You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

165 lines
6.4 KiB

from matplotlib.widgets import RectangleSelector
import matplotlib.pyplot as plt
from random import randint
import numpy as np
def initialPatchMatch(img,x1,y1,x2,y2,patchSize=129):
def getDist(pValue1, pValue2):
return np.sum((pValue1 - pValue2) ** 2)
def initializePermimiter(finish=False):
perimeter = []
for x in range(x1, x2 + 1):
perimeter.append((x, y1))
perimeter.append((x, y2))
if finish:
perimeter.append((x,y1-1))
perimeter.append((x,y2+1))
for y in range(y1 + 1, y2):
perimeter.append((x1, y))
perimeter.append((x2, y))
if finish:
perimeter.append((x1-1,y))
perimeter.append((x2+1,y))
return np.array(perimeter)
def getRandomPatchFromPerimiter(perimiter):
x,y = perimiter[np.random.randint(len(perimiter))]
patch = np.array([[i, j] for i in range(x - semiPatch, x + semiPatch + 1)
for j in range(y - semiPatch, y + semiPatch + 1)])
return patch
def getZoneMask(zoneValue,outside):
mask = []
for value in zoneValue:
mask.append((value.sum() == 0) ^outside)
return np.array(mask)
def applyMask(patch,mask,oposed=False):
return patch[mask^oposed]
def getValueFromPatch(patch):
ret = img[patch[0][1]:patch[0][1]+patchSize,patch[0][0]:patch[0][0]+patchSize]
ret = ret.transpose(1, 0, 2)
return ret.reshape(-1, 3)
def getRandomPatch(patchCoordFound):
if (len(patchCoordFound) == 0):
#TODO peut être trouver un patch autour du trou et verrifier que pas dans le trou
x = randint(semiPatch,width-semiPatch-1)
y = randint(semiPatch,height-semiPatch-1)
patch = np.array([[i, j] for i in range(x - semiPatch, x + semiPatch + 1)
for j in range(y - semiPatch, y + semiPatch + 1)])
else:
patch = patchCoordFound[randint(0,len(patchCoordFound)-1)]
return patch
def getBestNeigbourPatch(zoneMask,filteredZoneValue,dist,patch,offset):
voisin = [[-1,-1],[-1,0],[0,-1],[0,0],[1,-1],[-1,1],[0,1],[1,0],[1,1]]
found = False
bPatch = []
for x,y in voisin:
nPatch = patch.copy()
nPatch[:,0] += x*offset
nPatch[:,1] += y*offset
if np.any(nPatch < 0) or np.any(nPatch[:,0] >= width) or np.any(nPatch[:,1] >= height):
#TODO verrifier que le patch est pas dans le troue si non ff
continue
nPatchValue = getValueFromPatch(nPatch)
filteredPatchValue = applyMask(nPatchValue,zoneMask)
nDist = getDist(filteredZoneValue,filteredPatchValue)
if (nDist < dist):
dist = nDist
bPatch = nPatch
found = True
return found,bPatch,dist
def getBestPatchForZone(zoneValue,zoneMask,patchCoordFound):
filteredZoneValue = applyMask(zoneValue,zoneMask)
patch = getRandomPatch(patchCoordFound)
patchValue = getValueFromPatch(patch)
filteredPatchValue = applyMask(patchValue,zoneMask)
dist = getDist(filteredZoneValue,filteredPatchValue)
offset = 1
while offset < min(width,height):
found, nPatch,nDist = getBestNeigbourPatch(zoneMask,filteredZoneValue,dist,patch,offset)
if (found):
patch = nPatch
dist = nDist
offset = 1
else:
offset*=2
patchCoordFound.append(patch)
return patchValue
def applyPatch(filteredZone,zoneMask, patchValue):
filteredPatchValue = applyMask(patchValue,zoneMask,True)
for i in range(len(filteredZone)) :
img[filteredZone[i][1],filteredZone[i][0]] = filteredPatchValue[i]
def updatePerimiter(filteredZone,perimiter):
for x,y in filteredZone:
if ((x,y) in filteredZone):
perimiter = np.delete(perimiter, np.where((perimiter == [x, y]).all(axis=1))[0], axis=0)
voisin = [[-1,-1],[-1,0],[0,-1],[0,0],[1,-1],[-1,1],[0,1],[1,0],[1,1]]
for x,y in filteredZone:
for offsetx,offsety in voisin:
if img[y+offsety,x+offsetx].sum() == 0:
perimiter = np.vstack((perimiter, [x+offsetx, y+offsety]))
return perimiter
def addEdge(edges,zone):
# pas des deux coté car zone pas filteredZone pour endroit biscornue
x,y = zone[0]
for xx in range(x,x+patchSize):
if x1<=xx<=x2:
if y1<=y<=y2:
edges.append([xx,y])
if y1<=y+patchSize<=y2:
edges.append([xx,y+patchSize])
for yy in range(y,y+patchSize):
if y1<=yy<=y2:
if x1<=x<=x2:
edges.append([x,yy])
if x1<=x+patchSize<=x2:
edges.append([x+patchSize,yy])
return edges
def smoothEdges(edges):
perimiter = initializePermimiter(True)
edges.extend(perimiter.tolist())
edges = np.array(edges)
offsets = np.array([[-1,-1],[-1,0],[-1,1],[0,-1],[0,1],[1,-1],[1,0],[1,1]])
for edge in edges:
neighbors = edge + offsets[:,None]
neighbors = neighbors.reshape(-1,2)
valid_neighbors = neighbors[
(neighbors[:,0] >= 0) & (neighbors[:,0] < width) &
(neighbors[:,1] >= 0) & (neighbors[:,1] < height)
]
if len(valid_neighbors) > 0:
neighbor_values = img[valid_neighbors[:,1], valid_neighbors[:,0]]
avg_value = np.mean(neighbor_values, axis=0)
img[edge[1], edge[0]] = avg_value
semiPatch = int(patchSize/2)
height, width, _ = img.shape
patchCoordFound = []
edges = []
perimiter = initializePermimiter()
while len(perimiter)> 0:
zone = getRandomPatchFromPerimiter(perimiter)
edges = addEdge(edges,zone)
zoneValue = getValueFromPatch(zone)
zoneMask = getZoneMask(zoneValue,True)
filteredZoneInside = applyMask(zone,zoneMask,True)
patchValue = getBestPatchForZone(zoneValue,zoneMask,patchCoordFound)
applyPatch(filteredZoneInside,zoneMask,patchValue)
perimiter = updatePerimiter(filteredZoneInside,perimiter)
smoothEdges(edges)
return img