From 34c2adc3e923eab8dd4f67cb8fd3956e57e9a5f4 Mon Sep 17 00:00:00 2001 From: jebesson2 Date: Sat, 14 May 2022 07:54:27 +0000 Subject: [PATCH] Update script2.py --- script2.py | 45 +++++++++++++++++++++++++++++++++++++-------- 1 file changed, 37 insertions(+), 8 deletions(-) diff --git a/script2.py b/script2.py index 4c6285d..84d35b7 100644 --- a/script2.py +++ b/script2.py @@ -20,6 +20,7 @@ try : curs.execute('''DELETE FROM CO_DEUX WHERE emission = 0''') curs.execute('''DELETE FROM CO_DEUX WHERE code LIKE 'NaN' ''') + #Chart that picture the evolution of the emission in France df3 = pd.read_sql('''SELECT * FROM CO_DEUX WHERE code LIKE 'FRA';''',con=co) #Chart that picture the evolution of the emission in France @@ -30,20 +31,47 @@ try : fig.set_ylabel("emissions (en tonnes)") plt.show() - - - df4 = pd.read_sql('''SELECT max(emission)GrosPollueur FROM CO_DEUX WHERE year = 2017;''',con=co) - print(df4) - fig = df4.plot(x='2017', y='emission', legend=False, style='-') - fig.set_title("Emission du plus gros pollueur en 2017") - fig.set_xlabel("2017") + + #df4 = pd.read_sql('''SELECT max(emission)emission, year, code FROM CO_DEUX WHERE code NOT LIKE 'OWID_WRL' GROUP BY year, code,emission HAVING emission = max(emission) ORDER BY year;''',con=co) + #print(df4) + #fig = df4.plot(x='code', y='year', legend=False, style='-') + #fig.set_title("Plus gros pollueur de chaque annee") + #fig.set_xlabel("code du pays") + #fig.set_ylabel("annee") + #fig.set_xticks(df4.index) + #fig.set_xticklabels(df4['code'], rotation='45') + #plt.show() + + + + df5 = pd.read_sql('''SELECT emission,code FROM CO_DEUX WHERE code NOT LIKE 'OWID_WRL' AND year = 2017 GROUP BY emission,code HAVING emission >= (SELECT avg(emission) FROM CO_DEUX WHERE year = 2017);''',con=co) + print(df5) + fig = df5.plot(y='code', autopct='%1.1f%%', kind='pie', legend=False) + fig.set_title("Pays dont l'émission de CO2 en 2017 dépasse la moyenne") fig.set_ylabel("emissions (en tonnes)") - + fig.set_ylim(0) plt.show() + df6 = pd.read_sql('''SELECT avg(emission)moy, code FROM CO_DEUX GROUP BY code;''',con=co) + print(df6) + fig = df6.plot(x='code', y='moy', legend=False, style='-') + fig.set_title("Quantité d'émission (tonnes) en fonction des années") + fig.set_xlabel("code pays") + fig.set_ylabel("emissions moyennes (en tonnes)") + fig.set_xticks(df6.index) + fig.set_xticklabels(df6['code'], rotation='45') + + # df6 = pd.read_sql('''SELECT * FROM CO_DEUX HAVING ;''',con=co) + + # fig = df6.plot(x='year', y='emission', legend=False, style='-') + # fig.set_title("Quantité d'émission (tonnes) en fonction des années") + # fig.set_xlabel("annee") + # fig.set_ylabel("emissions (en tonnes)") + + plt.show() co.commit() @@ -56,3 +84,4 @@ except (Exception, psy.DatabaseError) as error : finally : if co is not None: co.close() +