diff --git a/.gitignore b/.gitignore index bee8a64..9f7550b 100644 --- a/.gitignore +++ b/.gitignore @@ -1 +1,2 @@ __pycache__ +.venv diff --git a/frontend/pages/prediction_classification.py b/frontend/pages/prediction_classification.py new file mode 100644 index 0000000..5aaf52f --- /dev/null +++ b/frontend/pages/prediction_classification.py @@ -0,0 +1,64 @@ +import streamlit as st +from sklearn.linear_model import LogisticRegression +from sklearn.model_selection import train_test_split +from sklearn.metrics import accuracy_score +from sklearn.preprocessing import LabelEncoder +import pandas as pd + +st.header("Prediction: Classification") + +if "data" in st.session_state: + data = st.session_state.data + + with st.form("classification_form"): + st.subheader("Classification Parameters") + data_name = st.multiselect("Features", data.columns) + target_name = st.selectbox("Target", data.columns) + test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1) + st.form_submit_button('Train and Predict') + + if data_name and target_name: + X = data[data_name] + y = data[target_name] + + label_encoders = {} + for column in X.select_dtypes(include=['object']).columns: + le = LabelEncoder() + X[column] = le.fit_transform(X[column]) + label_encoders[column] = le + + if y.dtype == 'object': + le = LabelEncoder() + y = le.fit_transform(y) + label_encoders[target_name] = le + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42) + + model = LogisticRegression() + model.fit(X_train, y_train) + y_pred = model.predict(X_test) + accuracy = accuracy_score(y_test, y_pred) + + st.subheader("Model Accuracy") + st.write(f"Accuracy on test data: {accuracy:.2f}") + + st.subheader("Enter values for prediction") + pred_values = [] + for feature in data_name: + if feature in label_encoders: + values = list(label_encoders[feature].classes_) + value = st.selectbox(f"Value for {feature}", values) + value_encoded = label_encoders[feature].transform([value])[0] + pred_values.append(value_encoded) + else: + value = st.number_input(f"Value for {feature}", value=0.0) + pred_values.append(value) + + prediction = model.predict(pd.DataFrame([pred_values], columns=data_name)) + + if target_name in label_encoders: + prediction = label_encoders[target_name].inverse_transform(prediction) + + st.write("Prediction:", prediction[0]) +else: + st.error("File not loaded") diff --git a/frontend/pages/prediction_regression.py b/frontend/pages/prediction_regression.py new file mode 100644 index 0000000..377274e --- /dev/null +++ b/frontend/pages/prediction_regression.py @@ -0,0 +1,29 @@ +import streamlit as st +from sklearn.linear_model import LinearRegression +import pandas as pd + +st.header("Prediction: Regression") + +if "data" in st.session_state: + data = st.session_state.data + + with st.form("regression_form"): + st.subheader("Linear Regression Parameters") + data_name = st.multiselect("Features", data.select_dtypes(include="number").columns) + target_name = st.selectbox("Target", data.select_dtypes(include="number").columns) + st.form_submit_button('Train and Predict') + + if data_name and target_name: + X = data[data_name] + y = data[target_name] + + model = LinearRegression() + model.fit(X, y) + + st.subheader("Enter values for prediction") + pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name] + prediction = model.predict(pd.DataFrame([pred_values], columns=data_name)) + + st.write("Prediction:", prediction[0]) +else: + st.error("File not loaded")