Compare commits

...

2 Commits

Author SHA1 Message Date
Bastien OLLIER 987e255dad delete :
1 year ago
Bastien OLLIER 588ee700ab add stats
1 year ago

@ -0,0 +1 @@
from . import normstrategy

@ -0,0 +1,179 @@
from abc import ABC, abstractmethod
from pandas import DataFrame, Series
from pandas.api.types import is_numeric_dtype
from sklearn.neighbors import KNeighborsClassifier
from typing import Any, Union
class DataFrameFunction(ABC):
"""A command that may be applied in-place to a dataframe."""
@abstractmethod
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
"""Apply the current function to the given dataframe, in-place.
The series is described by its label and dataframe."""
return df
class MVStrategy(DataFrameFunction):
"""A way to handle missing values in a dataframe."""
@staticmethod
def list_available(df: DataFrame, label: str, series: Series) -> list['MVStrategy']:
"""Get all the strategies that can be used."""
choices = [DropStrategy(), ModeStrategy()]
if is_numeric_dtype(series):
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
other_columns = df.select_dtypes(include="number").drop(label, axis=1).columns.to_list()
if len(other_columns):
choices.append(KNNStrategy(other_columns))
return choices
class ScalingStrategy(DataFrameFunction):
"""A way to handle missing values in a dataframe."""
@staticmethod
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
"""Get all the strategies that can be used."""
choices = [KeepStrategy()]
if is_numeric_dtype(series):
choices.extend((MinMaxStrategy(), ZScoreStrategy()))
if series.sum() != 0:
choices.append(UnitLengthStrategy())
return choices
class DropStrategy(MVStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
df.dropna(subset=label, inplace=True)
return df
def __str__(self) -> str:
return "Drop"
class PositionStrategy(MVStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
series.fillna(self.get_value(series), inplace=True)
return df
@abstractmethod
def get_value(self, series: Series) -> Any:
pass
class MeanStrategy(PositionStrategy):
#@typing.override
def get_value(self, series: Series) -> Union[int, float]:
return series.mean()
def __str__(self) -> str:
return "Use mean"
class MedianStrategy(PositionStrategy):
#@typing.override
def get_value(self, series: Series) -> Union[int, float]:
return series.median()
def __str__(self) -> str:
return "Use median"
class ModeStrategy(PositionStrategy):
#@typing.override
def get_value(self, series: Series) -> Any:
return series.mode()[0]
def __str__(self) -> str:
return "Use mode"
class LinearRegressionStrategy(MVStrategy):
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
series.interpolate(inplace=True)
return df
def __str__(self) -> str:
return "Use linear regression"
class KNNStrategy(MVStrategy):
def __init__(self, training_features: list[str]):
self.available_features = training_features
self.training_features = training_features
self.n_neighbors = 3
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
# Remove any training column that have any missing values
usable_data = df.dropna(subset=self.training_features)
# Select columns to impute from
train_data = usable_data.dropna(subset=label)
# Create train dataframe
x_train = train_data.drop(label, axis=1)
y_train = train_data[label]
reg = KNeighborsClassifier(self.n_neighbors).fit(x_train, y_train)
# Create test dataframe
test_data = usable_data[usable_data[label].isnull()]
if test_data.empty:
return df
x_test = test_data.drop(label, axis=1)
predicted = reg.predict(x_test)
# Fill with predicated values and patch the original data
usable_data[label].fillna(Series(predicted), inplace=True)
df.fillna(usable_data, inplace=True)
return df
def count_max(self, df: DataFrame, label: str) -> int:
usable_data = df.dropna(subset=self.training_features)
return usable_data[label].count()
def __str__(self) -> str:
return "kNN"
class KeepStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
return df
def __str__(self) -> str:
return "No-op"
class MinMaxStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
minimum = series.min()
maximum = series.max()
df[label] = (series - minimum) / (maximum - minimum)
return df
def __str__(self) -> str:
return "Min-max"
class ZScoreStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
df[label] = (series - series.mean()) / series.std()
return df
def __str__(self) -> str:
return "Z-Score"
class UnitLengthStrategy(ScalingStrategy):
#@typing.override
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
df[label] = series / series.sum()
return df
def __str__(self) -> str:
return "Unit length"

@ -0,0 +1,63 @@
from sklearn.cluster import DBSCAN, KMeans
import numpy as np
class DBSCAN_cluster():
def __init__(self, eps, min_samples,data):
self.eps = eps
self.min_samples = min_samples
self.data = data
self.labels = np.array([])
def run(self):
dbscan = DBSCAN(eps=self.eps, min_samples=self.min_samples)
self.labels = dbscan.fit_predict(self.data)
return self.labels
def get_stats(self):
unique_labels = np.unique(self.labels)
stats = []
for label in unique_labels:
if label == -1:
continue
cluster_points = self.data[self.labels == label]
num_points = len(cluster_points)
density = num_points / (np.max(cluster_points, axis=0) - np.min(cluster_points, axis=0)).prod()
stats.append({
"cluster": label,
"num_points": num_points,
"density": density
})
return stats
class KMeans_cluster():
def __init__(self, n_clusters, n_init, max_iter, data):
self.n_clusters = n_clusters
self.n_init = n_init
self.max_iter = max_iter
self.data = data
self.labels = np.array([])
self.centers = []
def run(self):
kmeans = KMeans(n_clusters=self.n_clusters, init="random", n_init=self.n_init, max_iter=self.max_iter, random_state=111)
self.labels = kmeans.fit_predict(self.data)
self.centers = kmeans.cluster_centers_
return self.labels
def get_stats(self):
unique_labels = np.unique(self.labels)
stats = []
for label in unique_labels:
cluster_points = self.data[self.labels == label]
num_points = len(cluster_points)
center = self.centers[label]
stats.append({
'cluster': label,
'num_points': num_points,
'center': center
})
return stats

@ -1,10 +1,9 @@
import streamlit as st
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN
from clusters import DBSCAN_cluster
st.header("Clustering: dbscan")
if "data" in st.session_state:
data = st.session_state.data
@ -17,8 +16,9 @@ if "data" in st.session_state:
if len(data_name) >= 2 and len(data_name) <=3:
x = data[data_name].to_numpy()
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
y_dbscan = dbscan.fit_predict(x)
dbscan = DBSCAN_cluster(eps,min_samples,x)
y_dbscan = dbscan.run()
st.table(dbscan.get_stats())
fig = plt.figure()
if len(data_name) == 2:
@ -28,8 +28,5 @@ if "data" in st.session_state:
ax = fig.add_subplot(projection='3d')
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis")
st.pyplot(fig)
else:
st.error("file not loaded")

@ -1,10 +1,9 @@
import streamlit as st
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from clusters import KMeans_cluster
st.header("Clustering: kmeans")
if "data" in st.session_state:
data = st.session_state.data
@ -23,21 +22,22 @@ if "data" in st.session_state:
if len(data_name) >= 2 and len(data_name) <=3:
x = data[data_name].to_numpy()
kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111)
y_kmeans = kmeans.fit_predict(x)
kmeans = KMeans_cluster(n_clusters, n_init, max_iter, x)
y_kmeans = kmeans.run()
st.table(kmeans.get_stats())
centers = kmeans.centers
fig = plt.figure()
if len(data_name) == 2:
ax = fig.add_subplot(projection='rectilinear')
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis")
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X")
else:
ax = fig.add_subplot(projection='3d')
ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis")
centers = kmeans.cluster_centers_
ax.scatter(centers[:, 0], centers[:, 1],centers[:, 2], c="black", s=200, marker="X")
ax.scatter(centers[:, 0], centers[:, 1], centers[:, 2], c="black", s=200, marker="X")
st.pyplot(fig)
else:
Loading…
Cancel
Save