import streamlit as st from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import LabelEncoder import pandas as pd st.header("Prediction: Classification") if "data" in st.session_state: data = st.session_state.data with st.form("classification_form"): st.subheader("Random Forest Parameters") data_name = st.multiselect("Features", data.select_dtypes(include="object").columns, help="Sélectionnez les caractéristiques pour l'entraînement.") target_name = st.selectbox("Target", data.columns, help="Sélectionnez la variable cible pour l'entraînement.") n_estimators = st.number_input("Number of estimators", step=1, min_value=1, value=100, help="Nombre d'arbres dans la forêt.") max_depth = st.number_input("Max depth", step=1, min_value=1, value=10, help="Profondeur maximale des arbres.") submit_button = st.form_submit_button('Train and Predict') if submit_button and data_name and target_name: le = LabelEncoder() X = data[data_name].apply(le.fit_transform) y = le.fit_transform(data[target_name]) model = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth, random_state=111) model.fit(X, y) st.subheader("Enter values for prediction") pred_values = [st.selectbox(f"Value for {feature}", options=data[feature].unique(), key=f"value_{feature}") for feature in data_name] pred_values_encoded = [le.transform([val])[0] for val in pred_values] prediction = model.predict([pred_values_encoded]) prediction_decoded = le.inverse_transform(prediction) st.write("Prediction:", prediction_decoded[0]) else: st.error("File not loaded")