from sklearn.linear_model import LinearRegression def perform_regression(data, data_name, target_name): X = data[data_name] y = data[target_name] if not isinstance(y.iloc[0], (int, float)): raise ValueError("The target variable should be numeric (continuous) for regression.") model = LinearRegression() model.fit(X, y) return model def make_prediction(model, feature_names, input_values): prediction = model.predict([input_values]) return prediction[0]