/pages/clustering:_dbscan.py new file mode 100644 index 0000000..da51aa9 --- /dev/null +++ b/frontend/pages/clustering:_dbscan.py @@ -0,0 +1,29 @@ +import streamlit as st +import matplotlib.pyplot as plt +from sklearn.cluster import DBSCAN + +st.header("Clustering: dbscan") + + +if "data" in st.session_state: + data = st.session_state.data + + with st.form("my_form"): + data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=2) + eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01) + min_samples = st.number_input("min_samples", step=1, min_value=1, value=5) + st.form_submit_button("launch") + + if len(data_name) == 2: + x = data[data_name].to_numpy() + + dbscan = DBSCAN(eps=eps, min_samples=min_samples) + y_dbscan = dbscan.fit_predict(x) + + + fig, ax = plt.subplots(figsize=(12,8)) + plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis") + st.pyplot(fig) + +else: + st.error("file not loaded") \ No newline at end of file diff --git a/frontend/pages/clustering:_kmeans.py b/frontend/pages/clustering:_kmeans.py new file mode 100644 index 0000000..69d9920 --- /dev/null +++ b/frontend/pages/clustering:_kmeans.py @@ -0,0 +1,36 @@ +import streamlit as st +from sklearn.cluster import KMeans +import matplotlib.pyplot as plt + +st.header("Clustering: kmeans") + + +if "data" in st.session_state: + data = st.session_state.data + + with st.form("my_form"): + row1 = st.columns([1,1,1]) + n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0])) + data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=2) + n_init = row1[2].number_input("n_init",step=1,min_value=1) + + row2 = st.columns([1,1]) + max_iter = row1[0].number_input("max_iter",step=1,min_value=1) + + + st.form_submit_button("launch") + + if len(data_name) == 2: + x = data[data_name].to_numpy() + + kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111) + y_kmeans = kmeans.fit_predict(x) + + fig, ax = plt.subplots(figsize=(12,8)) + plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis") + centers = kmeans.cluster_centers_ + plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X") + st.pyplot(fig) + +else: + st.error("file not loaded")