clustering
Bastien OLLIER 10 months ago
parent 72dcc8ff1c
commit d4e33e7367

@ -18,18 +18,18 @@ if "data" in st.session_state:
max_iter = row1[0].number_input("max_iter",step=1,min_value=1)
st.form_submit_button('launch')
st.form_submit_button("launch")
if len(data_name) == 2:
x = data[data_name].to_numpy()
kmeans = KMeans(n_clusters=n_clusters, init='random', n_init=n_init, max_iter=max_iter, random_state=111)
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
y_kmeans = kmeans.fit_predict(x)
fig, ax = plt.subplots(figsize=(12,8))
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap='viridis')
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, marker='X')
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
st.pyplot(fig)
else:

Loading…
Cancel
Save