You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

290 lines
12 KiB

//------------------------------------------------------------------------------
// <copyright file="MainPage.xaml.cs" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
//------------------------------------------------------------------------------
using System;
using System.ComponentModel;
using System.IO;
using System.Runtime.InteropServices.WindowsRuntime;
using Windows.ApplicationModel.Resources;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media.Imaging;
using WindowsPreview.Kinect;
namespace Microsoft.Samples.Kinect.InfraredBasics
{
/// <summary>
/// Main page for sample
/// </summary>
public sealed partial class MainPage : Page, INotifyPropertyChanged
{
/// <summary>
/// InfraredSourceValueMaximum is the highest value that can be returned in the InfraredFrame.
/// It is cast to a float for readability in the visualization code.
/// </summary>
private const float InfraredSourceValueMaximum = (float)ushort.MaxValue;
/// <summary>
/// The InfraredOutputValueMinimum value is used to set the lower limit, post processing, of the
/// infrared data that we will render.
/// Increasing or decreasing this value sets a brightness "wall" either closer or further away.
/// </summary>
private const float InfraredOutputValueMinimum = 0.01f;
/// <summary>
/// The InfraredOutputValueMaximum value is the upper limit, post processing, of the
/// infrared data that we will render.
/// </summary>
private const float InfraredOutputValueMaximum = 1.0f;
/// <summary>
/// The InfraredSceneValueAverage value specifies the average infrared value of the scene.
/// This value was selected by analyzing the average pixel intensity for a given scene.
/// Depending on the visualization requirements for a given application, this value can be
/// hard coded, as was done here, or calculated by averaging the intensity for each pixel prior
/// to rendering.
/// </summary>
private const float InfraredSceneValueAverage = 0.08f;
/// <summary>
/// The InfraredSceneStandardDeviations value specifies the number of standard deviations
/// to apply to InfraredSceneValueAverage. This value was selected by analyzing data
/// from a given scene.
/// Depending on the visualization requirements for a given application, this value can be
/// hard coded, as was done here, or calculated at runtime.
/// </summary>
private const float InfraredSceneStandardDeviations = 3.0f;
/// <summary>
/// Size of the RGB pixel in the bitmap
/// </summary>
private const int BytesPerPixel = 4;
/// <summary>
/// Resource loader for string resources
/// </summary>
#if WIN81ORLATER
private ResourceLoader resourceLoader = ResourceLoader.GetForCurrentView("Resources");
#else
private ResourceLoader resourceLoader = new ResourceLoader("Resources");
#endif
/// <summary>
/// Active Kinect sensor
/// </summary>
private KinectSensor kinectSensor = null;
/// <summary>
/// Reader for infrared frames
/// </summary>
private InfraredFrameReader infraredFrameReader = null;
/// <summary>
/// Bitmap to display
/// </summary>
private WriteableBitmap bitmap = null;
/// <summary>
/// Intermediate storage for receiving frame data from the sensor
/// </summary>
private ushort[] infraredFrameData = null;
/// <summary>
/// Intermediate storage for frame data converted to color
/// </summary>
private byte[] infraredPixels = null;
/// <summary>
/// Current status text to display
/// </summary>
private string statusText = null;
/// <summary>
/// Initializes a new instance of the MainPage class.
/// </summary>
public MainPage()
{
// get the kinectSensor object
this.kinectSensor = KinectSensor.GetDefault();
// get the infraredFrameDescription from the InfraredFrameSource
FrameDescription infraredFrameDescription = this.kinectSensor.InfraredFrameSource.FrameDescription;
// open the reader for the infrared frames
this.infraredFrameReader = this.kinectSensor.InfraredFrameSource.OpenReader();
// wire handler for frame arrival
this.infraredFrameReader.FrameArrived += this.Reader_InfraredFrameArrived;
// allocate space to put the pixels being received and converted
this.infraredFrameData = new ushort[infraredFrameDescription.Width * infraredFrameDescription.Height];
this.infraredPixels = new byte[infraredFrameDescription.Width * infraredFrameDescription.Height * BytesPerPixel];
// create the bitmap to display
this.bitmap = new WriteableBitmap(infraredFrameDescription.Width, infraredFrameDescription.Height);
// set IsAvailableChanged event notifier
this.kinectSensor.IsAvailableChanged += this.Sensor_IsAvailableChanged;
// open the sensor
this.kinectSensor.Open();
// set the status text
this.StatusText = this.kinectSensor.IsAvailable ? resourceLoader.GetString("RunningStatusText")
: resourceLoader.GetString("NoSensorStatusText");
// use the window object as the view model in this simple example
this.DataContext = this;
// initialize the components (controls) of the window
this.InitializeComponent();
}
/// <summary>
/// INotifyPropertyChangedPropertyChanged event to allow window controls to bind to changeable data.
/// </summary>
public event PropertyChangedEventHandler PropertyChanged;
/// <summary>
/// Gets or sets the current status text to display
/// </summary>
public string StatusText
{
get
{
return this.statusText;
}
set
{
if (this.statusText != value)
{
this.statusText = value;
// notify any bound elements that the text has changed
if (this.PropertyChanged != null)
{
this.PropertyChanged(this, new PropertyChangedEventArgs("StatusText"));
}
}
}
}
/// <summary>
/// Execute shutdown tasks.
/// </summary>
/// <param name="sender">object sending the event</param>
/// <param name="e">event arguments</param>
private void MainPage_Unloaded(object sender, RoutedEventArgs e)
{
if (this.infraredFrameReader != null)
{
// InfraredFrameReder is IDisposable
this.infraredFrameReader.Dispose();
this.infraredFrameReader = null;
}
if (this.kinectSensor != null)
{
this.kinectSensor.Close();
this.kinectSensor = null;
}
}
/// <summary>
/// Handles the infrared frame data arriving from the sensor.
/// </summary>
/// <param name="sender">object sending the event</param>
/// <param name="e">event arguments</param>
private void Reader_InfraredFrameArrived(object sender, InfraredFrameArrivedEventArgs e)
{
bool infraredFrameProcessed = false;
// InfraredFrame is IDisposable
using (InfraredFrame infraredFrame = e.FrameReference.AcquireFrame())
{
if (infraredFrame != null)
{
FrameDescription infraredFrameDescription = infraredFrame.FrameDescription;
// verify data and write the new infrared frame data to the display bitmap
if (((infraredFrameDescription.Width * infraredFrameDescription.Height) == this.infraredFrameData.Length) &&
(infraredFrameDescription.Width == this.bitmap.PixelWidth) && (infraredFrameDescription.Height == this.bitmap.PixelHeight))
{
// Copy the pixel data from the image to a temporary array
infraredFrame.CopyFrameDataToArray(this.infraredFrameData);
infraredFrameProcessed = true;
}
}
}
// we got a frame, convert and render
if (infraredFrameProcessed)
{
this.ConvertInfraredData();
this.RenderInfraredPixels(this.infraredPixels);
}
}
/// <summary>
/// Convert infrared to RGB.
/// </summary>
private void ConvertInfraredData()
{
// Convert the infrared to RGB
int colorPixelIndex = 0;
for (int i = 0; i < this.infraredFrameData.Length; ++i)
{
// normalize the incoming infrared data (ushort) to a float ranging from
// [InfraredOutputValueMinimum, InfraredOutputValueMaximum] by
// 1. dividing the incoming value by the source maximum value
float intensityRatio = (float)this.infraredFrameData[i] / InfraredSourceValueMaximum;
// 2. dividing by the (average scene value * standard deviations)
intensityRatio /= InfraredSceneValueAverage * InfraredSceneStandardDeviations;
// 3. limiting the value to InfraredOutputValueMaximum
intensityRatio = Math.Min(InfraredOutputValueMaximum, intensityRatio);
// 4. limiting the lower value InfraredOutputValueMinimym
intensityRatio = Math.Max(InfraredOutputValueMinimum, intensityRatio);
// 5. converting the normalized value to a byte and using the result
// as the RGB components required by the image
byte intensity = (byte)(intensityRatio * 255.0f);
this.infraredPixels[colorPixelIndex++] = intensity;
this.infraredPixels[colorPixelIndex++] = intensity;
this.infraredPixels[colorPixelIndex++] = intensity;
this.infraredPixels[colorPixelIndex++] = 255;
}
}
/// <summary>
/// Renders color pixels into the writeableBitmap.
/// </summary>
/// <param name="pixels">pixel data</param>
private void RenderInfraredPixels(byte[] pixels)
{
pixels.CopyTo(this.bitmap.PixelBuffer);
this.bitmap.Invalidate();
theImage.Source = this.bitmap;
}
/// <summary>
/// Handles the event which the sensor becomes unavailable (E.g. paused, closed, unplugged).
/// </summary>
/// <param name="sender">object sending the event</param>
/// <param name="e">event arguments</param>
private void Sensor_IsAvailableChanged(object sender, IsAvailableChangedEventArgs e)
{
// on failure, set the status text
this.StatusText = this.kinectSensor.IsAvailable ? resourceLoader.GetString("RunningStatusText")
: resourceLoader.GetString("SensorNotAvailableStatusText");
}
}
}