import matplotlib.pyplot as plt from sklearn.cluster import DBSCAN def perform_dbscan_clustering(data, data_name, eps, min_samples): x = data[data_name].to_numpy() dbscan = DBSCAN(eps=eps, min_samples=min_samples) y_dbscan = dbscan.fit_predict(x) fig = plt.figure() if len(data_name) == 2: ax = fig.add_subplot(projection='rectilinear') plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis") else: ax = fig.add_subplot(projection='3d') ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=y_dbscan, s=50, cmap="viridis") return fig