You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
5.3 KiB
176 lines
5.3 KiB
from abc import ABC, abstractmethod
|
|
from pandas import DataFrame, Series
|
|
from pandas.api.types import is_numeric_dtype
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
from typing import Any, Union
|
|
|
|
class DataFrameFunction(ABC):
|
|
"""A command that may be applied in-place to a dataframe."""
|
|
|
|
@abstractmethod
|
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
"""Apply the current function to the given dataframe, in-place.
|
|
|
|
The series is described by its label and dataframe."""
|
|
return df
|
|
|
|
|
|
class MVStrategy(DataFrameFunction):
|
|
"""A way to handle missing values in a dataframe."""
|
|
|
|
@staticmethod
|
|
def list_available(df: DataFrame, label: str, series: Series) -> list['MVStrategy']:
|
|
"""Get all the strategies that can be used."""
|
|
choices = [DropStrategy(), ModeStrategy()]
|
|
if is_numeric_dtype(series):
|
|
choices.extend((MeanStrategy(), MedianStrategy(), LinearRegressionStrategy()))
|
|
other_columns = df.select_dtypes(include="number").drop(label, axis=1).columns.to_list()
|
|
if len(other_columns):
|
|
choices.append(KNNStrategy(other_columns))
|
|
return choices
|
|
|
|
|
|
class ScalingStrategy(DataFrameFunction):
|
|
"""A way to handle missing values in a dataframe."""
|
|
|
|
@staticmethod
|
|
def list_available(df: DataFrame, series: Series) -> list['MVStrategy']:
|
|
"""Get all the strategies that can be used."""
|
|
choices = [KeepStrategy()]
|
|
if is_numeric_dtype(series):
|
|
choices.extend((MinMaxStrategy(), ZScoreStrategy()))
|
|
if series.sum() != 0:
|
|
choices.append(UnitLengthStrategy())
|
|
return choices
|
|
|
|
|
|
class DropStrategy(MVStrategy):
|
|
#@typing.override
|
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
df.dropna(subset=label, inplace=True)
|
|
return df
|
|
|
|
def __str__(self) -> str:
|
|
return "Drop"
|
|
|
|
|
|
class PositionStrategy(MVStrategy):
|
|
#@typing.override
|
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
series.fillna(self.get_value(series), inplace=True)
|
|
return df
|
|
|
|
@abstractmethod
|
|
def get_value(self, series: Series) -> Any:
|
|
pass
|
|
|
|
|
|
class MeanStrategy(PositionStrategy):
|
|
#@typing.override
|
|
def get_value(self, series: Series) -> Union[int, float]:
|
|
return series.mean()
|
|
|
|
def __str__(self) -> str:
|
|
return "Use mean"
|
|
|
|
|
|
class MedianStrategy(PositionStrategy):
|
|
#@typing.override
|
|
def get_value(self, series: Series) -> Union[int, float]:
|
|
return series.median()
|
|
|
|
def __str__(self) -> str:
|
|
return "Use median"
|
|
|
|
|
|
class ModeStrategy(PositionStrategy):
|
|
#@typing.override
|
|
def get_value(self, series: Series) -> Any:
|
|
return series.mode()[0]
|
|
|
|
def __str__(self) -> str:
|
|
return "Use mode"
|
|
|
|
|
|
class LinearRegressionStrategy(MVStrategy):
|
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
series.interpolate(inplace=True)
|
|
return df
|
|
|
|
def __str__(self) -> str:
|
|
return "Use linear regression"
|
|
|
|
|
|
class KNNStrategy(MVStrategy):
|
|
def __init__(self, training_features: list[str]):
|
|
self.available_features = training_features
|
|
self.training_features = training_features
|
|
self.n_neighbors = 3
|
|
|
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
# Remove any training column that have any missing values
|
|
usable_data = df.dropna(subset=self.training_features)
|
|
# Select columns to impute from
|
|
train_data = usable_data.dropna(subset=label)
|
|
# Create train dataframe
|
|
x_train = train_data.drop(label, axis=1)
|
|
y_train = train_data[label]
|
|
|
|
reg = KNeighborsClassifier(self.n_neighbors).fit(x_train, y_train)
|
|
|
|
# Create test dataframe
|
|
test_data = usable_data[usable_data[label].isnull()]
|
|
if test_data.empty:
|
|
return df
|
|
x_test = test_data.drop(label, axis=1)
|
|
predicted = reg.predict(x_test)
|
|
|
|
# Fill with predicated values and patch the original data
|
|
usable_data[label].fillna(Series(predicted), inplace=True)
|
|
df.fillna(usable_data, inplace=True)
|
|
return df
|
|
|
|
def __str__(self) -> str:
|
|
return "kNN"
|
|
|
|
|
|
class KeepStrategy(ScalingStrategy):
|
|
#@typing.override
|
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
return df
|
|
|
|
def __str__(self) -> str:
|
|
return "No-op"
|
|
|
|
|
|
class MinMaxStrategy(ScalingStrategy):
|
|
#@typing.override
|
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
minimum = series.min()
|
|
maximum = series.max()
|
|
df[label] = (series - minimum) / (maximum - minimum)
|
|
return df
|
|
|
|
def __str__(self) -> str:
|
|
return "Min-max"
|
|
|
|
|
|
class ZScoreStrategy(ScalingStrategy):
|
|
#@typing.override
|
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
df[label] = (series - series.mean()) / series.std()
|
|
return df
|
|
|
|
def __str__(self) -> str:
|
|
return "Z-Score"
|
|
|
|
|
|
class UnitLengthStrategy(ScalingStrategy):
|
|
#@typing.override
|
|
def apply(self, df: DataFrame, label: str, series: Series) -> DataFrame:
|
|
df[label] = series / series.sum()
|
|
return df
|
|
|
|
def __str__(self) -> str:
|
|
return "Unit length"
|