import streamlit as st from sklearn.linear_model import LinearRegression import pandas as pd st.header("Prediction: Regression") if "data" in st.session_state: data = st.session_state.data with st.form("regression_form"): st.subheader("Linear Regression Parameters") data_name = st.multiselect("Features", data.select_dtypes(include="number").columns) target_name = st.selectbox("Target", data.select_dtypes(include="number").columns) st.form_submit_button('Train and Predict') if data_name and target_name: X = data[data_name] y = data[target_name] model = LinearRegression() model.fit(X, y) st.subheader("Enter values for prediction") pred_values = [st.number_input(f"Value for {feature}", value=0.0) for feature in data_name] prediction = model.predict(pd.DataFrame([pred_values], columns=data_name)) st.write("Prediction:", prediction[0]) else: st.error("File not loaded")