import streamlit as st import matplotlib.pyplot as plt from clusters import DBSCANCluster, KMeansCluster, CLUSTERING_STRATEGIES from sklearn.decomposition import PCA from sklearn.metrics import silhouette_score import numpy as np st.header("Clustering") if "data" in st.session_state: data = st.session_state.data general_row = st.columns([1, 1, 1]) clustering = general_row[0].selectbox("Clustering method", CLUSTERING_STRATEGIES) data_name = general_row[1].multiselect("Columns", data.select_dtypes(include="number").columns) n_components = general_row[2].number_input("Reduce dimensions to (PCA)", min_value=1, max_value=3, value=2) with st.form("cluster_form"): if isinstance(clustering, KMeansCluster): row1 = st.columns([1, 1, 1]) clustering.n_clusters = row1[0].number_input("Number of clusters", min_value=1, max_value=data.shape[0], value=clustering.n_clusters) clustering.n_init = row1[1].number_input("n_init", min_value=1, value=clustering.n_init) clustering.max_iter = row1[2].number_input("max_iter", min_value=1, value=clustering.max_iter) elif isinstance(clustering, DBSCANCluster): row1 = st.columns([1, 1]) clustering.eps = row1[0].slider("eps", min_value=0.0001, max_value=1.0, step=0.05, value=clustering.eps) clustering.min_samples = row1[1].number_input("min_samples", min_value=1, value=clustering.min_samples) st.form_submit_button("Launch") if len(data_name) > 0: x = data[data_name].to_numpy() n_components = min(n_components, len(data_name)) if len(data_name) > n_components: pca = PCA(n_components) x = pca.fit_transform(x) if n_components == 2: (fig, ax) = plt.subplots(figsize=(8, 8)) for i in range(0, pca.components_.shape[1]): ax.arrow( 0, 0, pca.components_[0, i], pca.components_[1, i], head_width=0.1, head_length=0.1 ) plt.text( pca.components_[0, i] + 0.05, pca.components_[1, i] + 0.05, data_name[i] ) circle = plt.Circle((0, 0), radius=1, edgecolor='b', facecolor='None') ax.add_patch(circle) plt.axis("equal") ax.set_title("PCA result - Correlation circle") st.pyplot(fig) result = clustering.run(x) st.write("## Cluster stats") st.table(result.statistics) st.write("## Graphical representation") fig = plt.figure() if n_components == 1: plt.scatter(x, np.zeros_like(x)) elif n_components == 2: ax = fig.add_subplot(projection='rectilinear') plt.scatter(x[:, 0], x[:, 1], c=result.labels, s=50, cmap="viridis") if result.centers is not None: plt.scatter(result.centers[:, 0], result.centers[:, 1], c="black", s=200, marker="X") else: ax = fig.add_subplot(projection='3d') ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=result.labels, s=50, cmap="viridis") if result.centers is not None: ax.scatter(result.centers[:, 0], result.centers[:, 1], result.centers[:, 2], c="black", s=200, marker="X") st.pyplot(fig) if not (result.labels == 0).all(): st.write("Silhouette score:", silhouette_score(x, result.labels)) else: st.error("Select at least one column") else: st.error("file not loaded")