import streamlit as st from sklearn.cluster import KMeans import matplotlib.pyplot as plt st.header("Clustering: kmeans") if "data" in st.session_state: data = st.session_state.data with st.form("my_form"): row1 = st.columns([1,1,1]) n_clusters = row1[0].selectbox("Number of clusters", range(1,data.shape[0])) data_name = row1[1].multiselect("Data Name",data.select_dtypes(include="number").columns, max_selections=3) n_init = row1[2].number_input("n_init",step=1,min_value=1) row2 = st.columns([1,1]) max_iter = row1[0].number_input("max_iter",step=1,min_value=1) st.form_submit_button("launch") if len(data_name) >= 2 and len(data_name) <=3: x = data[data_name].to_numpy() kmeans = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, max_iter=max_iter, random_state=111) y_kmeans = kmeans.fit_predict(x) fig = plt.figure() if len(data_name) == 2: ax = fig.add_subplot(projection='rectilinear') plt.scatter(x[:, 0], x[:, 1], c=y_kmeans, s=50, cmap="viridis") centers = kmeans.cluster_centers_ plt.scatter(centers[:, 0], centers[:, 1], c="black", s=200, marker="X") else: ax = fig.add_subplot(projection='3d') ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_kmeans, s=50, cmap="viridis") centers = kmeans.cluster_centers_ ax.scatter(centers[:, 0], centers[:, 1],centers[:, 2], c="black", s=200, marker="X") st.pyplot(fig) else: st.error("file not loaded")