import streamlit as st import matplotlib.pyplot as plt from sklearn.cluster import DBSCAN st.header("Clustering: dbscan") if "data" in st.session_state: data = st.session_state.data with st.form("my_form"): data_name = st.multiselect("Data Name", data.select_dtypes(include="number").columns, max_selections=3) eps = st.slider("eps", min_value=0.0, max_value=1.0, value=0.5, step=0.01) min_samples = st.number_input("min_samples", step=1, min_value=1, value=5) st.form_submit_button("launch") if len(data_name) >= 2 and len(data_name) <=3: x = data[data_name].to_numpy() dbscan = DBSCAN(eps=eps, min_samples=min_samples) y_dbscan = dbscan.fit_predict(x) fig = plt.figure() if len(data_name) == 2: ax = fig.add_subplot(projection='rectilinear') plt.scatter(x[:, 0], x[:, 1], c=y_dbscan, s=50, cmap="viridis") else: ax = fig.add_subplot(projection='3d') ax.scatter(x[:, 0], x[:, 1],x[:, 2], c=y_dbscan, s=50, cmap="viridis") st.pyplot(fig) else: st.error("file not loaded")