import pandas as pd import psycopg2 as psy import matplotlib.pyplot as plt data = pd.read_csv(r'co2_emission.csv') df = pd.DataFrame(data) df2 = df.drop_duplicates() co = None try : co = psy.connect(host='berlin', database = 'dbmalanone', user = 'malanone', password = 'azertyuiop') curs=co.cursor() #Delete all the lines which has no data curs.execute('''DELETE FROM CO_DEUX WHERE emission = 0''') curs.execute('''DELETE FROM CO_DEUX WHERE code LIKE 'NaN' ''') df3 = pd.read_sql('''SELECT * FROM CO_DEUX WHERE code LIKE 'FRA';''',con=co) #df4 = pd.read_sql('''SELECT * FROM CO_DEUX WHERE code LIKE 'CHN';''',con=co) #df5 = pd.read_sql('''SELECT * FROM CO_DEUX WHERE code LIKE 'USA';''',con=co) #Chart that picture the evolution of the emission in France print(df3) fig = df3.plot(x='year', y='emission', legend=False, style='-') fig.set_title("Quantité d'émission (tonnes) en fonction des années") fig.set_xlabel("annee") fig.set_ylabel("emissions (en tonnes)") plt.show() co.commit() except (Exception, psy.DatabaseError) as error : print(error) finally : if co is not None: co.close()