You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3nar/nnnar.py

75 lines
2.7 KiB

import numpy as np
from point import *
from function import *
class Nnnar:
def __init__(self, nbDimensions, minCoord, maxCoord, nbSubdivisions):
self.nbDimensions = nbDimensions
self.minCoord = minCoord
self.maxCoord = maxCoord
self.nbSubdivisions = nbSubdivisions
self.delta = maxCoord - minCoord
self.unit = self.delta / nbSubdivisions
coord = np.zeros(nbDimensions,dtype=int) + self.nbSubdivisions
self.space = np.zeros(coord)
fillSpace = np.vectorize(lambda x: [], otypes=[object])
self.space = fillSpace(self.space)
self.calculatedSpaceAroundIdx = []
def addPoint(self, coord, value):
if len(coord) != self.nbDimensions:
raise AttributeError("Error: wrong number of dimensions")
self.space[*self.getSpaceIdxFromCoord(coord)].append(Point(coord, value))
def getValueOfPoint(self, coord,nbNearest):
points, dists = self.getNNearest(coord, nbNearest)
ttPart = 1/(dists[0]+1)
value = []
for i in points[0].value:
value.append(i * ttPart)
for idx in range(1,len(points)):
ttPart += 1/(dists[idx]+1)
tvalue = points[idx].value
for i in range(len(tvalue)):
value[i] += tvalue[i] * (1/(dists[idx]+1))
for i in range(len(value)):
value[i] = value[i] / ttPart
return value
def getNNearest(self, coord, nbNearest):
idx = self.getSpaceIdxFromCoord(coord)
nbAround = 0
selected = []
while len(selected) < nbNearest:
selected = []
subSpaceIdxList = getSpaceIdxAround(idx, nbAround, self)
for subSpaceIdx in subSpaceIdxList:
selected += selectPointsInRange(self.space[tuple(subSpaceIdx)],coord,nbAround*self.unit,self.space)
nbAround += 1
found = []
dist = []
i=0
while len(found) < nbNearest:
found.append(selected[i])
dist.append(selected[i].getDistFromCoord(coord))
i+=1
maxDistIdx = foundMaxIndex(dist)
maxDist = max(dist)
while i != len(selected):
if (selected[i].getDistFromCoord(coord) < maxDist):
found.pop(maxDistIdx)
dist.pop(maxDistIdx)
found.append(selected[i])
dist.append(selected[i].getDistFromCoord(coord))
maxDistIdx = foundMaxIndex(dist)
maxDist = max(dist)
i+=1
return found, dist
def getSpaceIdxFromCoord(self,coord):
coord = coord - self.minCoord
coord = coord / self.unit
coord = np.floor(coord).astype(int)
return coord