import cv2 import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.image import img_to_array, load_img from tensorflow.keras.losses import MeanSquaredError from tensorflow.keras.utils import get_custom_objects def mse(y_true, y_pred): return MeanSquaredError()(y_true, y_pred) get_custom_objects().update({"mse": mse}) def predict_age(model, image_path): img = load_img(image_path, target_size=(128, 128)) img_array = img_to_array(img) / 255.0 img_array = np.expand_dims(img_array, axis=0) predicted_age = model.predict(img_array) return predicted_age[0][0] def main(): model_path = "face_aging_model.h5" image_path = "visage.jpg" model = load_model(model_path, custom_objects={"mse": mse}) age = predict_age(model, image_path) print(f"L'âge prédit est: {age}") if __name__ == "__main__": main()