un première partie des algos

poc
ludo 5 months ago
parent f35c2146eb
commit 1416213690

@ -0,0 +1,78 @@
import matplotlib.pyplot as plt
import numpy as np
from function import *
class Nnnar:
def __init__(self, nbDimensions, minCoord, maxCoord, nbSubdivisions):
self.nbDimensions = nbDimensions
self.minCoord = minCoord
self.maxCoord = maxCoord
self.nbSubdivisions = nbSubdivisions
self.delta = maxCoord - minCoord
self.unit = self.delta / nbSubdivisions
coord = np.zeros(nbDimensions,dtype=int) + self.nbSubdivisions
self.space = np.zeros(coord)
fillSpace = np.vectorize(lambda x: [], otypes=[object])
self.space = fillSpace(self.space)
self.calculatedSpaceAroundIdx = []
def addPoint(self, coord, value):
if len(coord) != self.nbDimensions:
raise AttributeError("Error: wrong number of dimensions")
self.space[*self.getSpaceIdxFromCoord(coord)].append(Point(coord, value))
def getNNearest(self, coord, nbNearest):
idx = self.getSpaceIdxFromCoord(coord)
nbAround = 0
selected = []
while len(selected) < nbNearest:
selected = []
subSpaceIdxList = getSpaceIdxAround(idx, nbAround, self)
for subSpaceIdx in subSpaceIdxList:
selected += selectPointsInRange(self.space[subSpaceIdx],coord,nbAround*self.unit)
nbAround += 1
found = []
dist = []
i=0
while len(found) < nbNearest:
found += selected[i]
i+=1
maxDistIdx = foundMaxIndex(dist)
maxDist = max(dist)
for i in range(nbNearest, len(selected)):
if (selected[i].getDistFromCoord(coord) < maxDist):
found.pop(maxDistIdx)
dist.pop(maxDistIdx)
found.append(selected[i])
dist.append(selected[i].getDistFromCoord(coord))
maxDistIdx = foundMaxIndex(dist)
maxDist = max(dist)
return found
def getSpaceIdxFromCoord(self,coord):
coord = coord - self.minCoord
coord = coord / self.unit
coord = np.floor(coord).astype(int)
return coord
class Point:
def __init__(self, coord, value):
self.coord = coord
self.value = value
def setvalue(self, value):
self.value = value
def getDist(self, point):
return np.linalg.norm(self.coord - point.coord)
def getDistFromCoord(self, coord):
return np.linalg.norm(self.coord - coord)
n = Nnnar(2, 0, 3, 2)
n.addPoint(np.array([1, 0.8]), 1)
print(n.space[0][0][0].coord)

@ -0,0 +1,12 @@
def getSpaceIdxAround(center, nbAround, space):
if (nbAround < len(space.calculatedSpaceAroundIdx)):
return space.calculatedSpaceAroundIdx[nbAround]
# TODO: implement l'algo pour trouver les indices subSapce à nbAround autour du centre
def selectPointsInRange(points, coord, distance):
found = []
return found
def foundMaxIndex(dist):
return dist.index(max(dist))
Loading…
Cancel
Save