import streamlit as st import matplotlib.pyplot as plt from clusters import DBSCANCluster, KMeansCluster, CLUSTERING_STRATEGIES st.header("Clustering") if "data" in st.session_state: data = st.session_state.data general_row = st.columns([1, 1]) clustering = general_row[0].selectbox("Clustering method", CLUSTERING_STRATEGIES) data_name = general_row[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=3) with st.form("cluster_form"): if isinstance(clustering, KMeansCluster): row1 = st.columns([1, 1, 1]) clustering.n_clusters = row1[0].number_input("Number of clusters", min_value=1, max_value=data.shape[0], value=clustering.n_clusters) clustering.n_init = row1[1].number_input("n_init", min_value=1, value=clustering.n_init) clustering.max_iter = row1[2].number_input("max_iter", min_value=1, value=clustering.max_iter) elif isinstance(clustering, DBSCANCluster): clustering.eps = st.slider("eps", min_value=0.0001, max_value=1.0, step=0.1, value=clustering.eps) clustering.min_samples = st.number_input("min_samples", min_value=1, value=clustering.min_samples) st.form_submit_button("Launch") if len(data_name) >= 2 and len(data_name) <=3: x = data[data_name].to_numpy() result = clustering.run(x) st.table(result.statistics) fig = plt.figure() if len(data_name) == 2: ax = fig.add_subplot(projection='rectilinear') plt.scatter(x[:, 0], x[:, 1], c=result.labels, s=50, cmap="viridis") if result.centers is not None: plt.scatter(result.centers[:, 0], result.centers[:, 1], c="black", s=200, marker="X") else: ax = fig.add_subplot(projection='3d') ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=result.labels, s=50, cmap="viridis") if result.centers is not None: ax.scatter(result.centers[:, 0], result.centers[:, 1], result.centers[:, 2], c="black", s=200, marker="X") st.pyplot(fig) else: st.error("file not loaded")