import streamlit as st from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.preprocessing import LabelEncoder import pandas as pd st.header("Prediction: Classification") if "data" in st.session_state: data = st.session_state.data with st.form("classification_form"): st.subheader("Classification Parameters") data_name = st.multiselect("Features", data.columns) target_name = st.selectbox("Target", data.columns) test_size = st.slider("Test Size", min_value=0.1, max_value=0.5, value=0.2, step=0.1) st.form_submit_button('Train and Predict') if data_name and target_name: X = data[data_name] y = data[target_name] label_encoders = {} for column in X.select_dtypes(include=['object']).columns: le = LabelEncoder() X[column] = le.fit_transform(X[column]) label_encoders[column] = le if y.dtype == 'object': le = LabelEncoder() y = le.fit_transform(y) label_encoders[target_name] = le X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42) model = LogisticRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) st.subheader("Model Accuracy") st.write(f"Accuracy on test data: {accuracy:.2f}") st.subheader("Enter values for prediction") pred_values = [] for feature in data_name: if feature in label_encoders: values = list(label_encoders[feature].classes_) value = st.selectbox(f"Value for {feature}", values) value_encoded = label_encoders[feature].transform([value])[0] pred_values.append(value_encoded) else: value = st.number_input(f"Value for {feature}", value=0.0) pred_values.append(value) prediction = model.predict(pd.DataFrame([pred_values], columns=data_name)) if target_name in label_encoders: prediction = label_encoders[target_name].inverse_transform(prediction) st.write("Prediction:", prediction[0]) else: st.error("File not loaded")