You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

47 lines
1.6 KiB

import cv2
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.image import img_to_array, load_img
import matplotlib.pyplot as plt
from tensorflow.keras.losses import MeanSquaredError
def apply_aging_effect(model, image_path):
# Charger l'image
img = load_img(image_path, target_size=(512, 512)) # Augmenter la résolution des images
img_array = img_to_array(img) / 255.0
# Appliquer l'effet de vieillissement
predicted_img = model.predict(np.expand_dims(img_array, axis=0))
print(predicted_img)
print(type(predicted_img[0][0]))
print(f"Shape of predicted image: {predicted_img.shape}")
print(f"Predicted image values (min, max): {predicted_img.min()}, {predicted_img.max()}")
predicted_img = np.clip(predicted_img[0], 0, 1) # S'assurer que les valeurs sont entre 0 et 1
predicted_img = (predicted_img * 255).astype(np.uint8)
# Convertir en BGR pour OpenCV
predicted_img_bgr = cv2.cvtColor(predicted_img, cv2.COLOR_RGB2BGR)
return predicted_img_bgr
def main():
# Chemin vers le modèle et l'image
model_path = "face_aging_autoencoder.h5"
image_path = "visage.jpg"
output_path = "visage_aged.jpg"
# Charger le modèle
model = load_model(model_path, custom_objects={'mse': MeanSquaredError()})
print("Modèle chargé avec succès !")
# Appliquer l'effet de vieillissement
aged_image = apply_aging_effect(model, image_path)
# Sauvegarder l'image résultante
cv2.imwrite(output_path, aged_image)
print(f"Image vieillie sauvegardée sous {output_path}")
if __name__ == "__main__":
main()