diff --git a/frontend/pages/prediction_classification.py b/frontend/pages/prediction_classification.py index c11d7ee..bb6bb22 100644 --- a/frontend/pages/prediction_classification.py +++ b/frontend/pages/prediction_classification.py @@ -67,7 +67,6 @@ if "data" in st.session_state: fig = plt.figure() y_pred = [model.predict(pd.DataFrame([pred_value[0]], columns=data_name)) for pred_value in X.values.tolist()] - print([x[0] for x in X.values.tolist()]) cm = confusion_matrix(y, y_pred) sns.heatmap(cm, annot=True, fmt="d") @@ -75,9 +74,6 @@ if "data" in st.session_state: plt.xlabel('Predicted') plt.ylabel('True') - st.pyplot(fig) - - - + st.pyplot(fig, figsize=(1, 1)) else: st.error("File not loaded") diff --git a/frontend/pages/prediction_regression.py b/frontend/pages/prediction_regression.py index e06fa12..35b648d 100644 --- a/frontend/pages/prediction_regression.py +++ b/frontend/pages/prediction_regression.py @@ -1,5 +1,6 @@ import streamlit as st from sklearn.linear_model import LinearRegression +from sklearn.metrics import r2_score import pandas as pd import matplotlib.pyplot as plt @@ -21,6 +22,10 @@ if "data" in st.session_state: model = LinearRegression() model.fit(X, y) + y_pred = [model.predict(pd.DataFrame([pred_value[0]], columns=data_name)) for pred_value in X.values.tolist()] + r2 = r2_score(y, y_pred) + st.write('R-squared score:', r2) + st.subheader("Enter values for prediction") pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name] prediction = model.predict(pd.DataFrame([pred_values], columns=data_name))