You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
miner/frontend/clusters.py

84 lines
2.6 KiB

from sklearn.cluster import DBSCAN, KMeans
import numpy as np
from dataclasses import dataclass
from abc import ABC, abstractmethod
from typing import Any, Optional
@dataclass
class ClusterResult:
labels: np.array
centers: Optional[np.array]
statistics: list[dict[str, Any]]
class Cluster(ABC):
@abstractmethod
def run(self, data: np.array) -> ClusterResult:
pass
class DBSCANCluster(Cluster):
def __init__(self, eps: float = 0.5, min_samples: int = 5):
self.eps = eps
self.min_samples = min_samples
#@typing.override
def run(self, data: np.array) -> ClusterResult:
dbscan = DBSCAN(eps=self.eps, min_samples=self.min_samples)
labels = dbscan.fit_predict(data)
return ClusterResult(labels, None, self.get_statistics(data, labels))
def get_statistics(self, data: np.array, labels: np.array) -> list[dict[str, Any]]:
unique_labels = np.unique(labels)
stats = []
for label in unique_labels:
if label == -1:
continue
cluster_points = data[labels == label]
num_points = len(cluster_points)
density = num_points / (np.max(cluster_points, axis=0) - np.min(cluster_points, axis=0)).prod()
stats.append({
"cluster": label,
"num_points": num_points,
"density": density
})
return stats
def __str__(self) -> str:
return "DBScan"
class KMeansCluster(Cluster):
def __init__(self, n_clusters: int = 8, n_init: int = 1, max_iter: int = 300):
self.n_clusters = n_clusters
self.n_init = n_init
self.max_iter = max_iter
#@typing.override
def run(self, data: np.array) -> ClusterResult:
kmeans = KMeans(n_clusters=self.n_clusters, init="random", n_init=self.n_init, max_iter=self.max_iter, random_state=111)
labels = kmeans.fit_predict(data)
centers = kmeans.cluster_centers_
return ClusterResult(labels, centers, self.get_statistics(data, labels, centers))
def get_statistics(self, data: np.array, labels: np.array, centers: np.array) -> list[dict[str, Any]]:
unique_labels = np.unique(labels)
stats = []
for label in unique_labels:
cluster_points = data[labels == label]
num_points = len(cluster_points)
center = centers[label]
stats.append({
"cluster": label,
"num_points": num_points,
"center": center,
})
return stats
def __str__(self) -> str:
return "KMeans"
CLUSTERING_STRATEGIES = [DBSCANCluster(), KMeansCluster()]