commit b5543d1a322545e2736a2f36af03905ddfff1ea4 Author: Sami GHEBRID Date: Tue Apr 25 15:20:45 2023 +0200 Projet louis sami diff --git a/ProjetStats/Louis_LABORIE.ipynb b/ProjetStats/Louis_LABORIE.ipynb new file mode 100644 index 0000000..b47792d --- /dev/null +++ b/ProjetStats/Louis_LABORIE.ipynb @@ -0,0 +1,1642 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Projet Stat" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Les données sont en format CSV, elles sont séparées par des virgules." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "df = pd.read_csv(\"Report_2022.csv\", encoding=\"latin-1\")\n", + "df = df.drop_duplicates()\n", + "df = df.dropna()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "La base de donnée possède 179 lignes pour 16 colonnes.\n", + "\n", + "La problématique que l'on peut dégage avec ces données est la suivante : Où en est la presse dans le monde et pourquoi ?\n", + "\n", + "Les colonnes importantes pour notre étude statistique sont : Position 2022, Position 2021, Global Score, Economic Score, Politic Score, Security Score, Journalist Killed, Journalist Imprisoned.\n", + "\n", + "Toutes les données qui vont être traitées par la suite concernent l'année 2022." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Moyenne score économique mondial : 44.98178770949721\n", + "Moyenne score politique mondial : 56.97324022346369\n", + "Moyenne score de sécurité mondial : 60.24240223463687\n", + "\n", + "\n", + "Moyenne des journalistes tués par pays en 2022 : 0.1787709497206704\n", + "Moyenne des journalistes emprisonnés par pays en 2022 : 0.8603351955307262\n", + "Pays où au moins un journaliste est mort en 2022 : \n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryISO CodeRegionPosition 2022Position 2021Global ScorePolitic ScoreEconomic ScoreLegislative ScoreSocial ScoreSecurity ScoreJournalist KilledMedia Workers KilledJournalist ImprisonedMedia Workers ImprisonedSituation
11BangladeshBGDAsia Pacific16215236.6342.1232.4844.1548.5015.881000Very Serious
20BrazilBRASouth America11011155.3651.6237.5969.7470.0047.861000Problematic
30ChadTCDAfrica10412356.1855.8843.2760.3563.2058.211000Problematic
31ChileCHLSouth America825460.6165.0342.8667.6372.4055.151000Problematic
66HaitiHTISouth America708764.5559.6050.3472.2280.6759.912000Problematic
71IndiaINDAsia Pacific15014241.0040.7630.3657.0256.2520.6110110Difficult
73IranIRNMiddle East17817423.2230.7121.3226.7123.7813.611030Very Serious
104MexicoMEXSouth America12714347.5758.1843.3765.7959.5011.029000Difficult
110MyanmarMMRAsia Pacific17614025.0340.4029.2520.1830.674.6310221Very Serious
124PakistanPAKAsia Pacific15714537.9939.5731.9253.2647.4317.751000Very Serious
125PalestinePSEMiddle East17013228.9835.4515.8236.4036.5020.742000Very Serious
156SyriaSYRMiddle East17117328.9433.5127.6233.5836.5713.391030Very Serious
169UkraineUKREurope1069755.7661.2142.8679.4576.4318.847100Problematic
177YemenYEMMiddle East16916929.1433.0327.5538.6035.0011.543040Very Serious
\n", + "
" + ], + "text/plain": [ + " Country ISO Code Region Position 2022 Position 2021 \\\n", + "11 Bangladesh BGD Asia Pacific 162 152 \n", + "20 Brazil BRA South America 110 111 \n", + "30 Chad TCD Africa 104 123 \n", + "31 Chile CHL South America 82 54 \n", + "66 Haiti HTI South America 70 87 \n", + "71 India IND Asia Pacific 150 142 \n", + "73 Iran IRN Middle East 178 174 \n", + "104 Mexico MEX South America 127 143 \n", + "110 Myanmar MMR Asia Pacific 176 140 \n", + "124 Pakistan PAK Asia Pacific 157 145 \n", + "125 Palestine PSE Middle East 170 132 \n", + "156 Syria SYR Middle East 171 173 \n", + "169 Ukraine UKR Europe 106 97 \n", + "177 Yemen YEM Middle East 169 169 \n", + "\n", + " Global Score Politic Score Economic Score Legislative Score \\\n", + "11 36.63 42.12 32.48 44.15 \n", + "20 55.36 51.62 37.59 69.74 \n", + "30 56.18 55.88 43.27 60.35 \n", + "31 60.61 65.03 42.86 67.63 \n", + "66 64.55 59.60 50.34 72.22 \n", + "71 41.00 40.76 30.36 57.02 \n", + "73 23.22 30.71 21.32 26.71 \n", + "104 47.57 58.18 43.37 65.79 \n", + "110 25.03 40.40 29.25 20.18 \n", + "124 37.99 39.57 31.92 53.26 \n", + "125 28.98 35.45 15.82 36.40 \n", + "156 28.94 33.51 27.62 33.58 \n", + "169 55.76 61.21 42.86 79.45 \n", + "177 29.14 33.03 27.55 38.60 \n", + "\n", + " Social Score Security Score Journalist Killed Media Workers Killed \\\n", + "11 48.50 15.88 1 0 \n", + "20 70.00 47.86 1 0 \n", + "30 63.20 58.21 1 0 \n", + "31 72.40 55.15 1 0 \n", + "66 80.67 59.91 2 0 \n", + "71 56.25 20.61 1 0 \n", + "73 23.78 13.61 1 0 \n", + "104 59.50 11.02 9 0 \n", + "110 30.67 4.63 1 0 \n", + "124 47.43 17.75 1 0 \n", + "125 36.50 20.74 2 0 \n", + "156 36.57 13.39 1 0 \n", + "169 76.43 18.84 7 1 \n", + "177 35.00 11.54 3 0 \n", + "\n", + " Journalist Imprisoned Media Workers Imprisoned Situation \n", + "11 0 0 Very Serious \n", + "20 0 0 Problematic \n", + "30 0 0 Problematic \n", + "31 0 0 Problematic \n", + "66 0 0 Problematic \n", + "71 11 0 Difficult \n", + "73 3 0 Very Serious \n", + "104 0 0 Difficult \n", + "110 22 1 Very Serious \n", + "124 0 0 Very Serious \n", + "125 0 0 Very Serious \n", + "156 3 0 Very Serious \n", + "169 0 0 Problematic \n", + "177 4 0 Very Serious " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "p2022 = df[\"Position 2022\"]\n", + "p2021 = df[\"Position 2021\"]\n", + "gscore = df[\"Global Score\"]\n", + "pscore = df[\"Politic Score\"]\n", + "escore = df[\"Economic Score\"]\n", + "sescore = df[\"Security Score\"]\n", + "jkilled = df[\"Journalist Killed\"]\n", + "jimpriso = df[\"Journalist Imprisoned\"]\n", + "\n", + "print(\"Moyenne score économique mondial :\", escore.mean())\n", + "print(\"Moyenne score politique mondial :\", pscore.mean())\n", + "print(\"Moyenne score de sécurité mondial :\", sescore.mean())\n", + "print(\"\\n\")\n", + "\n", + "print(\"Moyenne des journalistes tués par pays en 2022 :\", jkilled.mean())\n", + "print(\"Moyenne des journalistes emprisonnés par pays en 2022 :\", jimpriso.mean())\n", + "\n", + "\n", + "dfJk = df.loc[jkilled > 0]\n", + "dfJi = df.loc[jimpriso > 0]\n", + "\n", + "print(\"Pays où au moins un journaliste est mort en 2022 : \\n\")\n", + "dfJk" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Pays où au moins un journaliste a été emprisonné en 2022 : \n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CountryISO CodeRegionPosition 2022Position 2021Global ScorePolitic ScoreEconomic ScoreLegislative ScoreSocial ScoreSecurity ScoreJournalist KilledMedia Workers KilledJournalist ImprisonedMedia Workers ImprisonedSituation
9AzerbaijanAZEAsia Pacific15416739.4037.6623.7648.2558.8628.480020Very Serious
12BelarusBLREurope15315839.6232.9348.7537.2360.3318.8500130Very Serious
26CambodiaKHMAsia Pacific14214443.4842.4227.9649.6562.4034.960010Difficult
41Democratic Republic of CongoCODAfrica12514947.6651.3341.4360.8860.3024.340030Difficult
52EthiopiaETHAfrica11410150.5350.6545.7763.6657.2935.2900160Difficult
58GeorgiaGEOEurope896059.3052.4246.4380.7975.5041.340010Problematic
60GhanaGHAAfrica603067.4366.6147.2281.4279.6462.250020Problematic
71IndiaINDAsia Pacific15014241.0040.7630.3657.0256.2520.6110110Difficult
73IranIRNMiddle East17817423.2230.7121.3226.7123.7813.611030Very Serious
74IraqIRQMiddle East17216328.5934.1420.0729.8240.6718.270020Very Serious
76IsraelISRMiddle East868659.6265.1555.1053.5177.7546.610020Problematic
82KazakhstanKAZAsia Pacific12215548.2843.5229.8051.9352.3063.850130Difficult
89LebanonLBNMiddle East13010746.5850.9138.2750.2260.5033.020010Difficult
110MyanmarMMRAsia Pacific17614025.0340.4029.2520.1830.674.6310221Very Serious
111NamibiaNAMAfrica182481.8472.9769.8082.9891.6091.840020Satisfactory
116NigerNERAfrica595967.8062.3046.7371.7576.5081.690020Problematic
117NigeriaNGAAfrica12912046.7945.1536.3953.8069.8328.750010Difficult
135RussiaRUSEurope15515038.8236.3634.8444.6151.2927.000060Very Serious
146SomaliaSOMArab States14016144.0151.0341.2247.7261.8018.270040Difficult
156SyriaSYRMiddle East17117328.9433.5127.6233.5836.5713.391030Very Serious
158TajikistanTJKAsia Pacific15216240.2633.7929.8548.6846.0042.960050Difficult
159TanzaniaTZAAfrica12312448.2843.8832.6545.0959.2060.560050Difficult
160ThailandTHAAsia Pacific11513750.1558.9945.2447.3753.6745.500050Difficult
161Timor-LesteTLSAsia Pacific177181.8985.4568.7185.9675.6793.650050Satisfactory
162TogoTGOAfrica1007457.1757.5241.7361.9369.5055.150050Problematic
163TongaTONAsia Pacific494669.7469.7053.0666.6769.5089.800050Problematic
164Trinidad and TobagoTTOSouth America253178.6873.9467.8674.5684.5092.520050Satisfactory
165TunisiaTUNArab States947358.4961.8241.8467.1970.2051.420050Problematic
166TurkeyTUREurope14915341.2538.3827.5552.9255.0032.370010Difficult
167TurkmenistanTKMAsia Pacific17717825.0125.0011.7329.6123.0035.690050Very Serious
168UgandaUGAAfrica13212546.3544.7036.9960.9656.0033.090020Difficult
170United Arab EmiratesAREMiddle East13813144.4645.4536.7332.0250.5057.590010Difficult
176VietnamVNMAsia Pacific17417526.1132.3218.7127.4934.6717.370010Very Serious
177YemenYEMMiddle East16916929.1433.0327.5538.6035.0011.543040Very Serious
\n", + "
" + ], + "text/plain": [ + " Country ISO Code Region Position 2022 \\\n", + "9 Azerbaijan AZE Asia Pacific 154 \n", + "12 Belarus BLR Europe 153 \n", + "26 Cambodia KHM Asia Pacific 142 \n", + "41 Democratic Republic of Congo COD Africa 125 \n", + "52 Ethiopia ETH Africa 114 \n", + "58 Georgia GEO Europe 89 \n", + "60 Ghana GHA Africa 60 \n", + "71 India IND Asia Pacific 150 \n", + "73 Iran IRN Middle East 178 \n", + "74 Iraq IRQ Middle East 172 \n", + "76 Israel ISR Middle East 86 \n", + "82 Kazakhstan KAZ Asia Pacific 122 \n", + "89 Lebanon LBN Middle East 130 \n", + "110 Myanmar MMR Asia Pacific 176 \n", + "111 Namibia NAM Africa 18 \n", + "116 Niger NER Africa 59 \n", + "117 Nigeria NGA Africa 129 \n", + "135 Russia RUS Europe 155 \n", + "146 Somalia SOM Arab States 140 \n", + "156 Syria SYR Middle East 171 \n", + "158 Tajikistan TJK Asia Pacific 152 \n", + "159 Tanzania TZA Africa 123 \n", + "160 Thailand THA Asia Pacific 115 \n", + "161 Timor-Leste TLS Asia Pacific 17 \n", + "162 Togo TGO Africa 100 \n", + "163 Tonga TON Asia Pacific 49 \n", + "164 Trinidad and Tobago TTO South America 25 \n", + "165 Tunisia TUN Arab States 94 \n", + "166 Turkey TUR Europe 149 \n", + "167 Turkmenistan TKM Asia Pacific 177 \n", + "168 Uganda UGA Africa 132 \n", + "170 United Arab Emirates ARE Middle East 138 \n", + "176 Vietnam VNM Asia Pacific 174 \n", + "177 Yemen YEM Middle East 169 \n", + "\n", + " Position 2021 Global Score Politic Score Economic Score \\\n", + "9 167 39.40 37.66 23.76 \n", + "12 158 39.62 32.93 48.75 \n", + "26 144 43.48 42.42 27.96 \n", + "41 149 47.66 51.33 41.43 \n", + "52 101 50.53 50.65 45.77 \n", + "58 60 59.30 52.42 46.43 \n", + "60 30 67.43 66.61 47.22 \n", + "71 142 41.00 40.76 30.36 \n", + "73 174 23.22 30.71 21.32 \n", + "74 163 28.59 34.14 20.07 \n", + "76 86 59.62 65.15 55.10 \n", + "82 155 48.28 43.52 29.80 \n", + "89 107 46.58 50.91 38.27 \n", + "110 140 25.03 40.40 29.25 \n", + "111 24 81.84 72.97 69.80 \n", + "116 59 67.80 62.30 46.73 \n", + "117 120 46.79 45.15 36.39 \n", + "135 150 38.82 36.36 34.84 \n", + "146 161 44.01 51.03 41.22 \n", + "156 173 28.94 33.51 27.62 \n", + "158 162 40.26 33.79 29.85 \n", + "159 124 48.28 43.88 32.65 \n", + "160 137 50.15 58.99 45.24 \n", + "161 71 81.89 85.45 68.71 \n", + "162 74 57.17 57.52 41.73 \n", + "163 46 69.74 69.70 53.06 \n", + "164 31 78.68 73.94 67.86 \n", + "165 73 58.49 61.82 41.84 \n", + "166 153 41.25 38.38 27.55 \n", + "167 178 25.01 25.00 11.73 \n", + "168 125 46.35 44.70 36.99 \n", + "170 131 44.46 45.45 36.73 \n", + "176 175 26.11 32.32 18.71 \n", + "177 169 29.14 33.03 27.55 \n", + "\n", + " Legislative Score Social Score Security Score Journalist Killed \\\n", + "9 48.25 58.86 28.48 0 \n", + "12 37.23 60.33 18.85 0 \n", + "26 49.65 62.40 34.96 0 \n", + "41 60.88 60.30 24.34 0 \n", + "52 63.66 57.29 35.29 0 \n", + "58 80.79 75.50 41.34 0 \n", + "60 81.42 79.64 62.25 0 \n", + "71 57.02 56.25 20.61 1 \n", + "73 26.71 23.78 13.61 1 \n", + "74 29.82 40.67 18.27 0 \n", + "76 53.51 77.75 46.61 0 \n", + "82 51.93 52.30 63.85 0 \n", + "89 50.22 60.50 33.02 0 \n", + "110 20.18 30.67 4.63 1 \n", + "111 82.98 91.60 91.84 0 \n", + "116 71.75 76.50 81.69 0 \n", + "117 53.80 69.83 28.75 0 \n", + "135 44.61 51.29 27.00 0 \n", + "146 47.72 61.80 18.27 0 \n", + "156 33.58 36.57 13.39 1 \n", + "158 48.68 46.00 42.96 0 \n", + "159 45.09 59.20 60.56 0 \n", + "160 47.37 53.67 45.50 0 \n", + "161 85.96 75.67 93.65 0 \n", + "162 61.93 69.50 55.15 0 \n", + "163 66.67 69.50 89.80 0 \n", + "164 74.56 84.50 92.52 0 \n", + "165 67.19 70.20 51.42 0 \n", + "166 52.92 55.00 32.37 0 \n", + "167 29.61 23.00 35.69 0 \n", + "168 60.96 56.00 33.09 0 \n", + "170 32.02 50.50 57.59 0 \n", + "176 27.49 34.67 17.37 0 \n", + "177 38.60 35.00 11.54 3 \n", + "\n", + " Media Workers Killed Journalist Imprisoned Media Workers Imprisoned \\\n", + "9 0 2 0 \n", + "12 0 13 0 \n", + "26 0 1 0 \n", + "41 0 3 0 \n", + "52 0 16 0 \n", + "58 0 1 0 \n", + "60 0 2 0 \n", + "71 0 11 0 \n", + "73 0 3 0 \n", + "74 0 2 0 \n", + "76 0 2 0 \n", + "82 1 3 0 \n", + "89 0 1 0 \n", + "110 0 22 1 \n", + "111 0 2 0 \n", + "116 0 2 0 \n", + "117 0 1 0 \n", + "135 0 6 0 \n", + "146 0 4 0 \n", + "156 0 3 0 \n", + "158 0 5 0 \n", + "159 0 5 0 \n", + "160 0 5 0 \n", + "161 0 5 0 \n", + "162 0 5 0 \n", + "163 0 5 0 \n", + "164 0 5 0 \n", + "165 0 5 0 \n", + "166 0 1 0 \n", + "167 0 5 0 \n", + "168 0 2 0 \n", + "170 0 1 0 \n", + "176 0 1 0 \n", + "177 0 4 0 \n", + "\n", + " Situation \n", + "9 Very Serious \n", + "12 Very Serious \n", + "26 Difficult \n", + "41 Difficult \n", + "52 Difficult \n", + "58 Problematic \n", + "60 Problematic \n", + "71 Difficult \n", + "73 Very Serious \n", + "74 Very Serious \n", + "76 Problematic \n", + "82 Difficult \n", + "89 Difficult \n", + "110 Very Serious \n", + "111 Satisfactory \n", + "116 Problematic \n", + "117 Difficult \n", + "135 Very Serious \n", + "146 Difficult \n", + "156 Very Serious \n", + "158 Difficult \n", + "159 Difficult \n", + "160 Difficult \n", + "161 Satisfactory \n", + "162 Problematic \n", + "163 Problematic \n", + "164 Satisfactory \n", + "165 Problematic \n", + "166 Difficult \n", + "167 Very Serious \n", + "168 Difficult \n", + "170 Difficult \n", + "176 Very Serious \n", + "177 Very Serious " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(\"\\n Pays où au moins un journaliste a été emprisonné en 2022 : \\n\")\n", + "dfJi" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Répartition du score global en fonction des différents pays :\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAARZUlEQVR4nO3db4wcd33H8fe3Nn8SX2QncI1Sm9apAoeQTQK2IDSU3iXQuhBBVVE1UYqSKu09KBSDXKEgRBEPUKlaaJFatbJIGlTSwGFCoUaCpCFX2gpCc8FgJ84RChbYhRgKcXohKph++2DH7eW8d7c7O7s7P/R+Safb/d3uzOdmZj+3O7c7E5mJJKk8PzXuAJKkeixwSSqUBS5JhbLAJalQFrgkFWrjKGe2ZcuWvOSSS0Y5y549/vjjbNq0adwxztLWXGC2OtqaC8xWx6hyLSwsfDczJ8/6QWaO7Os5z3lOttU999wz7ghdtTVXptnqaGuuTLPVMapcwH3ZpVPdhSJJhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKtW6BR8QtEXEyIo4sG/uTiHgoIr4cER+LiC1DTSlJOksvz8BvBfasGLsL2JGZzwe+Ary14VySpHWsW+CZ+VngeyvG7szM09XVzwPbhpBNkrSGyB5O6BAR24GDmbmjy8/+AfhwZn5wlfvOArMAk5OTu+bm5gYKPCxLS0tMTEyMO8ZZ2poLzLaawydOdR3fuXWzy6ymtmYbVa6ZmZmFzNy9cnygY6FExNuA08Btq90mM/cD+wGmpqZyenp6kFkOzfz8PG3M1tZcYLbV3HDTJ7uOH7tu2mVWU1uzjTtX7QKPiBuAq4Grspen8ZKkRtUq8IjYA7wF+KXM/EGzkSRJvejlbYS3A58DpiLieETcCPwFcB5wV0Qcioi/HnJOSdIK6z4Dz8xruwzfPIQskqQ++ElMSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSrUugUeEbdExMmIOLJs7IKIuCsiHq6+nz/cmJKklXp5Bn4rsGfF2E3A3Zn5bODu6rokaYTWLfDM/CzwvRXDrwE+UF3+APBrzcaSJK0nMnP9G0VsBw5m5o7q+qOZuaW6HMD3z1zvct9ZYBZgcnJy19zcXCPBm7a0tMTExMS4Y5ylrbnAbKs5fOJU1/GdWze7zGpqa7ZR5ZqZmVnIzN0rxzcOOuHMzIhY9a9AZu4H9gNMTU3l9PT0oLMcivn5edqYra25wGyrueGmT3YdP3bdtMusprZmG3euuu9CeSQiLgKovp9sLpIkqRd1C/wTwPXV5euBjzcTR5LUq17eRng78DlgKiKOR8SNwLuBV0TEw8DLq+uSpBFadx94Zl67yo+uajiLJKkPfhJTkgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoQYq8Ih4c0Q8EBFHIuL2iHh6U8EkSWurXeARsRV4I7A7M3cAG4BrmgomSVrboLtQNgLnRMRG4FzgPwaPJEnqRWRm/TtH7AXeBTwB3JmZ13W5zSwwCzA5Oblrbm6u9vyGaWlpiYmJiXHHOEtbc8Fosx0+carr+M6tm7uON5VttfmuNe+1so5jffa67NzW+jeqXDMzMwuZuXvleO0Cj4jzgY8Cvwk8CnwEOJCZH1ztPlNTU7m4uFhrfsM2Pz/P9PT0uGOcpa25YLTZtt/0ya7jx979qq7jTWVbbb5rzXutrONYn70uO7e1/o0qV0R0LfBBdqG8HPh6Zn4nM38E3AH8wgDTkyT1YZAC/wZweUScGxEBXAUcbSaWJGk9tQs8M+8FDgD3A4erae1vKJckaR0bB7lzZr4DeEdDWSRJffCTmJJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEGOhaK1LS1jr+t8vR7HHf1x2fgklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhRqowCNiS0QciIiHIuJoRLykqWCSpLUNejjZ9wGfyszXRsRTgXMbyCRJ6kHtAo+IzcDLgBsAMvOHwA+biSVJWk9kZr07RlwG7AceBC4FFoC9mfn4itvNArMAk5OTu+bm5gbJOzRLS0tMTEyMO8ZZ2poLnpzt8IlTXW+zc+vmruOr3b5fq02/qeW2Vs46v9uF58AjT/Q2nTqZ+rFyvsPY1praLi7evKFrtn6n37RRPT5nZmYWMnP3yvFBCnw38Hngisy8NyLeBzyWmW9f7T5TU1O5uLhYa37DNj8/z/T09LhjnKWtueDJ2fo980pTZ95ZbfpNLbe1ctb53fbtPM17Dj/5hW+/Z6cZ1rIbxrbW1HZx655NXbON+4w/o3p8RkTXAh/kn5jHgeOZeW91/QDwwgGmJ0nqQ+0Cz8xvA9+MiKlq6Co6u1MkSSMw6LtQfh+4rXoHyteA3x48kiSpFwMVeGYeAs7aLyNJGj4/iSlJhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQg16NEL9BKpzEoNxWesEAKUY90kJVmpbnjp+En6HXvgMXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVADF3hEbIiIL0bEwSYCSZJ608Qz8L3A0QamI0nqw0AFHhHbgFcB728mjiSpV5GZ9e8ccQD4I+A84A8y8+out5kFZgEmJyd3zc3N1Z7fMC0tLTExMdHItA6fONV1fOfWzX3fvslcvc53Lct/h+XZ6kxrmC7evKGR5db073XhOfDIE41OsraV2+OZ9dnv9ruWph4Lq63PftdPv7/DevmH+fhcbmZmZiEzd68cr13gEXE18MrM/L2ImGaVAl9uamoqFxcXa81v2Obn55menm5kWv2eDWSt2zeZq9f5rmX577A8W51pDdOtezY1stya/r327TzNew6340RYK7fHM+uzybPZNPVYWG199rt++v0d1ss/zMfnchHRtcAH2YVyBfDqiDgGfAi4MiI+OMD0JEl9qF3gmfnWzNyWmduBa4DPZOZvNZZMkrQm3wcuSYVqZGdcZs4D801MS5LUG5+BS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhWrHgYlVjOXHR9638zQ3tOw44GccPnGqa7Y6x7T+SbXyWNfrrc8mj43etuPHl8pn4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWqXeAR8ayIuCciHoyIByJib5PBJElrG+RwsqeBfZl5f0ScByxExF2Z+WBD2SRJa6j9DDwzv5WZ91eX/ws4CmxtKpgkaW2RmYNPJGI78FlgR2Y+tuJns8AswOTk5K65ubmB5zcMS0tLTExMNDKtwydOdR3fuXVzX7cHuPAceOSJ3qbTb55BdcvWFqtlq7MOmlTiMmuDizdv6Pr47He9NfXYOTOdJntjLTMzMwuZuXvl+MAFHhETwD8B78rMO9a67dTUVC4uLg40v2GZn59nenq6kWmtdraR1c4Gs9bZSfbtPM17Dj95T1e/Z5UZ1tlPumVri9Wy1VkHTSpxmbXBrXs2dX189rvemnrsnJlOk72xlojoWuADvQslIp4CfBS4bb3yliQ1a5B3oQRwM3A0M9/bXCRJUi8GeQZ+BfA64MqIOFR9vbKhXJKkddTe4ZWZ/wJEg1kkSX3wk5iSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKlQ7j97eRb8nSeh3Ovt2nmZ6TPNuyqhOSiCN2uETp7ihge27qcfImens23m651z99kUvfAYuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUqIEKPCL2RMRiRHw1Im5qKpQkaX21CzwiNgB/Cfwq8Dzg2oh4XlPBJElrG+QZ+IuAr2bm1zLzh8CHgNc0E0uStJ7IzHp3jHgtsCczf6e6/jrgxZn5hhW3mwVmq6s7gCP14w7VM4HvjjtEF23NBWaro625wGx1jCrXz2Xm5MrBoZ+RJzP3A/sBIuK+zNw97HnW0dZsbc0FZqujrbnAbHWMO9cgu1BOAM9adn1bNSZJGoFBCvzfgGdHxMUR8VTgGuATzcSSJK2n9i6UzDwdEW8APg1sAG7JzAfWudv+uvMbgbZma2suMFsdbc0FZqtjrLlq/xNTkjRefhJTkgplgUtSoYZW4BFxS0ScjIgjy8YuiIi7IuLh6vv5w5r/GrmeFRH3RMSDEfFAROxtUbanR8QXIuJLVbZ3VuMXR8S91SELPlz903jkImJDRHwxIg62LNexiDgcEYci4r5qbOzrs8qxJSIORMRDEXE0Il4y7mwRMVUtqzNfj0XEm8ada1m+N1fb/5GIuL16XLRlW9tb5XogIt5UjY1tuQ3zGfitwJ4VYzcBd2fms4G7q+ujdhrYl5nPAy4HXl8dAqAN2f4buDIzLwUuA/ZExOXAHwN/lpmXAN8HbhxDNoC9wNFl19uSC2AmMy9b9p7cNqxPgPcBn8rM5wKX0ll+Y82WmYvVsroM2AX8APjYuHMBRMRW4I3A7szcQecNEtfQgm0tInYAv0vnU+iXAldHxCWMc7ll5tC+gO3AkWXXF4GLqssXAYvDnH+PGT8OvKJt2YBzgfuBF9P5pNfGavwlwKfHkGcbnY3zSuAgEG3IVc37GPDMFWNjX5/AZuDrVG8WaFO2ZVl+GfjXtuQCtgLfBC6g8y65g8CvtGFbA34DuHnZ9bcDbxnnchv1PvALM/Nb1eVvAxeOeP5PEhHbgRcA99KSbNVuikPASeAu4N+BRzPzdHWT43Q28lH7czob6/9U15/RklwACdwZEQvVoRugHevzYuA7wN9Uu57eHxGbWpLtjGuA26vLY8+VmSeAPwW+AXwLOAUs0I5t7QjwixHxjIg4F3glnQ8zjm25je2fmNn5czW29zBGxATwUeBNmfnY8p+NM1tm/jg7L2230Xmp9txx5FguIq4GTmbmwrizrOKlmflCOkfGfH1EvGz5D8e4PjcCLwT+KjNfADzOipfX49zWqv3IrwY+svJn48pV7T9+DZ0/fj8DbOLsXbFjkZlH6ezKuRP4FHAI+PGK24x0uY26wB+JiIsAqu8nRzx/qnk/hU5535aZd7Qp2xmZ+ShwD52Xi1si4syHrsZxyIIrgFdHxDE6R528ks6+3XHnAv7vWRuZeZLOvtwX0Y71eRw4npn3VtcP0Cn0NmSDzh+8+zPzkep6G3K9HPh6Zn4nM38E3EFn+2vLtnZzZu7KzJfR2Rf/Fca43EZd4J8Arq8uX09n//NIRUQANwNHM/O9Lcs2GRFbqsvn0Nk3f5ROkb92XNky862ZuS0zt9N5yf2ZzLxu3LkAImJTRJx35jKdfbpHaMH6zMxvA9+MiKlq6CrgwTZkq1zL/+8+gXbk+gZweUScWz1WzyyzsW9rABHx09X3nwV+Hfg7xrnchrjD/3Y6+7B+ROeZyI109pveDTwM/CNwwRj+EfFSOi9xvkznJdAhOvuy2pDt+cAXq2xHgD+sxn8e+ALwVTovd5826mzLMk4DB9uSq8rwperrAeBt1fjY12eV4zLgvmqd/j1wfhuy0dk18Z/A5mVjY89V5Xgn8FD1GPhb4Glt2NaqbP9M5w/Kl4Crxr3c/Ci9JBXKT2JKUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklSo/wUhJFjI5lIG4QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\"Répartition du score global en fonction des différents pays :\")\n", + "gscore.hist(bins = 50)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Journalistes tués en fonction des pays (les 5 pays où le nombre de journalistes tués en 2022 est le plus élevé) :\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAD4CAYAAADIH9xYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfWUlEQVR4nO3dfZyVc/7H8den0n3IGvzcJDfLZi1Zk3vWIHebe4Zto5AIuY+WLTfJkntLEVGkGPd3odQgsTVTkhLWvXI3WXdFqpnP74/vFVOmmTN1zlznOuf9fDzmMeecueac97lmzme+8znX9/qauyMiItmvUdwBREQkNSrYIiIJoYItIpIQKtgiIgmhgi0ikhBNMnGn6667rrdv3z4Tdy0ikpOmTZs2390LatsmIwW7ffv2lJeXZ+KuRURykpl9XNc2aomIiCSECraISEKoYIuIJIQKtohIQqhgi4gkREoF28zONrNZZjbbzM7JcCYRkcQYPBhKS5e/rbQ03J5udRZsM9sWOAXYCdge6GJmW6Y/iohI8nTqBMXFvxbt0tJwvVOn9D9WKiPsDsAUd//R3ZcCLwFHpj+KiEjyFBVBSQkUH7mEAfu9SnFxuF5UlP7HSqVgzwL2NLPfmVlL4GBgkxU3MrNeZlZuZuUVFRXpzikikp2qqiiaeg29v7uGgRN2o/fJizNSrCGFgu3uc4BrgHHAc8AMoLKG7Ya5e6G7FxYU1Dq7UkQkN3z1FRx8MKX9nmPoGmfRv+8ihg5v+puedrqk9Kajuw939x3dfS/gG+DdzMQREUmIF1+Ejh0pnegUtx5LybNtuGJw89AeKf7tG5HpkOpRIutFn9sR+tej0x9FRCQBKivh8sth331hzTUpO/0eSp5sQdE+Bvza0y4rS/9Dp3ryp0fM7HfAEuAMd/82/VFERLLcZ59Bt25h+Hz88TBkCBe2bv2bzYqKMvOmY0oF2933TP9Di4gkyLhxoVgvXAgjRkD37g0eQTMdRURqs3QpXHwxHHAArL9+6HXEUKwhQ+fDFhHJCZ9+Cn/7G0yeDKecAjfdBC1bxhZHBVtEpCZPPQU9esDixTB6dCjcMVNLRESkusWL4bzz4NBDYdNNYfr0rCjWoBG2iMivPvgAjj0WysuhTx+49lpo1izuVL9QwRYRAXjoIejZExo1gkcfhSOOiDvRb6glIiL5bdEiOP30MD2xQwd4/fWsLNaggi0i+eydd2DnnWHoUOjbFyZNgvbt4061UmqJiEh+uu8+6N0bWrSAsWPhoIPiTlQnjbBFJL8sXAgnnggnnAA77ggzZiSiWIMKtojkk1mzwlIwI0dC//4wYQJstFHcqVKmloiI5D53GD48HKq31lowfnw4217CaIQtIrnt++/h738PU8v32APeeCORxRpUsEUkl02fHvrUDz4IgwbB88+HEzgllAq2iOQed7j1Vth1V/jpp7A6zMUXh0kxCZbs9CIiK/rmGzjqqNCv7tw5HAWyZ26c0l8FW0Ryx3/+AzvsEM60d/314fO668adKm1UsEUk+aqq4LrrwkjaLJy/+rzzwuUcosP6RCTZ5s8PK8CMHRtaIXfdBWuvHXeqjEh11fRzzWy2mc0yszFm1jzTwURE6vTyy7D99vDCC3DbbeGMezlarCGFgm1mGwFnAYXuvi3QGDgu08FERFaqshKuvDIsTd6qFUyZEs64l2MtkBWl2hJpArQwsyVAS+CzzEUSEanFF1+E1csnTICuXeH226FNm7hTNYg6R9juPg+4DvgE+Bz4zt3HrbidmfUys3IzK6+oqEh/UhGRF14ILZBXXw1TzUeNyptiDam1RNoChwGbARsCrcys24rbufswdy9098KCgoL0JxWR/LV0Kfzzn7D//uEwvbIyOOmknG+BrCiVNx33Az509wp3XwI8CuyW2VgiIpG5c0OvetCgUKTLyuCPf4w7VSxS6WF/AuxiZi2Bn4B9gfKMphIRAXjmmXDI3s8/h/bH3/8ed6JYpdLDngI8DEwH3oy+Z1iGc4lIPlu8GC64ALp0gU02gWnT8r5YQ4pHibj7pcClGc4iIgIffgjHHQdTp8IZZ4QZjM019QM001FEsskjj8DJJ4fLDz8cZi7KL3QuERGJ36JFcOaZcPTRsPXW8PrrKtY1UMEWkXi9+244b/Vtt8H558OkSbDZZnGnykpqiYhIfEaPhlNPhaZNw6lQu3SJO1FW0whbRBrejz9Cz57hyI+OHcMiAyrWdVLBFpGGNXs27LQT3H03XHIJlJaGQ/ekTmqJiEjDcId77glvLrZpExbE7dw57lSJohG2iGTeDz/A8ceHQ/Z23RXeeEPFehWoYItIZs2YATvuCGPGwMCBMG4cbLBB3KkSSQVbRDLDHYYMgV12gYULQ6/6n/+Exo3jTpZYKtgikn7ffgvHHBOmlu+zTxhl77VX3KkSTwVbRNJr6lTYYQd44gm49lp4+mnQOfLTQgVbRNLDHW64AXbfPVyeNCmcca+Ryky66LA+EVl9X38NPXqE0fThh4djrNu2jTtVztGfPhFZPa+8EmYrjhsHt9wCjz6qYp0hKtgismqqquBf/4K994ZmzcLCuH365N06iw1JLRERqb8vvwwTYcaPD4sN3HEHrLlm3Klyngq2iNTPhAnQrVs4dO/OO8PsRY2qG4RaIiKSmqVLYcCAMKW8bdtw+F7PnirWDUgjbBGp27x50LUrvPwynHgi/Pvf0KpV3KnyTp0jbDPb2sxmVPv43szOaYBsIhKDwYPDLPJfjB1L6TZnMPi1PeHee8MheyrWsahzhO3u7wAdAcysMTAPeCyzsUQkLp06QXExlIxeStH4iym9tozixo9QMnwBHN8u7nh5rb4tkX2B993940yEEZH4FRVByYNO8UEL6b24NUObP0nJY00pOnCduKPlvfoW7OOAMTV9wcx6Ab0A2rXTX2GRJCuaex+9F3/EQAbQvy8UHRh3IoF6HCViZk2BQ4GHavq6uw9z90J3LyzQiV5EkmvePEpPf4ihTc6i/yVVDB26Qk9bYlOfw/oOAqa7+5eZCiMiMXOn9Mh/U7zwbkruWcgVVzaipCT0tFW041efgv03VtIOEZEccffdlE2touTMSRR12wiIetolUFYWczbB3L3ujcxaAZ8Am7v7d3VtX1hY6OXl5WmIJyIN5pNPYNttw3JeEybotKgNzMymuXthbduk9Kajuy8EfpeWVCKSfdzDFHP3cJy1inVW0kxHEQknb3rhBbj9dthss7jTyEroz6hIvvvgg7AyTOfO0KtX3GmkFirYIvmsqgpOOimsZD58uE7klOXUEhHJZ7feCi+9FIr1JpvEnUbqoBG2SL7673+hXz84+OBwBj7JeirYIvmosjIU6WbNYNgwtUISQi0RkXx0000weXI4XepGG8WdRlKkEbZIvnn7bbjkEjjssLDUlySGCrZIPlm6FLp3DwsQ3H67WiEJo5aISD657rqwFuMDD8AGG8SdRupJI2yRfDFrFlx6KRx9dDj9niSOCrZIPliyJLRC1loLhgxRKySh1BIRyQf/+hdMnw6PPAJaYCSxNMIWyXUzZsDAgdC1Kxx5ZNxpZDWoYIvkssWLQytk3XXhllviTiOrSS0RkVw2cCDMnAlPPgm/0yntk04jbJFcVV4eetfdu8Mhh8SdRtJABVskFy1aFAr1BhuEaeiSE9QSEclFl10Gb70Fzz4La68ddxpJk5RG2Ga2tpk9bGZvm9kcM9s108FEZBX95z9w7bXQsycceGDcaSSNUh1h3ww85+5Hm1lToGUGM4nIqvrpp9AK2XhjuP76uNNImtVZsM1sLWAvoAeAuy8GFmc2loiskksugXffDQvqrrlm3GkkzVJpiWwGVAD3mNnrZnaXmbVacSMz62Vm5WZWXlFRkfagIlKHSZPCG4ynnw777ht3GsmAVAp2E+DPwFB33wFYCPRbcSN3H+buhe5eWKCpryINa+HCsIJM+/ZwzTVxp5EMSaVgzwXmuvuU6PrDhAIuItmiXz94/3245x5o3TruNJIhdRZsd/8C+NTMto5u2hd4K6OpRCR1paVh9fOzz4a//CXuNJJBqR4l0ge4PzpC5ANASyyLZIMffoCTToLf/x6uuiruNJJhKRVsd58BFGY2iojUW9++8PHH8Mor0FJH2+Y6TU0XSapx4+COO+D882G33eJOIw1ABVskib77Dk4+Gf7wh3BGPskLOpeISBKdey589hm89ho0bx53GmkgGmGLJM0zz4TD9/r1g512ijuNNCAVbJEk+d//4JRT4E9/ggED4k4jDUwtEZEkOftsqKiAp5+GZs3iTiMNTCNskaR4/HEYNSqc4OnPmmycj1SwRZJg/nw49VTo2BEuvjjuNBITtUREkuDMM+Gbb2D8eGjaNO40EhMVbJFs99BD8OCDcOWVsN12caeRGKklIpLNvvwSeveGwkK46KK400jMVLBFspV7KNYLFsDIkdBE/xDnO/0GiGSrMWPgscdg8GDYZpu400gW0AhbJBt99ll4o3HXXeG88+JOI1lCBVsk27iHQ/h++glGjIDGjeNOJFlCLRGRbDNyZJjJeOONsNVWcaeRLKIRtkg2mTs3TD/fc08466y400iWUcEWyRbu0LMnLF0azsbXSC9PWZ5aIiLZ4q674Pnnw4K6W2wRdxrJQikVbDP7CPgBqASWurvWdxRJp48/DkeD7LNPOPZapAb1GWEXufv8jCURyVdVVWHlc4Dhw9UKkZVSS0QkbrffDhMnwrBh0L593Gkki6X6p9yBcWY2zcx61bSBmfUys3IzK6+oqEhfQpFc9v770LcvHHBAeMNRpBapFuw93P3PwEHAGWa214obuPswdy9098KCgoK0hhTJSVVVcOKJsMYa4Q1Hs7gTSZZLqWC7+7zo81fAY4BW/hRZXbfcApMmwU03wcYbx51GEqDOgm1mrcyszbLLwP7ArEwHE8lp774L//gHdOkC3bvHnUYSIpU3HdcHHrPw71oTYLS7P5fRVCK5rLISevSAFi3gjjvUCpGU1Vmw3f0DYPsGyCKSH264AV57LSyou+GGcaeRBNEBnyIN6a23oH9/OOII6No17jSSMCrYIg1l6dLQCmndGoYOVStE6k0TZ0QayuDBUFYGJSWw/vpxp5EE0ghbpCHMnAmXXQbFxXDMMXGnkYRSwRbJtCVLwqF7bdvCbbfFnUYSTC0RkUwbNAhmzAgL6q67btxpJME0whbJpOnTQ8Hu1g0OPzzuNJJwKtgimfLzz6EVUlAAN98cdxrJAWqJiGTKFVfArFlhQd111ok7jeQAjbBFMqGsDK6+OpyN769/jTuN5AgVbJF0W7QotEI23BBuvDHuNJJD1BIRSbcBA2DOnLCg7lprxZ1GcohG2CLp9OqrcN110KsX7L9/3Gkkx6hgi6TLjz+Gc4W0axeKtkiaqSUiki4XXwz//W9YULdNm7jTSA7SCFskHV56KRxrfeaZUFQUdxrJUSrYIqtrwYJw+N7mm4dD+UQyRC0RkdV10UXw0UdhlN2qVdxpJIdphC2yOiZMgCFD4JxzYM89404jOS7lgm1mjc3sdTN7OpOBRBLj++/hpJNgq63CCZ5EMqw+LZGzgTnAmhnKIpIsF1wAc+fC5MlhBXSRDEtphG1mGwN/Be7KbByRhHjuObjzzlC0d9kl7jSSJ1JtidwEXAhUrWwDM+tlZuVmVl5RUZGObCLZ6dtvoWdP2GYbuPzyuNNIHqmzYJtZF+Ard59W23buPszdC929sKCgIG0BRbLOOefAF1/AyJHQvHncaSSPpDLC3h041Mw+Ah4A9jGzURlNJZKtnnoqFOp//AMKC+NOI3nG3D31jc32Bi5w9y61bVdYWOjl5eWrl0wk23z9NWy7Lay3XjjfddOmcSeSHGJm09y91lGAJs6IpOqss2D+fHj2WRVriUW9Cra7vwi8mJEkItns0Udh9OjwJmPHjnGnkTylmY4idamogNNOgz//OfSuRWKilohIXc44IxzKN3EirLFG3Gkkj6lgi9TmwQfhoYfgqqvCG44iMVJLRGRlvvgCTj8ddtoJ+vaNO42ICrZIjdxD33rhQhgxApron1GJn34LRWpy//3wxBNhbcYOHeJOIwJohC3yW/PmQZ8+sNtuYRq6SJZQwRapzh169YKffw6tkMaN404k8gu1RESqu+ceGDs2LKj7+9/HnUZkORphiyzzySdw7rnwl7+E1c9FsowKtgiEVkjPnlBZCXffDY300pDso5aICMCwYTB+fFhQd/PN404jUiMNI0Q+/BDOPx/22y8cey2SpVSwJb9VVYWVzxs1guHDwSzuRCIrpZaI5LchQ+DFF+Guu6Bdu7jTiNRKI2zJX++9BxddBAcdFEbZIllOBVvyU2Ul9OgRTpd6551qhUgiqCUi+enmm2Hy5LCg7kYbxZ1GJCUaYUv+efttuOQSOOQQOP74uNOIpEwFW/LLslZIy5bh2Gu1QiRB6izYZtbczKaa2RtmNtvMLm+IYCLpMngwlJZGV667DqZMobR3CYPv3SDWXCL1lcoI+2dgH3ffHugIHGhmu2Q0lUgadeoExcVQes+HMGAApXsOoPiOfejUKe5kIvVTZ8H2YEF0dY3owzOaSiRd3ClqXUbJ7jdTfHIbBjQeRPFbl1JSYhQVxR1OpH5SOkrEzBoD04AtgdvcfUoN2/QCegG00wQEidu8eTBqVDgKZM4cipo3p/c2GzNw9gX0vwAVa0mklN50dPdKd+8IbAzsZGa/WT7a3Ye5e6G7FxYUFKQ5pkgKfvwRRo+GAw4Isxb79YN11oFhwygtqWDol0fRvz8MHVqtpy2SIPU6DtvdvzWzUuBAYFZmIonUgzu88koYSZeUwA8/wKabhsP2TjgBttyS0tLQwy4pCSProqLlr4skRZ0F28wKgCVRsW4BdAauyXgykdp8+CHce2/4+OADaN0ajj4auneHvfZa7nzWZWXLF+eionC9rEwFW5LF3Gt//9DMtgNGAo0JLZQSd7+itu8pLCz08vLytIUUAeD77+Hhh8No+uWXwzHU++wTivSRR0KrVnEnFFllZjbN3Qtr26bOEba7zwR2SFsqkfqorISJE0ORfvRR+Okn2GorGDQozFLcZJO4E4o0GJ1LRLLT22+HIj1qFMydC2uvHUbS3bvDzjtrhqLkJRVsyR7/+x888EAo1FOnQuPGcOCBcMMN4bwfzZvHnVAkVirYEq8lS+C550KRfuopWLwYttsOrr8eunaFDTR9XGQZFWyJx4wZoUiPHg1ffQUFBXD66aHl0bFj3OlEspIKtjScL7+E++8PhXrmTGjaNLQ6uncPrY811og7oUhWU8GWzFq0KLQ6Ro4MrY/KSthpJ7jtNjjuuDATUURSooIt6ecOU6aEIv3AA/Dtt2FVl759w+zDDh3iTiiSSCrYkj6ffgr33RdmH77zDrRoESa0dO8eJrg0bhx3QpFEU8GW1bNwYZjQMnJkmODiHqaGX3hhmCq+5ppxJxTJGSrYUn9VVWFq+MiRYar4ggWw+eZw6aVh9uHmm8edUCQnqWBL6t57L7Q77rsPPvoI2rSBY48NLY899tDsQ5EMU8GW2n33XTi13ciRMHlyKMqdO8OVV8IRR4TFbEWkQahgy29VVsL48aFIP/54ODSvQwe4+mro1i0c8SEiDU4FW341e/avJ1z6/HNo2xZOOgl69IDCQrU8RGKmgp3v5s+HMWNCoZ42DZo0gYMOCn3pLl2gWbO4E4pIRAU7Hy1eDGPHhiL9zDPhBEwdO8KNN4YTLq23XtwJRaQGKtj5wh2mTw9FesyYMLJef33o0yeMprfbLu6EIlIHFexc9/nn4YRLI0aEHnXTpnDYYaFIH3BAaIGISCLo1ZqLFi2CJ54Io+nnnw8TXXbZBYYODcdNt20bd0IRWQWN6trAzDYxs1Ize8vMZpvZ2ekOMXgwlJYuf1tpabhdfqvG/TXRGXzGR3DqqeGk/8cdB7NmQb9+Ybmt116D005TsRZJsDoLNrAUON/dtwF2Ac4ws23SGaJTJygu/rUIlZaG6506pfNRcsdy++vjjyk98V6KO39DpyEnhkPyDj0UXnghzEYcNAi23jruyCKSBqmsmv458Hl0+QczmwNsBLyVrhBFRWEyXfH+39B77QcY+s2xlGx8PkVnTk3XQ+SUIqCk1U4Ud76e3pUjGUpvSrYfSNE53eGoJ8OUcRHJOfXqYZtZe2AHYEoNX+sF9AJo165dvYMUFUHvP7zIwFm96d/hYYr+uABI60A+pxSxgN4tJzJwzgD69/mWoltujDuSiGSYuXtqG5q1Bl4CBrn7o7VtW1hY6OXl5fUKsqwN0rt3eG+spCQUcamZ9pdIbjGzae5eWNs2qfSwMbM1gEeA++sq1qtiWfEpKYErrojaI8W/fWNNAu0vkfyUylEiBgwH5rj7DZkIUVa2/AhxWU+7rCwTj5Z82l8i+anOloiZ7QFMAt4EqqKbL3b3sSv7nlVpiYiI5LNUWiKpHCXyCqDTtImIxCylHraIiMRPBVtEJCFUsEVEEkIFW0QkIVKeOFOvOzWrAD5exW9fF5ifxji5TvurfrS/6kf7q35WZ39t6u4FtW2QkYK9OsysvK5DW+RX2l/1o/1VP9pf9ZPp/aWWiIhIQqhgi4gkRDYW7GFxB0gY7a/60f6qH+2v+sno/sq6HraIiNQsG0fYIiJSAxVsEZGEWOWCbWaVZjbDzGaZ2UNm1rKWbXuY2a2r8BjtzaxrteuFZnbLqmZOCjNbsML1OvefmR1qZv2iy4dXX3fTzK4ws/0yk7bhWPCKmR1U7bZjzOy5OHNlo+i1M2uF2y4zswvM7EUzW+VDz3Ll96kmZuZmNqra9SZmVmFmT6/i/Z1mZiekK1+9lghbwU/u3hHAzO4HTgPSfb7s9kBXYDSAu5cDOm9rDdz9SeDJ6OrhwNNE6266+4CYYqWVu7uZnQY8ZGalhN/fq4AD402We8yssbtX1vS1XPl9WomFwLZm1sLdfwI6A/NW9c7c/fa0JSN9LZFJwJZmdoiZTTGz183sBTNbf8UNzazAzB4xs7LoY/fo9r9EI/YZ0fe3Aa4G9oxuO9fM9l72ly4aLdwdjRY+MLOzqj1GNzObGn3fHWbWOE3PM3Yr28fLRuFmthtwKHBt9Py3MLMRZnZ0vMnTw91nAU8BFwEDgFHAJdHP+3UzOwx+2R+Pm9l4M/vIzM40s/Oibf5jZutE221hZs+Z2TQzm2Rmf4huH2Fmt5jZq9HvV07sv+rMrFH0PK+Mri8ws+vN7A1gVzMbEL1GZ5nZMDOzaLtffp+ifXu5mU03szer7b9W0etzuZ9LQowF/hpd/hswZtkXVva8zOxmMxsQXT7AzF6O9u9lZnZBdPuW0Wv2jWh/bWHBtdE+ftPMjq01mbuv0gewIPrcBHgC6A205dcjT3oC10eXewC3RpdHA3tEl9sRVrKB8CLcPbrcOrrfvYGnqz3mL9eBy4BXgWaE6aBfA2sAHaL7WiPabghwwqo+zzg+gEpgRrWPT6rtv1T28Qjg6Gr3t9z1pH8ArYB3CItq/AvoFt2+NvBu9PUewHtAG6AA+A44LdruRuCc6PIE4PfR5Z2BidX22UOEQc02wHtxP+967qP2wKwVbrsMuAB4EdiFUIguqfZ1B4qrXV+n2uX7gENW/H0CPgL6RJdPB+6KLl9V088l7v2Swn5bAGwHPAw0j15/1etOjc8LaAnMBoqi380tqu/z6PIU4IjocvPoe44CxgONgfUJr/X/W1m+1WmJtDCzGdHlSYRlxLYGHjSz/wOaAh/W8H37AdtEf6wB1rSwwO9k4IaovfKou8+tts3KPOPuPwM/m9lXhCe8L7AjUBZ9fwvgq1V7irH5pd0EYbQILOs5bkzd+zinuftCM3uQ8OIqBg5ZNoohvBDaRZdL3f0H4Acz+47whxxCod8u+r3bjdBiWXb3zao91OPuXgW8VdN/i1luZcfrLrv9DqDE3QdV+1olYe3WZYrM7EJCYVmHUJCe4reWrfM6DTgyurw/cGgNP5c59XkScXD3mWbWnjC6XnFlrRqfl7vPMbNTgJeBc939/erfFHUMNnL3x6LHWBTdvgcwxkP76UszewnoxK/tzeWkpYddLdS/gRvc/Ukz25vw12VFjYBdlgWu5mozewY4GJhsZgekkOHnapcrCc/HgJHu/o9UnkQCpbKP80FV9GHAUe7+TvUvmtnOLP/7UVXtehXhd6UR8O2Kv8fVVP/+pK269DXhv7Hq1uHXP/CvEgry9dVei4uiwoGZNSf8d1ro7p+a2WWE4lSTZftp2WsQVvJzSZAngesIo+vfVbu9tuf1J8J+3zBTodJ9WN9a/Nqg776SbcYBfZZdMbOO0ect3P1Nd78GKAP+APxA+Je2PiYAR5vZetH9rmNmm9bzPrJZKvt4VfZbUj0P9KnWX90h1W909++BD83smOh7zcy2z0zMhuXuC4DPzWwfCK8Dwpuzr0SbDCeMHkvMrKaB27LiPD/6T6S+PfxV/rlkibuBy939zRVur/F5RTXmfGAH4KBowPCL6D+9uWZ2eLR9MwtH1k0CjjWzxmZWAOwFTF1ZqHQX7MsI/15OY+WnGDwLKDSzmWb2FuHoEoBzosb7TGAJ8CwwE6iMmvTnphLA3d8C/gmMi+5rPPB/q/yMss9l1L2PHwD6Rm+KbNFgyeIxkPDexUwzmx1dr4+/AydHb7TNBpL05lhdTgD6R63LiYQC9Mu/6u5+A/A6cJ+ZLVcL3P1b4E5gFqFIldXzsVf35xIrd5/r7jUdQvyb5xUV7+GEXvVnwMnAXdF/KdUdD5wV1aVXgQ2Axwh17g3Cz+hCd/9iZbk0NV1EJCE001FEJCFUsEVEEkIFW0QkIVSwRUQSQgVbRCQhVLBFRBJCBVtEJCH+H/w4rJbNVLizAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "jkilledtop5 = df.sort_values(by=['Journalist Killed'])\n", + "jkilledtop5 = jkilledtop5.tail(5)\n", + "print(\"Journalistes tués en fonction des pays (les 5 pays où le nombre de journalistes tués en 2022 est le plus élevé) :\")\n", + "plt.figure()\n", + "plt.plot(jkilledtop5[\"Country\"],jkilledtop5[\"Journalist Killed\"],'r')\n", + "plt.plot(jkilledtop5[\"Country\"],jkilledtop5[\"Journalist Killed\"],'bx')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ces pays se trouvent dans ce graphique car ils sont quasiment tous en situation de guerre avec un autre pays (Ukraine) ou encore en situation de guerre civile (Yemen,Haïti...). Pour le Mexique, les cartels\n", + "\n", + "éxecutent les journalistes enquétant sur leurs trafics." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Score politque en fonction des pays (les 5 pays où le score politique est le moins élevé) :\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhWElEQVR4nO3dd5xU1f3/8deHKlVEiqAoRtRYIhoXKxrXEkuwoa4Qe0OwAJYYGxExSgIRjRow2P1ZF8GGaERdC0aUBQsiJjb0qxKCjd6W/fz+OHfDsGyZZWfmzsy+n4/HPObOLTOfOTv7mTPnnnOuuTsiIpJ7GsUdgIiIbBwlcBGRHKUELiKSo5TARURylBK4iEiOapLJF+vQoYN37949ky8pIpLzZs6c+Z27d6y8PqMJvHv37pSWlmbyJUVEcp6ZfVnVejWhiIjkKCVwEZEcpQQuIpKjlMBFRHKUEriISI5SAhcRSZdRo6CkZP11JSVhfQoogYuIpEuvXlBUtC6Jl5SEx716peTpM9oPXEQkn7nDokWwYEF0+66QJv2L+XWfIlafPYjNHhsHxcVQWJiS11MCFxGpQXk5/PBDQlKu5vbf/4b71asrP0MhIxjEsDtugGHDUpa8QQlcRBqgsjJYuHD9xFvdbeFCWLt2w+do0gQ6dYLOncNt113DfeK6zp1hq09K2GzgOBg0DMaNCwlcNXARkXVWrVo/GdeUmL//PjR3VNa8+brE260bFBSsn4wTE/Rmm0Gj2s4ilpTAwKJ1zSaFhaENPEXNKErgIpK1li+vubki8fbTT1U/R+vW65Lv9ttD794bJuWKW5s2YJbCNzBjxvrJurAwPJ4xIyUJ3DJ5TcyCggLXZFYiOWrUqNB7IjHxlJSEZHTFFUk9hTssWZJcW/KCBbB0adXP065d1Qm4cvNF587QsmX933rczGymuxdUXq8auIgkp6JLXEWNMuoS548X82MdTvKtXLnhU5tBhw7rEvBee1WfoDt1Ck0dogQuIsmKfv6XnVDEpE6DOOyzcQzYtJinDi+krGzD3Rs3Xr9GvNNOVdeQO3cOybuJslGdqchEJGnzf17IhPJBDP7XDTzaYxhtDyzkd9U0X7Rvn8RJPqkXJXARScqSJXDdgSXctGgc3547jP5PjaP/qanrEid1p+9HEanVmjVww8El3PhpEZ+NLKbrXSNCW3jiMHHJOCVwEamRO5x7LlA6g9LfFbP3lVV0iZNYqAlFRGo0bBg8+CBcf/0VHPmHShtTOKpQ6k41cBGp1t//DjfeCOedFxK5ZBclcBGp0jPPwAUXwG9+A2PHpniEoqRErU0oZtYNeBDoDDgw3t3/amaPAztGu7UDfnL33dMUp4hk0PTp0K8f7LknPP64+mhnq2T+LGXAZe4+y8zaADPNbKq7n1yxg5ndDCxKV5AikjmffAJHHw1du8LkydCqVdwRSXVqTeDuPh+YHy0vMbO5wJbARwBmZkARcHAa4xSRDFiwAI44Iiy/8EIYnCPZq04/jMysO7AH8HbC6gOABe7+STXHDAAGAGy99dYbF6WIpN3SpdCnD8yfH7p29+gRd0RSm6RPYppZa2AiMNTdFyds6g88Wt1x7j7e3QvcvaBjx44bH6mIpE1ZGZx8MsyaFbp277133BFJMpKqgZtZU0LyftjdJyWsbwL0BfZMT3gikm7uMHAgTJkSug326RN3RJKsWmvgURv3PcBcdx9TafOhwMfu/nU6ghOR9BsxAu65B669FgYMiDsaqYtkmlD2B04DDjaz96LbUdG2ftTQfCIi2e2ee2D4cDjzzJDIJbck0wtlGlBlF353PzPVAYlIZkyZAuefD4cfDuPHa6BOLtJITJEGqLQUTjoJevaECROgadO4I5KNoQQu0sB8/nkYHt+pEzz3XLiQr+QmJXCRBmThwjBQp6wsDNTZYou4I5L60AwHIg3E8uVhiPz//R+8/DLsuGPtx0h2UwIXaQDKyqB/f3jnHZg4EfbbL+6IJBWUwEXynDtcfHGYHvaOO+D44+OOSFJFbeAieW7kSLjzTrjySrjwwrijkVRSAhfJYw8+CNdcA6eeCjfdFHc0kmpK4CJ56sUX4Zxz4NBDw4hLDdTJP0rgInlo1iw44QTYZZdw0rJZs7gjknRQAhfJM/PmhYE67duH4fJt28YdkaSLeqGI5JHvvw8DdVauDH29u3aNOyJJJyVwkTyxYgUcc0yogU+dCjvvHHdEkm5K4CJ5YO1aOOUUeOutcEWdAw6IOyLJBCVwkRznDkOHwpNPwq23woknxh2RZIpOYorkuNGjwwjLyy6DIUPijkYySQlcJIc98gj8/vfQrx+MGhV3NJJpSuAiOerll8Ol0A46CO6/Hxrpv7nB0Z9cJAd98AH07RumhH3ySWjePO6IJA5K4CI55quv4Mgjw5V0pkyBdu3ijkjiol4oIjnkxx9D8l66FKZNg27d4o5I4qQELpIjVq6E446DTz8Nl0P7xS/ijkjipgQukgPKy+GMM+D11+HRR6GwMO6IJBuoDVwkB1x+eRhhOXp06DIoAkrgIlnvllvCbfDgMFhHpIISuEgWKy6GSy8Nc3uPGaOLMsj6lMBFstRrr8Fpp0Hv3vDQQ9C4cdwRSbZRAhfJQnPmhB4n220HTz8Nm2wSd0SSjZTARbLMN9+EizK0aAHPPx+urCNSlVoTuJl1M7MSM/vIzOaY2ZCEbReb2cfRek2lI1JPixaFgTqLFoVRlttsE3dEks2S6QdeBlzm7rPMrA0w08ymAp2BY4Ge7r7KzDqlM1CRfLd6dZjfZO7ckLx33z3uiCTb1ZrA3X0+MD9aXmJmc4EtgfOAP7n7qmjbf9MZqEg+Ky+Hs86CV16BBx+Eww6LOyLJBXVqAzez7sAewNvADsABZva2mb1mZr2qOWaAmZWaWenChQvrHbBIPrrqqjC398iRoeeJSDKSTuBm1hqYCAx198WE2nt7YB/gd0Cx2Ya9VN19vLsXuHtBx44dUxS2SP64/fZwMYYLLggXZxBJVlIJ3MyaEpL3w+4+KVr9NTDJg3eAcqBDesIUyU8TJ4bLoB13HNx2mwbqSN0k0wvFgHuAue4+JmHTU0BhtM8OQDPguzTEKJKXpk0LV5LfZ5/QfKKBOlJXyfRC2R84DZhtZu9F664G7gXuNbMPgdXAGe7uaYlSJM/MnQvHHBO6CT77bOjzLVJXyfRCmQZU98Pu1NSGI5L/5s8Pfb2bNQvzem++edwRSa7SfOAiGbR4MRx1FHz3XZjrZNtt445IcpkSuEiGrF4NJ54Is2fD5Mmw555xRyS5TglcJAPc4bzzYOpUuO++MNeJSH1pMiuRDLj22jDCcsQIOPPMuKORfKEELpJmd94JN90UauDXXht3NJJPlMBF0ujpp+HCC6FPHxg7VgN1JLWUwEXSZPp06N8fCgrgscegic44SYopgYukwb//HWrdXbuGgTqtWsUdkeQjJXCRFFuwIPQyadQoDNTppJnyJU30o04khZYuhd/8JiTxkhLo0SPuiCSfKYGLpMiaNVBUBO++G05e7rVX3BFJvlMCF0kBdxg4MFyEePz40P4tkm5qAxdJgeuvh3vvhWHDQn9vkUxQAhepp7vvDgn8rLPCvUimKIGL1MOUKaHp5Igj4O9/10AdySwlcJGNNGMGnHQS9OwJEyZA06ZxRyQNjRK4yEb47LPQXbBTJ3juOWjdOu6IpCFSAhepo4ULQ5NJeXkYqLPFFnFHJA2VuhGK1MGyZaGL4NdfwyuvwI47xh2RNGRK4CJJKiuDfv2gtBQmToR99407ImnolMBFkuAepoWdPBn+9jc47ri4IxJRG7hIUm68MYywvOoquOCCuKMRCZTARWpx//1hhOVpp4VELpItlMBFavCPf4Sh8YceGkZcaqCOZBMlcJFqzJoFJ5wAu+4aTlo2axZ3RCLrUwIXqcIXX8BRR8Hmm4eBOm3bxh2RyIbUC0Wkku+/hyOPhNWrw0UZunaNOyKRqimBiyRYsQKOPhrmzYOXXoKddoo7IpHqKYGLRNauhd/+NlxNfsIE6N077ohEalZrG7iZdTOzEjP7yMzmmNmQaP1wM/vGzN6LbkelP1yRFBo1KrSREAbqDBkCPz1VwutHj+KEE2KOTSQJydTAy4DL3H2WmbUBZprZ1GjbLe7+l/SFJ5JGvXqFi1gWFzPqnULm/K2EZ1sU0XpocdyRiSSl1gTu7vOB+dHyEjObC2yZ7sBE0q6wEIqLWXlsEauWDOLp5uNo+WxxWC+SA+rUjdDMugN7AG9Hqy4ysw/M7F4z26yaYwaYWamZlS5cuLB+0Yqk2EedC7l15SD+wA20vHQQjQ5R8pbckXQCN7PWwERgqLsvBsYB2wG7E2roN1d1nLuPd/cCdy/o2LFj/SMWSZHFi+HPR5RwXtk4lgwdRpO7xv2vTVwkFySVwM2sKSF5P+zukwDcfYG7r3X3cuAuYK/0hSmSWu5wc58S/vJ/RXw9ppg2t4yA4uLQJq4kLjkimV4oBtwDzHX3MQnruyTsdjzwYerDE0mPv/wFVrwxg1cHFdNzaNRsErWJM2NGvMGJJMncveYdzHoDbwCzgfJo9dVAf0LziQPzgPOjE57VKigo8NLS0vpFLFJPJSVhcqq+fUO+1gRVku3MbKa7F1Ren0wvlGlAVR/xKakITCSTvv4aTj4ZdtgB7r1XyVtymyazkgZj9Wo46aQwXH7SJGjTJu6IROpHQ+mlwbj00nXD5DXHieQD1cClQXjooXAty8svhxNPjDsakdRQApe898EHMGAA/OpXMHJk3NGIpI4SuOS1n34KvU022wwefxyaqNFQ8og+zpK3ysvh9NPhyy/htdegc+e4IxJJLSVwyVsjR8Kzz8Ltt8N++8UdjUjqqQlF8tKLL8KwYeECDRdeGHc0IumhBC5558svQ+LeZRcYP16DdSR/KYFLXlm5MnQTXLMmDNZp1SruiETSR23gklcGD4bSUnjqKdh++7ijEUkv1cAlb9x7L9x1F1x1FRx7bNzRiKSfErjkhVmz4IILwiyDN9wQdzQimaEELjnv++/hhBOgUyd45BFo3DjuiEQyQ23gktPWroVTT4Vvv4U33gBdtU8aEiVwyWk33AAvvAB33gl76aJ+0sCoCUVy1nPPwfXXw5lnhsmqRBoaJXDJSZ9/HppOdt8dxo7VYB1pmJTAJeesWBFOWprBxInQokXcEYnEQ23gklPcYdAgeP99mDwZfvazuCMSiY9q4JJTxo+HBx6AP/wBjjoq7mhE4qUELjnj7bfh4ovhyCNDAhdp6JTAJScsXBgmqdpyy3B9y0b65IqoDVyy39q10L9/SOL//Ce0bx93RCLZQQlcst6wYfDyy2Gyql/+Mu5oRLKHfohKVnvqqXBptAED4Kyz4o5GJLsogUvW+uQTOOMM6NULbrst7mhEso8SuGSlZcugb19o2hSeeAKaN487IpHsU2sCN7NuZlZiZh+Z2RwzG1Jp+2Vm5mbWIX1hSkPiHppM5syBRx+FrbeOOyKR7JTMScwy4DJ3n2VmbYCZZjbV3T8ys27Ar4Gv0hqlNCh33BHm9b7xRjjssLijEcletdbA3X2+u8+KlpcAc4Eto823AFcAnrYIpUF580249FI45hi48sq4oxHJbnVqAzez7sAewNtmdizwjbu/n47ApOH5z3+gqAi22SYMl9dgHZGaJd0P3MxaAxOBoYRmlasJzSe1HTcAGACwtRozpRpr1sDJJ8OPP8Lzz0O7dnFHJJL9kqrjmFlTQvJ+2N0nAdsB2wLvm9k8YCtglpltUflYdx/v7gXuXtBR17uSalx1Fbz+episarfd4o5GJDfUWgM3MwPuAea6+xgAd58NdErYZx5Q4O7fpSlOyWMTJsDNN8NFF4WLNIhIcpKpge8PnAYcbGbvRTdN5CkpMXcunH027LtvSOIikrxaa+DuPg2o8YJV7t49VQFJw7FkSRis07IlFBdDs2ZxRySSWzSZlcTCPdS8P/kEXnoJttoq7ohEco8SuMRizJgwRH70aDjooLijEclN6mkrGffaa/D734cLE192WdzRiOQuJXDJqG++CYN1evQI83tbjWdXRKQmakKRjFm9OiTvZcugpATato07IpHcpgQuGXP55eGSaI8/DjvvHHc0IrlPTSiSEY88ArffDpdcEmrhIlJ/SuCSdrNnw3nnwQEHwJ//HHc0IvlDCVzSatGiMFhn003DYJ2mTeOOSCR/qA1c0qa8PFzTct68cNJyiw2mOhOR+lACl7QZNQqefhpuvRV69447GpH8oyYUSYuXXoJrroF+/WDw4LijEclPSuCScl99Bf37w047wV13abCOSLoogUtKrVoFJ54Y7idNgtat445IJH+pDVxSauhQmDEjJO8ddog7GpH8phq4pMz998Odd4aJqo4/Pu5oRPKfErikxLvvwqBBcPDB8Mc/xh2NSMOgBC719uOPYWrYDh3g0UehiRrmRDJC/2pSL+Xl4ULEX38Nb7wBnTrVfoyIpIYSuNTLH/8IU6bA2LGw995xRyPSsKgJRTba88/D8OFw+ukwcGDc0Yg0PErgslG++AJOOQV22w3GjdNgHZE4KIFLna1YEQbrlJfDxInQsmXcEYk0TGoDlzpxhwsvhFmz4NlnYbvt4o5IpOFSDVzq5O674b77YNgw6NMn7mhEGjYlcEnajBlw0UVw+OFw3XVxRyMiSuCSlO++C+3eXbrAww9D48ZxRyQiagOXWq1dC7/9LSxYANOmweabxx2RiIASuCThuutg6tTQ/l1QEHc0IlKh1iYUM+tmZiVm9pGZzTGzIdH6G8zsAzN7z8xeNLOu6Q9XMu2ZZ+DGG+Hcc+Gcc+KORkQSmbvXvINZF6CLu88yszbATOA44Gt3XxztMxjY2d1rHI9XUFDgpaWlKQlc0u/TT0ONu0eP0HSyySZxRyTSMJnZTHff4PdvrTVwd5/v7rOi5SXAXGDLiuQdaQXU/E0gOWX5cujbN5ysfOIJJW+RbFSnNnAz6w7sAbwdPb4ROB1YBBRWc8wAYADA1ltvXY9QJVPc4fzz4cMPw3wn3bvHHZGIVCXpboRm1hqYCAytqH27+zXu3g14GLioquPcfby7F7h7QceOHVMRs6TZ2LHw0EMwYkTo8y0i2SmpBG5mTQnJ+2F3n1TFLg8DJ6QyMInHW2/BJZeEUZZXXx13NCJSk2R6oRhwDzDX3cckrN8+YbdjgY9TH55k0oIFYbBOt27w4IPQSMO8RLJaMm3g+wOnAbPN7L1o3dXAOWa2I1AOfAloRugcVlYG/frBDz/A9Omw2WZxRyQitak1gbv7NKCq2Z6npD4cicvVV8Orr8IDD0DPnnFHIyLJ0I9kYeJEGD06XFX+9NPjjkZEkqUE3sB9/DGcdVa4nuUtt8QdjYjUhRJ4A7Z0aRiss8kmYbBO8+ZxRyQidaHJrBoo9zC3yb/+FSaq2mqruCMSkbpSAm+g/vpXKC6GP/0JDj447mhEZGOoCaUBeuMNuPxyOP54uOKKuKMRkY2lBN7AzJ8PRUXhYsT33QdWVQdREckJakJpQNasgZNOgsWL4aWXYNNN445IROpDCbwBueIKePNNePRR2GWXuKMRkfpSE0oD8dhjcOutMGRIGDIvIrlPCbwBmDMndBncf/8w4lJE8oMSeJ5btCgM1mnbFiZMgKZN445IRFJFbeB5zD0Mk//sMygpgS5d4o5IRFJJNfB8MmpUyNSR0aPhxydLKDlyFAccEGNcIpIWSuD5pFev0Mm7pIRXXoF/XFnC082L6H1Jr7gjE5E0UBNKnli1CuZvW8iy64rpcWwR764dxIRG42g6qRg7uMrrTYtIjlMCz3IrV4bRk99+W/V9xfIPP1QcUcj1DOIP3MB3g4bR4iglb5F8pQQek+XL10/A1SXnH3/c8NimTcMJyS5dYPvt4cADoWvX8HjXhSX88s/jWHXeMDrcOw5OKoRCJXGRfKQEnmLLllVfS068X7Row2ObNVuXiH/+8zBLYJcu69ZV3LdvX80Fh0tK4PdFMLGYJoWFcERhaBMvLlYSF8lDSuBJWrKk5iaMivslSzY8dpNN1iXgXXeFww7bMCl37RouJFyvyaVmzFg/WRcWhsczZiiBi+Qhc/eMvVhBQYGXlpZm7PVq4x4mdkqmKWPp0g2Pb9Fiw0RcVY25XTvN+iciG8/MZrp7QeX12V0DHzUqdI1LrD2WlIQaZQ0TWbuHJopkmjKWL9/w+JYtQ/Lt2hV++cvqk3PbtkrMIhKf7E7gFf2ao2YBf6UELyriy9HFfDq15iaNlSs3fLrWrdcl4L32qr7m3KaNErOIZL/sTuBRG+6yPkXc03QQ/ReNo4hiXj17/fbctm3XJeB99qm6WaMiMYuI5IvsTuAAhYX8++BBDJ58Ay/tO4xjiwoZWCk5t2oVd5AiIpmX/Qm8pIQ9po+DYcM4dNw4Du2pfs0iIpDtc6GUlKxrAx8xItxHc32IiDR02Z3Aa+rXLCLSwDXofuAiIrmgun7gtdbAzaybmZWY2UdmNsfMhkTrR5vZx2b2gZk9aWbt0hC3iIhUI5kmlDLgMnffGdgHuNDMdgamAru6+27Av4Gr0hemiIhUVmsCd/f57j4rWl4CzAW2dPcX3b0s2m06sFX6whQRkcrqdBLTzLoDewBvV9p0NvB8NccMMLNSMytduHDhRgUpIiIbSjqBm1lrYCIw1N0XJ6y/htDM8nBVx7n7eHcvcPeCjh071jdeERGJJNULxcyaApOBf7j7mIT1ZwLnA4e4exXTQm3wPAuBLzcy1g7Adxt5bEOk8qoblVfdqLzqrj5lto27b1ADrjWBm5kBDwA/uPvQhPVHAGOAX7l72ttGzKy0qm40UjWVV92ovOpG5VV36SizZIbS7w+cBsw2s/eidVcDtwHNgakhxzPd3QemMjgREalerQnc3acBVU2uOiX14YiISLKyeyj9+sbHHUCOUXnVjcqrblRedZfyMsvoUHoREUmdXKqBi4hIAiVwEZEcldEEbmZrzey9hNuV1ew3wswOjZaHmlnLTMaZDmbmZnZzwuPLzWx4HZ/jIDPbL+Hx/WZ2YhLHLU1YPsrM/m1m29TltdPJzDZP+Ez8x8y+SXjcrJZju5vZhxmMtauZPVHD9nZmdkGm4kklM9vCzB4zs8/MbKaZTTGzHWrYf56ZdchkjNmimrIaYGaTq9n/7mgOqZTK9BV5Vrj77jXtYGaN3f0PCauGAg8BGwwUivZdm9II02cV0NfMRrp7nTvzm1kT4CBgKfDPjQnAzA4hdP883N1rHVAVjQEwdy/fmNdLlrt/D+weveZwYKm7/yWJ+DJ+RSl3/xao6UuzHXABMDYjAaVI9Ld+EnjA3ftF63oCnQmT1UmkhrI6prpj3P3cdMSSFU0o0Tf5n81sFnBSRc3SzAYDXYESMyuJ9l1qZjeb2fvAvmZ2qpm9E9XW/m5mjaP9xkVzsMwxs+vje3f/U0Y4C31J5Q1RLfKVaGrel81s62j9/WZ2p5m9DRQDA4FLovd6QHT4gWb2TzP7vKbauJkdCNwF9HH3z6J1l5rZh9FtaEIs/zKzB4EPgW5m9jszmxHFd33Ccz4V1T7mmNmAFJRRYrzr/bqo+BUR/Qp5w8yeAT6qdMzPzOxdM+tlZmdG8U2NPl8XRe/3XTObbmbto2O2M7MXovfxhpn9POH1b6tctok1fjPbJeGz94GZbQ/8CdguWjfazFpHf9NZZjbbzI5NeJ65ZnZXVH4vmlmLVJZhHRUCa9z9zooV7v4+0DixVmlmd1gYgV3hiuh9vWNmPaJ9jjazt6OyfsnMOmfqTWRIdWX1BtDazJ6wMNX2w1Gyx8xeNbOCaHmpmd1oZu9Hn8XO0fq6l5u7Z+wGrAXeS7idHK2fB1yRsN/9wIkJ2zokbHOgKFreCXgWaBo9HgucHi23j+4bA68Cu2XyvVbx3pcCbaP3sylwOTA82vYscEa0fDbwVEI5TAYaR4+HA5dXKqcJhC/inYFPq3ntNcAPiWUA7AnMBloBrYE5hInKugPlwD7Rfr8mfPFY9DqTgQMrlXELQrLfPAXlNDwqm/99BirKL7o/CFgGbBs97h699o7Au0DPaP2ZwKdAG6AjsAgYGG27hTCnD8DLwPbR8t7AKzWVbcXrRcu3A6dEy82icvjf9mh9E6BttNwhismi/cqA3aNtxcCpMX4+BwO3VLH+IGBywuM7gDMT/jeviZZPr9gP2Ix1PdzOBW6O838vw2W1iDAzayPgLaB3tO1VoCBaduDoaHkUcO3Glls2NaE8nuRzrCVMqgVwCCERzYi+6FoA/422FUW1wiZAF8I/4QcbEXPKuPviqGY7GFiRsGlfoG+0/P8If9QKE7zmZqKnPDRxfFTDN/YaQrPLOcCQaF1v4El3XwZgZpOAA4BngC/dfXq036+j27vR49bA9sDrwGAzOz5a3y1a/30NsabKO+7+RcLjjsDTQF93T6yVl3iYAnmJmS0ifFFC+OLazcIEbfsBE6LPD4TRxRVqK9u3gGvMbCtgkrt/kvA8FQy4KfoFVA5sSWiWAPjC3d+LlmcSknqueTTh/pZoeSvgcTPrQvhi+6KqA/PUO+7+NYCFkevdgWmV9llNqAhB+LsfFi3XudyyogklsizJ/VYmJDQjtEPtHt12dPfhZrYtoRZ3iIcLTjwHbJKGmDfGrYRE2irJ/Wsrl1UJy1WNmIWQOIqAvczs6jq+pgEjE8q4h7vfY2YHAYcC+7p7T0KCT2UZlxF9Ps2sEeEDXVV8EGo9XxG+lBIllk15wuNywhd7I+CnhPe2u7vvVM3xG5Stuz9CaPdcAUwxs4OreB+nEL5g9owqLwtYV06Jz7+WzJ+TSjSHUBmq7H9/h0jlv7FXsXw7cIe7/4Iw2V22/O+lSnVlBcn9Tdd4VM2utE+dyy2bEnh1lhB+BlflZeBEM+sEYGbtLfSuaEv4J18U1ZyOzEikSXD3Hwg/l89JWP1PoF+0fAqhLa0qNZVFba+7HPgNcIqZnRO9xnFm1tLMWgHHV/O6/wDOjmqrmNmWUXlvCvzo7sujduN9NiauGsxj3T/JMUDTGvZdTYj/dDP7bbIv4GFa5C/M7CQIJ6csnIxKipn9DPjc3W8j/ALYjQ3/RpsC/3X3NWZWCGRN759KXgGaJ57LMLPdCF9cO5tZcwuXTTyk0nEnJ9y/FS1vCnwTLZ+RtojjU11ZHVD9IUmpc7llOoG3sPW7Ef4piWPGAy9YdBIzUfRz+VrgRTP7gHCZty4eTii8C3wMPAK8mbq3kBI3E9pDK1wMnBW9h9NY18xR2bPA8bb+ScykRV8eRxDKbCtCO+87hAt03O3u71ZxzIuEMnzLzGYDTxAS1AtAEzObSzhxN73ysfV0F/Ari05WU8svkagpqA/hJG+1vQGqcApwTvQ6c4Bj63BsEfBh9FN5V+BBDz1q3rRwYng0YZ78gqjsTid8JrNOVCM8HjjUQte4OcBI4D+ECseH0X3lz8hm0ed2COtO0A8nNEvNJA+nnK2lrOpjOHUsNw2lFxHJUbnQhCIiIlVQAhcRyVFK4CIiOUoJXEQkRymBi4jkKCVwEZEcpQQuIpKj/j9ZyfFRaAo06AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pscoretop5 = df.sort_values(by=[\"Politic Score\"])\n", + "pscoretop5 = pscoretop5.head(5)\n", + "print(\"Score politque en fonction des pays (les 5 pays où le score politique est le moins élevé) :\")\n", + "plt.figure()\n", + "plt.plot(pscoretop5[\"Country\"],pscoretop5[\"Politic Score\"],'b')\n", + "plt.plot(pscoretop5[\"Country\"],pscoretop5[\"Politic Score\"],'rx')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Score global en fonction des pays (les 5 pays où le score global est le moins élevé) :\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAEICAYAAAC3eUuqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzkElEQVR4nO3dd5wU9f3H8deHIqBYomCjiD0qdjDGaOTsGhXrocFeUGzRaIwasSYWYosRUURELOghxIaxH0EFKRoUUX+xKwiClSIi5fP74/tdGdbd63eze/d+Ph73uN2ZnZnP9M985zO75u6IiIiINCXN0g5AREREpKEpARIREZEmRwmQiIiINDlKgERERKTJUQIkIiIiTY4SIBEREWlyGmUCZGZuZptU4XMnmNnLNZxGDzObXpNhBczsN2b2npnNN7NDGnC6d5hZvwaYTqPdPszsNDO7Jb7uEve3FimHVbDMbD0z+9DMulThs1eY2f0NEFaqqrPd1GaZ1OYYXxtmNsbMTmno6WbF0DkeX5vX0/jbmNkrZva7RLc6337NbICZ/S3xfhszG1cX4640ATKzXc1snJl9Z2ZfxxnuXhcTl8qZ2WZm9piZzYnL/xkz2zzrM+eZ2Swzm2tmQ8ysVey+tpkNN7PP4/p7xcx+lRjud2b2spl9G4cfbGarNtCsXQXc5u5t3f3R+phAroOfu5/u7lfXx/SaAjNbCbgU+Hs9T8fNbEE8gM83s8H1Ob365O4zgT7AgLRjkdpLK6mqLnf/NB5fl9bTJO4EbnL30fU0fsysD/Cju/8l083d3wS+NbODajv+ChMgM1sNeBL4J7Am0AG4ElhU2wlnTadeMtRGYg3gcWBzYB1gIvBYpqeZ7QtcBOwJbABsRFhHAG2BScCOhPV3LzDazNrG/qsDfwXWB7YgrN96PbElbABMa6BpSd3pCbzr7jMaYFrbxgN4W3dP9Wq6ttz9eeA+M1sv7VhqwoJGecdAasbdj3P3kfU8jUHufl6OXg8Ap9XFBPL+Ad2Abyv5zKnAO8A84G1gh9h9C2AM8C3hRHdwYpihwEDgKWABsBfhJDwSmAN8BJxTwTTXAp4A5hJO8H8FXk70d2CT+Hp1YFgc7yeEq9dmsd8JwCvAbcB3wLvAnonxnJiYtw+B0xL9egDTK4jxl8BzwNfA/wGlWfM/ABgdxz0B2Lii5ZwYds04f2vF9w8C1yT67wnMqmD4ucCOefodBkytYNi86wi4AiiLy3peXOfd8oznA2AZsBCYD7SK4348Lq/3gVOrOm6gEzAqxvVVXJ9bAD8AS+M0vk0s+79mbb/vx+k+DqyftR2dDrxH2I4HAJZnntrEcX9D2A/+lNw+Kll2OwGT47r5gnBVlWsaPYDpwCXAl8DHQO9E/98B/43j+Qy4ItFvNHB21vjeBA4FDLgZmB2HnQp0zRPDEODSxPsucTm1SOxvdwMzgRmEfbN57LcJ8B/CvvYl8HAF29pP+3AV9okxwLWEi4O5hAuENRP9RwCz4nTHAlvF7t3j8m6etQ+8UZ31UtF2lL18EvGekmc8VwD3J97vDIyL298bQI8KYvhzXObzCMecPWP35nGb+SD2ew3oFPvtQjiGfhf/75IV598Ix8iFcf3lPa7liGfDuLznAc8T9p/782w3le3/jwAPx3G9TkiOM/0vSszb28ChiX4nkDg35Igx7/KNw34Yx/sR0Js8x5U82+QpifcnEc4l3wDPABvkGS6zXE4k7MPfEI5B3Qn767eElvPM55sRzmmfEPbfYcDqeZbxGODquD7nAc8C7WK/1sD9hOPnt3FbWCdPjJWdByrdfoFewOSs8Z4HPB5ftwJuAD4l7Ht3AG0Sn+1A2CZbVeUYkXf9V3JgWS0ukHuB/YFfZPU/krDDdSccRDchXNm3JGzElwArAXvEBb55HG4oYYf7TVyBKxN2ysvi5zeKG96+eeJ6KP6tDGwZN5R8CdAwwgFx1bhB/A84ObGBL4kLvmVcKd8RD56EE8rGcd52B75neYLXgzwJELBKjOlEoAWwPeGAv2Vi/r8iHGBbELLZh6q0wuAQYGbi/RtAr8T7diQSpKxhtyPsvKvnGfct+eKI6ynvOiJs+D8ABxAOuNcCr1YwHx8DeyXejwVuJ+yI2xF2rj0qG3d8/wbhBL5KHH7XfAc/EgkQYbv8EtiBsMP9ExibtR09SWiF6xxj2i/P/FwHvERIUDsBb2W2jyosu/HAsfF1W2DnPNPoQdheb4rx7k64gNg80X/rOL1tCAeOQ2K/UmBCYlzbErbBlYB9Y3xrELb1LYD18sQwCTgy8b4LKx5k/0VoGl8FWJuQlJwW+w0H/hLj+2k95ZmOA58TEpdRQJcKPjuGcBzqGqc7khUPwicR9v9WhG18SqLf28D+iff/As6v5nrJux1lL59EvJUmQISD/FeE7b4ZsHd83z7HcJsTjjnJxGvj+PpPhKR287h+tyVcRK5JOMEeSzgOHR3fr5WI81Ngq9h/dSo4ruWIaTzhJLYSsCshkcyXAFW2/y8GjiAcpy8gnHhbxv5HEk7KzQjH8AXE7ZcKEqCKli9hO5rL8n1rPZYnznnHmWsdE1pN3yfsVy0ICcu4PMNllssdcVnsQzj2PUrYnzoQEp3dE9v2+4RjSlvCvnJfnmU8hpAobka4YBsDXBf7nUZoVFiZcEzdEVithueBSrffOJ15wKZZx5aj4uubCQnxmoR99wng2qxY5gLb5FmOFwFPVrSO3CtJgOKItiCcNKYTDr6PEzNDQib7hxzD7EY4cDVLdBtOvCKN4xuW6Pcr4NOscVwM3JNj3M0JO8PmiW45W4DiZ38ksYPGFT0msSF/TuKqnnDAPjbPsng0M79UnAD1Al7K6nYncHli/gcn+h1AuK1Q2broSDjQH53o9gGJkzLhAOFknTAIyexU4OI8496bcPDbLE//CtcRYcN/PtFvS2BhBfPyMTEBIiQMS4FVE/2vBYZWNm7g14SDZYsc0ziBihOgu4H+iX5t47bVJbEd7ZroXwZclGd+PsxaD31YngBVtuzGEm5btqtk/fcg7IOrZMXUL8/nbwFujq9bx/W7aXx/A3B7fL0H4cJgZxL7bJ5xvpc1n13icmpBuEW7iBWv1I4GyuPrYcAgoGMVtvXfEg6waxBa9N7KtY7jZ8cQD+SJ7eNHEi07iX5rxHhXj+//DDwQX69JuMjJnDyrul7ybkfULgH6M/Fkluj/DHB8juE2IZwY9yImBol+/wf0zDHMscDErG7jgRMScV6V6FfhcS2re+e4ra6c6HY/ORIgqrb/v5ro14zQwrhbnmU4JTO/VJwA5V2+hAToW+BwEttzZePMtY6BfxMvuhPxf0+OVqDEcumQ6PYVK17kjgTOja9fAM5I9Ns8bnstsre9GFOy9fYM4On4+iRCS03OhCIxTFXOA1XafuP2cFl8vSkhIVqZkKQvIHFXhHCc/yhrXDOA31YUb2V/ld7Tdfd33P0Ed+9IuMJan3BghbDhfpBjsPWBz9x9WaLbJ4SMMOOzxOsNgPVjMe63ZvYtofVonRzjbk9YucnhP8vxOQitIS3jtPPFMcPj0kz0Xx/AzPY3s1dj8fG3hESlXZ5pJW0A/CprfnoD6yY+Myvx+nvCQTMvM2tPaLK83d2HJ3rNJyQ3GZnX8xLDtiFk0K+6+7U5xr0z4VbaEe7+vwrmqbJ1lD1Prav4dND6wNfuPi/RLXs95Rt3J+ATd19Shenkmu5P24a7zyccbCqabr71tD4rbofJba6yZXcy4arsXTObZGYHVhDzN+6+IGs6me31V2ZWHgvmvyM0nbeL8/YD4RbCMbGW42jgvtjvRUKSMQCYbWaDYv1fzukTrshy2YCwv81MzOedhCtXgAsJB7eJZjbNzE7KN5PuPtbdf3T3b4E/EG6nbJHv8/x82bcE2plZczO7zsw+MLO5hMQblu/H9wMHmdkqhFaylzwULUPV10tVtqOa2AA4Mmu72ZXQGrECd38fOJdwApptZg+Z2fqxd0XH6U+yulV2nK7suJYc99fu/n2eceX6bEX7/0/DxvPKdJZv98eZ2ZRETF2p+nE65/KN+1gvwj4008xGm9kvqzDOfNP5R2IaXxP2g4q2jy8SrxfmeJ85DmWvw09YfjGSS77j2X2E5OSh+NBMfzNrmWdeqnqurmz7fZBwHAL4PfBo3F4yLUSvJYZ7OnZPWpWQpNZYtYra3P1dwhV019jpM8ItomyfA52yiuY6EzK2n0aXeP0ZIbtbI/G3qrsfkGPccwhXFh0T3TrlCflLQja8QQVxdDAzy+r/eXySaiThSnkdd1+DULOU/Gw+nwH/yZqftu7etwrD/oyZ/YKQ/Dzu7n/L6j2N0KSdsS3whbt/FYdtRWi5mk6OojEz257QqneSu79QyTxVdR1V1+fAmllPoGWvp4ri6pwn0fIc3bKn+9O2EU+Ca1VxutlmsuJ22DkrxrzLzt3fc/ejCYnC9cAjMZZcfpHVr3OcDwgHlMcJ9R2rE5rRk9vrvYQT1p7A9+4+PtPD3W919x0JrSebEW6b5PJm7J/LZ4QWoHaJ+VzN3beK05jl7qe6+/qEbfF2q8LXVWRCpOJ9L3vZLybs/78n3ILYi3ALp0v8jMWYZhBaPQ4jtIjc99MEq75eKtqOMsnqyonP50oYcvmMcAWd3G5Wcffrcn3Y3R90911jLB5jzown33F6g6xulR2nq3pcm0nYp5Pzne84XZX9/6dh43mlI+E4vQFwF3AW4dbdGoTWwqoep/MuX3d/xt33Jpyw343TgcqPK7mmc1rWdNq4e108yp29DjMtb1/k/nhu7r7Y3a909y0JdWEHAsfl+Gh1zgOVbb/PAe3NbDtCIvRg7P4lIcnbKjHc6u7+08WnmXUgtBD/X3XmM1tlT4H90szON7OO8X2nGOir8SODgQvMbMf4lMAmcYOcQMguLzSzlmbWAziIULeTy0Rgnpn92cJ3CzQ3s66W43F7D4/0jQKuMLOVY1aea0VlPlsG/M3MVo2x/ZFw1ZexNnBOjPNIwlXmU4SF24qYcJnZ/oT7sVXxJLCZmR0bx9vSzLqbWUVXsDnFK/FngFfc/aIcHxkGnGxmW5rZGoT7y0PjsC0JxYMLCc2OyRY5zKwrIbM+292fqCSUKq+j6nL3zwjNr9eaWWsz24Zw9V2V75OYSDjYXmdmq8ThfxP7fQF0tPDodi7DgRPNbLuYKF5DqJP5uAazUQZcbGa/iPvL2Vkx5l12ZnaMmbWP6+fbOMwK6yrLlWa2kpntRjhQjYjdVyVcSf9gZjsRTv4/iQnPMuBGEif6uG3+Km4vCwg1B/mm/xSh9uhnYsvJs8CNZraamTUzs43NbPc4nSMzxxJCS5Lnmo6ZbRXXSXMLTyzeSDgZvlPBMjkm7gMrE75i4ZG4/69KSMq+IiQh1+QYdhihdWprwrElE0dV10ve7cjd58TYj4nzcxK5k5FcMq1T+8ZhW1v4fqmO2R80s83NbI84/R8I+3wm1sHA1Wa2aTxOb2NmaxHW5WZm9nsza2FmvQgJ8JN54qnycc3dPyEUkF8Rt9VfE84BP1PF/X9HMzssXuicS1inrxJuVTnhOI2ZncjyC/TK5F2+ZraOmfW0kMwuIrS0Z5ZnZceVbHcQjg1bxRhXj+eaujAcOM/MNoz7yjWEhwuq1SJuZiVmtrWFJ7LnEi4gcm3r1TkPVLj9uvtiwrHr74Tbz8/F7ssIyebNZrZ2jK+DhSeeM3YHXnT3Wj2RXlkL0DzCPb8JZraAsMG9BZwfAx1BeErgwfjZRwkFxD8SNvb9Cdnc7cBxsQXpZ+KB6kBC8dtHcZjBhCu2XM6K/WYRDuTDyf9o/tmEg/qHwMsx1iGJ/hMI9x+/jPNyhLt/FZtjzyGc2L4hnEwezzON7PmZR0iWjmJ5Ief1hISqug4lFJmfaMu/E2W+mXWO03oa6A+UEwoWPwEuj8NmMvl9CN+bkBl2t9j/fEKz4t2JfjkfTa/BOqquowlX558TClEv9/DocIViXAcRaiA+JbR09Yq9XyS0kM0ysy9zDPs80I/Q0jeTcGI6qobxX0lY9h8RkoBkS0Jly24/YJqZzQf+QSgEXJhnOrMI2+PnhOL50xP71RnAVWY2j1CkWJZj+GGEE33y5LIa4YDzTZyHr8j/dQhPAL+05bdXsh1HuHh4O47vEZY3eXcnHEvmE/alP7j7hznGsQ7hdt1cwn7bBTgwHjDzuY+Q+M8i1DudE7sPi/M0I8b0ao5h/0W4iv6Xr3jLpkrrpQrb0amEFrWvCAXFVbryj4lBT8IthjmEK+o/kfu43YpQiP8lYRmsTajNgFA0X0bYLucSapbaxFbiAwnHga8ISeCB7v6zfSXGU93jWm9C7cZXhDrNh8l/nK5s/3+MsF9/Q2ipOyy2WrxNSJDHExKTrQlPOVWqkuXbjHCx/DnhltXuQKalq8LjSo7p/IuwnB6ycBv2LcK5sS4MIWz7YwnHlh9Y8eKrqtYl7KtzCRca/yFxDMuoznmgitvvg4TW2RFZSdufCcXdr8Zl9jyhvimjNyGxzMnMLjGzf1c0wxCLf4udmV0PrOvux6cdi0h9sdCSer+HeryajuM4oE+8VVLTcfQhPFhwbk3HUZfMbAxhudT4yxLN7APCbYpKk26pGTN7mPCwx+WVflgkj9hCeKe7/7q24yrKr6+3cNtrJcJTTd0JzaVF/UVpIvUt3h46g9AiW2PuPqhuIioMZnY44TbKi2nH0pjE2yJfE1oK9iG0BuSsXxKpKg/fBF3r5AeKNAEi3NcfTqiA/4LQBPpYhUOINGHx/vkoQlPyg5V8vMmIrUdbEr76oqK6K6m+dQnb3FqEW9N93f2/6YYkslyjuAUmIiIiUh36bRcRERFpcor1FphUQ7t27bxLly5phyEiUlRee+21L909+wv4pJFQAtQEdOnShcmTJ6cdhohIUTGz7G/KlkZEt8BERESkyVECJCIiIk2OEiARERFpcpQAiYiISJOjBEhERESaHCVAIiLSePTvD+XlK3YrLw/dRRKUAImIFDKd0Kune3coLV2+zMrLw/vu3dONSwqOvgdIRKSQxRP6sofK+KBzCSu9Uk6HP5by2Q1lzJ8K7sv/li1b8X1j75a7ewmd9y+j9MBSJu7Ql9++PZDmj5RBSUnaa1IKjBIgEZEC9s12JTx/ZBl77lPK8GV96ctA9qaMMSfrhJ5fCZ/Rl8tevpqZp/RjPSU/koMSIBGRAjRlCgwYAA88AAsXljCkY18um341bx3Wj9NLSzijGZit+NdM3UK3MeVQOhD69mO9gQPh9yVqAZKfUQIkIlIgfvwRHnkkJD7jxkGbNtC7N/x5p3I2uWQg9OtH14ED6XqWTuh5ZWp+yuJtr5KSFd+LRCqCFhFJ2fTp0K8fdOoUEp7Zs+Gmm2DGDLjr9+Vsckk8gV91VfifLPKVFU2atGKyU1IS3k+alG5cUnDM3dOOQepZt27dXD+GKlJY3EMOM2AAPPZYKOY98EA480zYe+9wKwcIT3t1775i60V5eTihX3hhKrE3FWb2mrt3SzsOqR9KgJoAJUAihWPuXBg2DG6/Hd55B9ZaC04+GU4/HTbcMO3oJEkJUOOmGiARkQYwbVpIeoYNg/nzQ6PO0KHQqxe0bp12dCJNjxIgEZF6snhxuL01YACMGQOtWsFRR4XbXPpePpF0KQESEaljs2bBoEFw553w+eewwQZw3XXhVle7dmlHJyKgBEhEpE64wyuvhNaekSND68+++8Idd8ABB0Dz5mlHKCJJSoBERGphwYLwZYUDBsCbb8Lqq8NZZ0HfvrDppmlHJyL5KAESEamB994LRc333APffQfbbhtue/3+97DKKmlHJyKVUQIkIlJFS5fC6NGhtefZZ6FlSzjiiFDUvMsu4acYRKQ4KAESEanEnDlw992hnueTT6BDh/ClzKeeCuuum3Z0IlITSoBERPKYODG09jz8MCxaFL6M+cYboWdPaKGjp0hR02+BFSgz62Rm5Wb2tplNM7M/ZPU/38zczPRQrUgdWrgwfEFh9+7wq1/BqFFwyinhiwxffBEOP1zJj0hjoN24cC0Bznf3181sVeA1M3vO3d82s07APsCn6YYo0nh89FG4xTV4MHz9NWyxBdx2Gxx7LKy2WtrRiUhdUwJUoNx9JjAzvp5nZu8AHYC3gZuBC4HH0otQpPgtWxaKmQcMCMXNzZrBIYeEouYePVTULNKYKQEqAmbWBdgemGBmPYEZ7v6G6egsUiPffBMeXx84EN5/H9ZZBy69FPr0gY4d045ORBqCEqACZ2ZtgZHAuYTbYpcQbn9VNlwfoA9A586d6zFCkeIxZUpo7XnggVDr85vfhKe5Dj8cVlop7ehEpCEpASpgZtaSkPw84O6jzGxrYEMg0/rTEXjdzHZy91nJYd19EDAIoFu3bt6wkYsUjh9/hEceCYnPuHGw8spwzDHhNte226YdnYikRQlQgbKQ4dwNvOPuNwG4+1Rg7cRnPga6ufuXqQQpUsCmTw8/RjpoEMyeHX6W4uab4YQTYI010o5ORNKmBKhw/QY4FphqZlNit0vc/an0QhIpbO5QXh5aex57LBQ5H3hgaO3Ze+9Q5CwiAkqACpa7vwxUWOXs7l0aJhqRwjZ3LgwbFn6b6513YK214IIL4PTToUuXtKMTkUKkBEhEita0aSHpGTYM5s8PX154771QWgqtW6cdnYgUMiVAIlJUFi8Ot7cGDIAxY6BVKzjqqHCbq3v3tKMTkWKhBEhEisKsWaGg+c474fPPw62t66+Hk06CdvpBGBGpJiVAIlKw3OGVV0Jrz8iRofVn333DT1YccAA0b552hCJSrJQAiUjBWbAgfFnhgAHw5pvhsfWzzoK+fcPj7CIitaWHQkWkYfXvH55VTyovh/79ee89OO886NABTjstPLZ+110wYwbcdJOSHxGpO0qARKRhde8eHtOKSdDS58tZdEgpF47ozmabhVafAw6Al1+G11+HU04J394sIlKXdAtMRBpWSQmUlbHsyFLGb9uXX44ZyBHLynh/VglXXw2nnhp+nFREpD4pARKRBvfhBiU8bX0548Wrua9LP86+sYSDD4YWOiKJSAPRLTARaVAvvQR/3L6c0q8G8vGx/Th2/kAO+0W5kh8RaVBKgESkwdx7L1xVUs6QBaUsGlZGl2FXQVnZCjVBIiINQQmQiNS7Zcvg4ovDL7EfueEkWo4qo8MxJaFnrAli0qRUYxSRpkWNziJSrxYsgOOOg1GjwqPtJ/7zQlq2zPpQSUn4ExFpIEqARKTezJgBBx8MU6bALbfAOeeAWdpRiYgoARKRevLaayH5mTcPnnwS9t8/7YhERJZTDZCI1LmRI2G33aBlSxg3TsmPiBQeJUAiUmfc4Zpr4IgjYPvtYeJE6No17ahERH5Ot8BEpE4sWhS+xfm++6B3bxg8GFq3TjsqEZHc1AIkIrU2Zw7suWdIfq6+OvxX8iMihUwtQCJSK9OmwUEHwcyZ4et8jjwy7YhERCqnBEhEauzpp6FXr/Br7WPHhh96FxEpBroFJiI1cttt8LvfwUYbhWJnJT8iUkyUAIlItSxeDGeeCWefHW59vfQSdOqUdlQiItWjBEhEquzbb0Orz+23w4UXhp+3aNs27ahERKpPNUAiUiUffAAHHhj+33NP+GFTEZFipQRIRCo1diwcdlj4osPnn4ff/jbtiEREake3wESkQkOHwl57Qfv2odhZyY+INAZKgAqUmXUys3Ize9vMppnZH2L3v5vZu2b2ppn9y8zWSDlUaaSWLYOLLoITT4QePWD8eNh447SjEhGpG0qACtcS4Hx33xLYGTjTzLYEngO6uvs2wP+Ai1OMURqpBQvg8MPh+uuhb18YPRrWWCPtqERE6o5qgAqUu88EZsbX88zsHaCDuz+b+NirwBFpxCeN1/TpcPDB8MYbcOutcNZZYJZ2VCIidUsJUBEwsy7A9sCErF4nAQ/nGaYP0Aegc+fO9RmeNCKTJkHPnjB/Pjz5JOy/f9oRiYjUD90CK3Bm1hYYCZzr7nMT3f9CuE32QK7h3H2Qu3dz927t27dvmGClqI0YEQqcW7WCceOU/IhI46YEqICZWUtC8vOAu49KdD8BOBDo7e6eUnjSSLjDX/8KpaWwww4wYQJ07Zp2VCIi9Uu3wAqUmRlwN/COu9+U6L4fcCGwu7t/n1Z80jj88AOccgo88AAccwzcdRe0bp12VCIi9U8JUOH6DXAsMNXMpsRulwC3Aq2A50KOxKvufnoqEUpRmz0bDj003O7629/g4otV7CwiTYcSoALl7i8DuU5HTzV0LNL4vPVW+CHTL74ItT9H6FlCEWliVAMk0sT8+9+wyy6waFH4iQslPyLSFCkBEmki3OEf/wg/aLrJJuFnLbp1SzsqEZF0KAESaQIWL4YzzoBzzw1fcvjSS9CxY9pRiYikRwmQSCP3zTfhO33uuCP8ttfIkbDKKmlHJSKSLhVBizRi778fbnl9+CHccw+ccELaEYmIFAYlQCKN1H/+A4cdFh5tf/758C3PIiIS6BaYSCM0ZAjsvTesvXb4ZmclPyIiK1ICJNKILF0KF14IJ58MJSUwfjxsvHHaUYmIFB7dAhNpJObPDz9n8dhjcOaZcMst0EJ7uIhITjo8ijQCn30Wvtl56lT45z/hrLPSjkhEpLApARIpchMnQs+e8P33MHo07Ldf2hGJiBQ+1QCJFLGyMth9d2jTJtT7KPkREakaJUAiRcgdrr4aevWCHXcMT3ptuWXaUYmIFA/dAhMpMj/8EJ7yevBBOO44GDQIWrVKOyoRkeKiFiCRIvLFF7DHHiH5ueYaGDpUyY+ISE2oBUikSEydGn7WYs4ceOQROPzwtCMSESleagESKQKjR8Muu8CSJeGX3JX8iIjUjhIgkQLmDjffDAcfDJttFh5533HHtKMSESl+SoBECtTixXD66fDHP8Ihh8DYsdChQ9pRiYg0DkqARArQN9+E7/QZNAguvhhGjIBVVkk7KhGRxkNF0CIF5r33QrHzRx/BvfeGR91FRKRuKQESKSBjxsBhh0Hz5vDii7DrrmlHJCLSOOkWmEiBGDwY9t4b1l03fLOzkh8RkfqjBEgkZUuXwgUXwKmnhi85HD8eNtoo7ahERBo33QITSdG8edC7NzzxBJx1VnjkvYX2ShGReqdDrUhKPv0UDjoIpk2D226DM89MOyIRkaZDCZBICiZMgJ49YeFCeOop2GeftCMSEWlaVANUoMysk5mVm9nbZjbNzP4Qu69pZs+Z2Xvx/y/SjlWq56GHYPfdw/f6jB+v5EdEJA1KgArXEuB8d98S2Bk408y2BC4CXnD3TYEX4nspAu5w5ZVw9NGw006hFWjLLdOOSkSkaVICVKDcfaa7vx5fzwPeAToAPYF748fuBQ5JJUCploULQ7HzFVfA8cfDc89Bu3ZpRyUi0nQpASoCZtYF2B6YAKzj7jNjr1nAOnmG6WNmk81s8pw5cxomUMlp1iwoKYHhw+G66+Cee6BVq7SjEhFp2pQAFTgzawuMBM5197nJfu7ugOcazt0HuXs3d+/Wvn37BohUcnnzzXC7a+pUGDUK/vxnMEs7KhERUQJUwMysJSH5ecDdR8XOX5jZerH/esDstOKTij3xBOyyS/iiw5degkMPTTsiERHJUAJUoMzMgLuBd9z9pkSvx4Hj4+vjgccaOjapmDvcdFN4zP2Xv4SJE2GHHdKOSkREkpQAFa7fAMcCe5jZlPh3AHAdsLeZvQfsFd9Lmvr3h/JyAH78Efr0gSfOL+ferfozdix06JByfCIi8jP6IsQC5e4vA/mqRfZsyFikEt27Q2kpcweXccg/SvDycp5sU0qbW8potnLawYmISC5KgERqq6SEpcPLWLZ/KXsu68v5qw6k9WNl4dEvEREpSEqAROrAZeUltFrSl8u4Gs7tp+RHRKTAqQZIpJaeeQbGXVPOea0HQr9+MHDgTzVBIiJSmJQAidTCjBkwsLSckc1LWelfZXDVVVBWBqWlSoJERAqYEiCRGlqyJPyuV9eFk5h/dxmt9ou3vUpKQhI0aVK6AYqISF6qARKpocsvD19weNr9F9K5d1bPkhLVAYmIFDC1AInUwDPPwDXXwCmnhB85FRGR4qIESKSaZsyAY46BrbeGW29NOxoREakJJUAi1ZCp+1m4MJT5tGmTdkQiIlITqgESqYZM3c/994ff+RIRkeKkFiCRKnr6adX9iIg0FkqARKpg+nQ49ljV/YiINBZKgEQqkaz7GTFCdT8iIo2BaoBEKnHZZfDyy6HuZ/PN045GRETqglqARCrw9NNw7bVw6qmq+xERaUyUAInkkaz7+cc/0o5GRETqkhIgkRxU9yMi0ripBkgkB9X9iIg0bmoBEsmiuh8RkcZPCZBIgup+RESaBiVAIpHqfkREmg7VAIlEqvsREWk61AIkgup+RESaGiVA0uSp7kdEpOlRAiRNWqbu54cfVPcjItKUqAZImrR+/ULdz4MPqu5HRKQpUQtQgTKzIWY228zeSnTbzsxeNbMpZjbZzHZKM8Zi9+9/w3XXQZ8+oRVIRESaDiVAhWsosF9Wt/7Ale6+HXBZfC81kKn72WYbuOWWtKMREZGGpgSoQLn7WODr7M7AavH16sDnDRpUI7FkCRx1FCxaBGVlqvsREWmKVANUXM4FnjGzGwjJ6y75PmhmfYA+AJ07d26Q4IpFv37wyiuq+xERacrUAlRc+gLnuXsn4Dzg7nwfdPdB7t7N3bu1b9++wQIsdKr7ERERUAJUbI4HRsXXIwAVQVeD6n5ERCRDCVBx+RzYPb7eA3gvxViKiup+REQkSTVABcrMhgM9gHZmNh24HDgV+IeZtQB+INb4SOVU9yMiIklKgAqUu+erUNmxQQNpBFT3IyIi2XQLTBo11f2IiEguSoCk0VLdj4iI5KNbYNJoqe5HRETyUQuQNEqq+xERkYooAZJGJ1P3s+22qvsREZHclABJo7J4sep+RESkcqoBkkYlWfez2WZpRyMiIoVKLUDSaDz1FFx/PZx2mup+RESkYkqApFH47DM47rhQ93PzzWlHIyIihU4JkBQ91f2IiEh1qQZIil6/fjBunOp+RESk6tQCJEVNdT8iIlITSoCkaKnuR0REakoJkBQl1f2IiEhtqAZIipLqfkREpDbUAiRFR3U/IiJSW0qApKio7kdEROqCEiApGsm6nxEjVPcjIiI1pxogKRqZup/hw2HTTdOORkREiplagKQojB4d6n5OPz20AomIiNSGEiApeKr7ERGRuqYESApapu7nxx9D3U/r1mlHJCIijYFqgKSgXXqp6n5ERKTuqQVICtbo0dC/v+p+RESk7ikBkoKkuh8REalPSoCk4KjuR0RE6ptqgKTgqO5HRETqm1qACpSZDTGz2Wb2Vlb3s83sXTObZmb904qvvqjuR0REGoISoMI1FNgv2cHMSoCewLbuvhVwQwpx1RvV/YiISENRAlSg3H0s8HVW577Ade6+KH5mdoMHVk9U9yMiIg1JCVBx2QzYzcwmmNl/zKx7vg+aWR8zm2xmk+fMmdOAIdZMpu5n8GDV/YiISP1TAlRcWgBrAjsDfwLKzMxyfdDdB7l7N3fv1r59+4aMsdoydT99+0KvXmlHIyIiTYESoOIyHRjlwURgGdAu5ZhqJVP3s912cNNNaUcjIiJNhRKg4vIoUAJgZpsBKwFfphlQbWTqfhYvhrIy1f2IiEjD0fcAFSgzGw70ANqZ2XTgcmAIMCQ+Gv8jcLy7e3pR1s5f/hLqfh56SHU/IiLSsJQAFSh3PzpPr2MaNJB68uST8Pe/q+5HRETSoVtg0uA+/RSOP151PyIikh4lQNKgVPcjIiKFQLfApEH95S8wfrzqfkREJF1qAZIGo7ofEREpFEqApEGo7kdERAqJEiCpd6r7ERGRQqMaIKl3qvsREZFCoxYgqVeq+xERkUKkBEjqTabuZ/vtVfcjIiKFRQmQ1AvV/YiISCFTDZDUi0zdz8MPwyabpB2NiIjIitQCJHUuU/dzxhlQWpp2NCIiIj+nBEjqVLLu58Yb045GREQkNyVAUmcWLw5PeqnuR0RECp1qgKTOXHIJvPqq6n5ERKTwqQVI6sQTT8ANN6juR0REioMSIKk11f2IiEixUQIktZKp+1myRHU/IiJSPFQDJLWiuh8RESlGagGSGlPdj4iIFCslQFIjqvsREZFipgRIqk11PyIiUuxUAyTVlqn7KStT3Y+IiBQntQBJtWTqfs48E448Mu1oREREakYJkFRZpu5nhx1CEiQiIlKslABJlWTqfpYuVd2PiIgUPyVABcrMhpjZbDN7K0e/883MzaxdQ8WTqfsZPBg23rihpioiIlI/lAAVrqHAftkdzawTsA/waUMForofERFpbJQAFSh3Hwt8naPXzcCFgNfbxPv3h/JyAD75JNT99Nm0nJvX619vkxQREWlISoCKiJn1BGa4+xtV+GwfM5tsZpPnzJlTvQl17w6lpSx+tpxevWCXReXc/mUpLXfpXsPIRURECosSoCJhZisDlwCXVeXz7j7I3bu5e7f27dtXb2IlJVBWxqJDSjlgwmWMbF5K85FlobuIiEgjoASoeGwMbAi8YWYfAx2B181s3XqZWkkJ7/Toy2VcTatz+yr5ERGRRkUJUJFw96nuvra7d3H3LsB0YAd3n1UvEywvp/ukgdCvHwwc+FNNkIiISGOgBKhAmdlwYDywuZlNN7OTG2zi5eXh593LyuCqq8L/0lIlQSIi0mjot8AKlLsfXUn/LvU28UmTQtKTue0Va4KYNEm3wkREpFEw9/p7mloKQ7du3Xzy5MlphyEiUlTM7DV375Z2HFI/dAtMREREmhwlQCIiItLkKAESERGRJkcJkIiIiDQ5SoBERESkydFTYE2Amc0BPqnh4O2AL+swnMZOy6t6tLyqR8uremq7vDZw92r+lpAUCyVAUiEzm6zHQKtOy6t6tLyqR8urerS8pCK6BSYiIiJNjhIgERERaXKUAEllBqUdQJHR8qoeLa/q0fKqHi0vyUs1QCIiItLkqAVIREREmhwlQCIiItLkKAEqMmbmZnZj4v0FZnZFNcfRw8x2SbwfamZHVGG4+YnXB5jZ/8xsg+pMuxiY2VIzm5L4uyjP564ys73i63PNbOWGjbTwJbeZYmdmayW2iVlmNiPxfqVKhu1iZm81YKzrm9kjFfRfw8zOaKh4KhOPa/cn3rcwszlm9mSacUnj1iLtAKTaFgGHmdm17l7tL/gysxZAD2A+MK4mAZjZnsCtwL7uXukXLJqZEerNltVkeilY6O7bVfQBM2vu7pclOp0L3A98n+ezS+s0wiJmZi3cfUnacVSXu38FbAcQLzrmu/sNlQ0X97kG5e6fAxVd1KwBnAHc3iABVW4B0NXM2rj7QmBvYEbKMVWoWLdjWU4tQMVnCeHJhvOye8SrzBfN7E0ze8HMOsfuQ83sDjObAJQBpwPnxSvX3eLgvzWzcWb2YUWtQWb2W+Au4EB3/yB2+6OZvRX/zk3E8n9mNgx4C+hkZn8ys0kxvisT43zUzF4zs2lm1qcOllG9MLOPzex6M3sdODLTcmZm5wDrA+VmVh4/O9/MbjSzN4Bfm9kxZjYxLvM7zax5/NxAM5sc5/3K/FMvbrHV8SUzexx4O3bLud7jsvubmb1hZq+a2TqpBV6J7NbTTItXrvlNfGYjM/uvmXU3sxPicngubl9nxf3pv3He14zDbGxmT8fl9ZKZ/TIx/Vuz991ki5OZbZXY9t40s02B64CNY7e/m1nbeMx43cymmlnPxHjeMbO74np61sza1NPifAr4XXx9NDA8xtDMzN4zs/aJ9++bWXszO8jMJsTl9XxmWzGzK8xsiJmNicvlnMT8vBuX2//M7AEz28vMXonT2Cl+biczGx/HO87MNo/dTzCzx83sReCFeloO0lDcXX9F9EdouVkN+BhYHbgAuCL2ewI4Pr4+CXg0vh4KPAk0j++vAC5IjHMoMIKQEG8JvJ9n2ouBr4FtEt12BKYCqwBtgWnA9kAXYBmwc/zcPoTEzeJ0ngR+G/utGf+3ISRLa6W8jJcCUxJ/vWL3j4ELs5bbEYl+7RL9HCiNr7eI66ZlfH87cFzWvDcHxiSXbWP4I7SSQGh1XABsmOiXc73HZXdQfN0fuDTt+cgxX1fEfe+nbaCi+Y37w1vA5sB/gW1j9xOA94FVgfbAd8Dpsd/NwLnx9QvApvH1r4AXE9vgz/bdzPTi638CvePrleLy/ql/7N4CWC2+bhdjsvi5JcB2sV8ZcEx9bCfANsAjQOu43/UAnoz9L08si32AkfH1L1j+NPMpwI2J9TMOaBXn5yugZWJ+to7L7DVgSJzXniw/Zq4GtIiv90pM7wRgOnHb1V9x/+kWWBFy97mxZeUcYGGi16+Bw+Lr+wgnj4wRXvFtmEc93KJ6u4Ir7sWEg8rJwB9it12Bf7n7AgAzGwXsBjwOfOLur8bP7RP//hvftwU2BcYC55jZobF7p9j9qwpirW8V3QJ7uIrjWAqMjK/3JCSKk8wMwgloduxXGls/WgDrEU5ib9Yg5mIw0d0/SrzPt95/JCTIEE5QezdciHUqe37bA48Bh7l7slWo3N3nAfPM7DtCsgzhwmIbM2sL7AKMiNsPhBN7RmX77njgL2bWERjl7u8lxpNhwDUWWniXAR2AzLg+cvcp8fVrhCSizrn7m2bWhdD681RW7yGEZXcL4eLunti9I/Cwma1HSO6Sy3u0uy8CFpnZbFacn6kAZjYNeMHd3cymsnzeVgfuja1lTkieMp5z969rObtSAHQLrHjdQkhEVqni5xdU0n9R4vXPjo7RMqAU2MnMLqnmNA241t23i3+buPvdZtaDcIX1a3fflpAgta7CuNNS2XLM+CGRcBpwb2LeN3f3K8xsQ0Irwp7uvg0wmsKe99r6adlVst4Xu3vmC8qWUti1ikuIx1Eza0Y4CWdkbyvfAZ8SLhqSkvvessT7ZYR5bwZ8m9h+tnP3LfIM/7N9190fBA4mXCw9ZWZ75JiP3oQEbceY/H/B8vWRHH99r4/HgRuIt78y3P0z4IsY+07Av2OvfwK3ufvWwGmsuP/ki7uy5Q1wNSEx7QoclDXeqh4DpMApASpS8QqkjJAEZYwDjoqvewMv5Rl8HqHJvSbT/Z5wn763mZ0cp3GIma1sZqsAh+aZ7jPASfFqFjPrYGZrE660vnH372Ndw841iasAVLRMXwCOiPOLma1p4em51QgH0+/ilfv+DRJpYWgs6/1jQusehCSjZf6P8iNh/zjOzH5f1Qm4+1zgIzM7EsJDBWa2bVWHN7ONgA/d/VZCK8o2/Hx7XR2Y7e6LzawESOvpziHAlZkWmiyDCQ8aJFuzV2d5sfTxdRhHcrwn1OF4pYAoASpuNxLub2ecDZxoZm8Cx7L8NlW2J4BDbcUi6CqLydd+wKWEJuihwERgAjDY3f+bY5hngQeB8bGp+RHCAfhpoIWZvUMozHw1e9gUtLEVH4O/rgrDDAKetlgEnRRvd1wKPBvXzXPAeu7+BqHl413Csnml7mah4BXieq+Ju4DdLRa7U0nrQLxVfCDhIYSDqzGd3sDJcTrTCPUqVVUKvGVmU4CuwDAPT7S9YuHBhb8DDwDd4r55HGGbbHDuPj0mark8Trh1fk+i2xWEW4OvAdV+KrYC/YFrzey/FHYLpNSCfgpDREQKnpl1A25292pftInkosxWREQKmoUvI+1LaAkTqRNqARIREZEmRzVAIiIi0uQoARIREZEmRwmQiIiINDlKgERERKTJUQIkIiIiTc7/AymgmoWW/CSLAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "gscoretop5 = df.sort_values(by=[\"Global Score\"])\n", + "gscoretop5 = gscoretop5.head(5)\n", + "print(\"Score global en fonction des pays (les 5 pays où le score global est le moins élevé) :\")\n", + "plt.figure()\n", + "plt.plot(gscoretop5[\"Country\"],gscoretop5[\"Global Score\"],'b')\n", + "plt.plot(gscoretop5[\"Country\"],gscoretop5[\"Global Score\"],'rx')\n", + "plt.title(\"Score global en 2022 en fonction des pays (les 5 pays où le score global est le moins élevé) :\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Score global en fonction des pays (les 5 pays où le score global est le moins élevé) :\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD4CAYAAADlwTGnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlsklEQVR4nO3de7xVc/7H8denUi6RSzFC02hyDc04MS5Dx12DGOaMNC6j+UUuUVMuIeQyESIRjUwM4oRcE2kO0bicU7qRSxIKU0JJ6fr5/fFdaXfsc917n7X32e/n43Eee133+ux19v5+1ve71vouc3dERCT/NIg7ABERiYcSgIhInlICEBHJU0oAIiJ5SglARCRPNYo7gGSaN2/urVu3jjsMEZGcMXny5K/dvUVN1snKBNC6dWvKysriDkNEJGeY2ac1XUdNQCIieUoJQEQkTykBiIjkKSUAEZE8pQQgIpKnlABEROJ0881QUrLhtJKSMD3DlABEROLUoQMUFa1PAiUlYbxDh4xvOivvAxARyRuFhax8qBg/sYjJHXpw4LRhUFwMhYUZ37RqACIiMVi7Fl57Dc45B7Y7tZCblvTgwAnXsaZ7jzop/EE1ABGROjVrFjz0EDz8MHz6KWy2GVxxYAl/f3sYay+4iob3DoMjCuskCSgBiIhk2JdfwqOPhoJ/yhRo0ACOOgpuvBFO2rKETc4sgjFRs8/hheEcQB00A6kJSEQkA5YuhX//G44+GnbcEXr3DgX/7bfDF1/ACy/AaafBJjNLNyzsCwvDeGlpxmO0bHwmcEFBgaszOBHJNatXw/jx4Uj/qadg2TJo3Rr+8hfo2hV22y1z2zazye5eUJN11AQkIpICdygrC4X+o4/CggWw1VZwxhmh4D/wQDCLO8rklABERGrhk0/CidyHHoIPPoAmTeD440Ohf+yx0Lhx3BFWTQlARKSaFi2C0aNDoT9pUpjWsSP07QsnnwxbbhlndDWnBCAiUokff4TnnguF/tixsGoV7LknDBwIXbpAq1ZxR1h7SgAiIuWsXQsTJ4ZC//HHYfFi2H576NkzNPHss0/2tuvXRJUJwMzuB44DFrh7u2jaY8Cu0SJbAt+5e/sk684FvgfWAKtreoZaRKQuzZwZCv1HHoHPP4emTUPTzl/+Eq7ObNgw7gjTqzo1gJHAUODBdRPc/c/rhs3sVmBxJesXuvvXtQ1QRCST5s+HUaNCwT9tWijkjzkmdMZ5wgmw6aZxR5g5VSYAd59oZq2TzTMzA4qAw9Icl4hIxixZAmPGhEJ/woRwKef++8Odd4abcLfdNu4I60aq5wB+D/zP3T+qYL4DL5mZA/e6+/CK3sjMugPdAVrl8lkVEclKq1bBSy+FQv/pp2H5cmjTBvr3DzdptW0bd4R1L9UE0AUYVcn8g919vpltC4w3s/fdfWKyBaPkMBzCncApxiUigju8/fb6m7S+/hq22QbOPju06++/f/04mVtbtU4AZtYI+COwb0XLuPv86HWBmY0B9gOSJgARkXSZPXv9TVqzZ8PGG4f2/NNPD52w5cJNWnUhlRrAEcD77j4v2Uwz2wxo4O7fR8NHAQNS2J6ISIW+/hoeeywU+m++GY7sCwuhXz/44x+hWbO4I8w+1bkMdBTQEWhuZvOAq919BHAq5Zp/zKwlcJ+7dwK2A8aE88Q0Ah5x93HpDV9E8tny5fDss6HQf+GF0Bnb3nuHK3i6dAm9cErFqnMVUJcKpp+VZNoXQKdoeA6wT4rxiYhsYM0aePXV9Tdpff897LBD6G65a9eQAKR6dCewiOSE6dPX36Q1fz5ssQX86U/hZO4hh9S/m7TqghKAiGStefNCgf/QQzBjBjRqFHraHDwYjjsONtkk7ghzmxKAiGSVxYvhiSdCof/KK+FSzgMOgLvuCjdpNW8ed4T1hxKAiMRu5Up48cXwCMVnnoEVK8KNWddcE9r127SJO8L6SQlARGLhHi7XfOihcPnmokXQogV07x7a9Tt0yO+btOqCEoCI1KkPP1x/k9acOaEd/8QTQ6F/5JGw0UZxR5g/lABEJL1uvjkcvhcW/jTp2ydLeO+BUnp/dQlvvw0NGsDhh8PVV8NJJ8Hmm8cYbx5TAhCRtHGHFXt1oPGfilhwZzElFDL9jhJ6v1XElRSzsj3ccku4Satly7ijFSUAkTziHu6e/eEHWLYsvKZ7GArpSDHFpxXxET3o02AYT3Yp5s5+hbRrF/cekERKACJVSdKkQUkJlJbCJZekdVOJBXQmCulQQNfMxhvDZpuFv003XT+8zTbhebjlp4fhQua/1IP+z16H97uK/7uusOoNSZ1TAhCpSocO4QL04mK8YyErxpXQ+PTQxPHNe7laQFdveNNNQ3t9jZWUwLXD4KqrsGHD4LDCDROoZAUlAJGqFBbyzuXFtD6qiDtX96AHwyiimFdOq16BlpUFdCaVlPyUMCmMCv7EcckaSgAilZg9G/r2haeeKuT2LXrQf8l1TDrsKk4+qZAzcrWAzrTS0g0L+8LCMF5aqgSQZcw9+x6+VVBQ4GVlZXGHIXnsu+/g+uthyBBo0gTu+XMJpz1dhPXoAcOG6WhWso6ZTXb3gpqsk2/HJiKVWr06lO9t28Jtt4UnSM39Vwldny7CiothwIBQ+BcVhaYOkRymBCASefFFaN8ezjsP2rWDyZNhxAjYZk4lTRoiOUxNQJL3Zs2CPn1g7NjQ6dgtt0DnzuqHRnJLRpqAzOx+M1tgZjMTpl1jZvPNbGr016mCdY8xsw/MbLaZXVaTwEQybdEiuPBC2GsveP11GDQI3n039Eujwl/yQXWagEYCxySZPtjd20d/Y8vPNLOGwF3AscAeQBcz2yOVYEXSYeVKuP12+PWv4e67Q++Ts2eHWkCTJnFHJ1J3qkwA7j4R+KYW770fMNvd57j7SuBRoHMt3kckLdzDA8T32gt69YL99oNp00ISaNEi7uhE6l4qJ4EvMLPpURPRVknm7wB8njA+L5qWlJl1N7MyMytbuHBhCmGJ/Nz06aGr4RNOCM07zz8P48ahvmkkr9U2AQwD2gDtgS+BW1MNxN2Hu3uBuxe00OGYpMmCBXDOOfCb38A774Tr+mfMgE6d1M4vUqs7gd39f+uGzeyfwHNJFpsP7JQwvmM0TSTjVqyAO+4IN3MtXx5O9vbvD1tvHXdkItmjVjUAM9s+YfQkYGaSxUqBtmb2KzNrDJwKPFOb7YlUl3t4oPjuu8Oll8Khh8LMmeGkrwp/kQ1VWQMws1FAR6C5mc0DrgY6mll7wIG5wDnRsi2B+9y9k7uvNrMLgBeBhsD97v5uJj6ECIQbt3r3hokTQ9v++PFwxBFxRyWSvapMAO7eJcnkERUs+wXQKWF8LPCzS0RF0umLL+CKK+CBB6B5c7jnHujWDRqpq0ORSuknIjlr2TK49Va46SZYtSr02tmvHzRrFndkIrlBCUByjjuMGgWXXQaffw4nnxwe2rXzznFHJpJb1Bmc5JQ334QDD4SuXUNzzyuvwOOPq/AXqQ0lAMkJn30WCv0DDoC5c+Ff/4KysnCVj4jUjpqAJKstXRra+G+5JYxfeWW4vLNp03jjEqkPlAAkK61dCw8+GE7qfvkldOkCAweGZ+iKSHooAUjWmTgxdNY2ZQrsvz88+ST87ndxRyVS/+gcgGSNOXPglFNCu/7ChfDww/DGGyr8RTJFCUBit2RJaNfffXd44YXw2N3334fTTlOHbSKZpCYgic2aNeGZu1deGY74zzoLbrgBWraMOzKR/KAEILF4+eXQb8+MGfD734cj/333jTsqkfyiJiCpUx9+GB7KcuSR4RLPxx+HV19V4S8SByUAqRPffhuu7Nlzz3D37k03wXvvhW4c1M4vEg81AUlGrVoVeue85hr47jv429/CSd7ttos7MhFRDUAywh3GjoW994aePdc/kvHee1X4i2QLJQBJu3ffhWOOgT/8IdzR+8wz4eEse+8dd2QikkgJQNJm4UI477xQ0L/9NgweHK7yOf54tfOLZCOdA5CUrVwJd94J110Xruw5/3y4+mrYZpu4IxORylRZAzCz+81sgZnNTJg2yMzeN7PpZjbGzLasYN25ZjbDzKaaWVka45Ys4A5PPQV77AF9+sBBB4Uj/iFDVPiL5ILqNAGNBI4pN2080M7d9wY+BC6vZP1Cd2/v7gW1C1Gy0dSpcNhhcNJJ0KQJjBsHzz8funMQkdxQZQJw94nAN+WmveTuq6PRN4EdMxCbZKGvvgqXcv72t+Fo/+67Ydo0OProuCMTkZpKx0ngs4EXKpjnwEtmNtnMulf2JmbW3czKzKxs4cKFaQhL0unHH+Ef/4C2bUM//b17w+zZ0KMHNNKZJJGclNJP18yuAFYDD1ewyMHuPt/MtgXGm9n7UY3iZ9x9ODAcoKCgwFOJS9LHHYqLQ2+dn34KJ54IgwbBr38dd2Qikqpa1wDM7CzgOKCruyctsN19fvS6ABgD7Ffb7UndKy0NHbWdeipstRX85z8wZowKf5H6olYJwMyOAS4BTnD3ZRUss5mZbb5uGDgKmJlsWcku8+bB6afDfvuFZp777gsPYC8sjDsyEUmn6lwGOgp4A9jVzOaZWTdgKLA5oVlnqpndEy3b0szGRqtuB7xuZtOAt4Hn3X1cRj6FpMUPP4Q+e3bZBUaPhssvh48+gm7doGHDuKMTkXSr8hyAu3dJMnlEBct+AXSKhucA+6QUnWTGzTdDhw4/HdKvXQsvX1FC6d2lXLvkEv785/AA9tat4w1TRDJLXUHkow4doKgISkqYNAnO36OE3wwsYt72HXj9dXj0URX+IvlAF/Dlo8JC/LFilnYqYsKPPbi+wTCmXF7MXdcX0kCHBCJ5QwkgTz29pJDpP/agP9exsu9VHHmjzvCK5Bsd7+WhpUvhkf8r4YKGw1jT7yoajxgGJSVxhyUidUwJIA891K2Eu74u4ovBxTS8YUC40ys6JyAi+UMJIM/MmAFzR5fyQKdi2l0YNfsUFoYkUFoab3AiUqesgpt4Y1VQUOBlZeo9Ot3WroVDDoEPPoD331eXzSL1iZlNrmmvyzoJnEdGjoRJk+D++1X4i4iagPLG11/DJZfAwQfDmWfGHY2IZAMlgDxx6aWweDEMG4au9RcRQAkgL6xr9undG9q1izsaEckWSgD13KpVcO650KoV9O8fdzQikk10Erieu+MOmDkzPLx9s83ijkZEsolqAPXYZ5+F7p2PPx46d447GhHJNkoA9dhFF4Vr/4cMiTsSEclGagKqp557LjT7qF9/EamIagD10LJlcOGFsMce0KtX3NGISLaqVgIws/vNbIGZzUyYtrWZjTezj6LXrSpY98xomY/MTLcg1YHrr4e5c8M1/40bxx2NiGSr6tYARgLHlJt2GTDB3dsCE6LxDZjZ1sDVwP7AfsDVFSUKSY9Zs+CWW8LdvoccEnc0IpLNqpUA3H0i8E25yZ2BB6LhB4ATk6x6NDDe3b9x92+B8fw8kUiauEOPHtC0KQwaFHc0IpLtUjkJvJ27fxkNfwVsl2SZHYDPE8bnRdN+xsy6A90BWrVqlUJY+evf/4ZXX4Xhw6FFi7ijEZFsl5aTwB76lE6pX2l3H+7uBe5e0EKlV4198w306QMHHADdusUdjYjkglQSwP/MbHuA6HVBkmXmAzsljO8YTZM069cvJAF19iYi1ZVKUfEMsO6qnjOBp5Ms8yJwlJltFZ38PSqaJmn01luh2adnT9hnn7ijEZFcUd3LQEcBbwC7mtk8M+sGDASONLOPgCOiccyswMzuA3D3b4DrgNLob0A0TdJk9erQ2VvLlnDttXFHIyK5pFongd29SwWzDk+ybBnwt4Tx+4H7axWdVGnoUJg6FUaPhs03jzsaEcklai3OYfPnw1VXwbHHwsknxx2NiOQaJYAc1qtXaAIaOhTM4o5GRHKNEkCOevHF0OxzxRWw885xRyMiuUgJIActXw7nnw+77gp9+8YdjYjkKnUHnYMGDoSPP4YJE6BJk7ijEZFcpRpAjvnww5AAunaFww6LOxoRyWVKADnEHc47DzbZBG69Ne5oRCTXqQkohzz6aGj2uesu2C5Z13siIjWgGkCOWLwYeveGggI455y4oxGR+kA1gBxx5ZWwYEF41m/DhnFHIyL1gWoAOaCsDO6+O7T/77tv3NGISH2hBJDl1qwJnb1tu2141q+ISLqoCSjL3XMPTJ4Mo0ZBs2ZxRyMi9YlqAFnsq6/Cg16OOAL+/Oe4oxGR+kYJIIv9/e/w44/hsk919iYi6aYEkKUmTIBHHoHLLoNddok7GhGpj5QAstCKFeGKnzZt4PLL445GROornQTOQjffHPr8GTcONt447mhEpL6qdQ3AzHY1s6kJf0vM7OJyy3Q0s8UJy/RPOeJ67uOP4YYboKgIjj467mhEpD6rdQ3A3T8A2gOYWUNgPjAmyaKvuftxtd1OPnGHCy6Axo1h8OC4oxGR+i5dTUCHAx+7+6dper+89MQTodnn9tuhZcu4oxGR+i5dJ4FPBUZVMO8AM5tmZi+Y2Z4VvYGZdTezMjMrW7hwYZrCyh3ffw8XXQTt24enfYmIZFrKCcDMGgMnAKOTzJ4C/NLd9wHuBJ6q6H3cfbi7F7h7QYsWLVINK+f07w9ffhnu/G2kU/MiUgfSUQM4Fpji7v8rP8Pdl7j70mh4LLCRmTVPwzbrlalTYciQ0M3z/vvHHY2I5It0JIAuVND8Y2a/MAv3sJrZftH2FqVhm/XG2rXQowc0bw433hh3NCKST1JqbDCzzYAjgXMSpp0L4O73AKcAPcxsNbAcONXdPZVt1jf33QdvvgkPPghbbRV3NCKSTywby+OCggIvKyuLO4yMW7AAdtsN9tkH/vMf9fcjIrVnZpPdvaAm66griBj17QtLl4aHvajwF5G6pgQQk1dfDc0+ffvC7rvHHY2I5CMlgBisXBlO/LZuDVdcEXc0IpKvdMV5DG67DWbNCg9433TTuKMRkXylGkAdmzsXBgyAk06CP/wh7mhEJJ8pAdQhd7jwQmjQAO64I+5oRCTfqQmoDj39dGj2ueUW2GmnuKMRkXynGkAdWboUevaEvfYKryIicVMNoI4MGACffw6jRsFGG8UdjYiIagB1YubM8ICXbt3goIPijkZEJFACyLB1nb01awY33RR3NCIi66kJKMNGjoTXX4cRI2CbbeKORkRkPdUAMmjRIrjkEjj4YDjrrLijERHZkBJABl16KSxeDMOGhWv/RUSyiYqlDJk0KTT79OoF7drFHY2IyM8pAWTAqlXhxO9OO4Vn/YqIZCOdBM6AIUNgxgwYMwaaNo07GhGR5FKuAZjZXDObYWZTzexnj/GyYIiZzTaz6Wb221S3mc0+/xyuvhqOOw46d447GhGRiqWrBlDo7l9XMO9YoG30tz8wLHqtly66KFz7f+edesqXiGS3ujgH0Bl40IM3gS3NbPs62G6de/750OzTv3942IuISDZLRwJw4CUzm2xm3ZPM3wH4PGF8XjRtA2bW3czKzKxs4cKFaQirbi1bBhdcAHvsAb17xx2NiEjV0tEEdLC7zzezbYHxZva+u0+s6Zu4+3BgOEBBQYGnIa46dcMN4WEvr7wCjRvHHY2ISNVSrgG4+/zodQEwBtiv3CLzgcTe73eMptUbs2bBoEFwxhlw6KFxRyMiUj0pJQAz28zMNl83DBwFzCy32DPAGdHVQL8DFrv7l6lsN5u4w3nnhcs9Bw2KOxoRkepLtQloO2CMhctdGgGPuPs4MzsXwN3vAcYCnYDZwDLgryluM6s89FBo9rn3Xth227ijERGpPnPPvub2goICLyv72S0FWefbb2HXXaFNm9D1g/r7EZG4mNlkdy+oyTq6EzgF/fqFHj9fekmFv4jkHhVbtfTWW6HZp2dPaN8+7mhERGpOCaAWVq+Gc8+F7bcPz/oVEclFagKqhbvugqlTYfRo2HzzuKMREakd1QBq6Isv4Kqr4Jhj4OST445GRKT2lABqqFev0N//0KHq7E1EcpsSQA28+CIUF4erf9q0iTsaEZHUKAFU0/LlcP75sMsu4UHvIiK5TieBq2ngQPj4Y3j5ZWjSJO5oRERSpxpANXz4YUgAp50Ghx8edzQiIumhBFAF99D0s8kmcOutcUcjIpI+agKqwmOPhWafoUPhF7+IOxoRkfRRDaASixeHyz4LCsKdvyIi9YlqAJW48kr43//g2WehYcO4oxERSS/VACoweTLcfXdo/y+oUQerIiK5QQkgiTVrQpPPttvC9dfHHY2ISGaoCSiJe++FsjJ45BFo1izuaEREMqPWNQAz28nMSszsPTN718wuSrJMRzNbbGZTo7/+qYWbeV99Fbp6OPxwOPXUuKMREcmcVGoAq4G/u/uU6MHwk81svLu/V26519z9uBS2U6f69AndPtx9tzp7E5H6rdY1AHf/0t2nRMPfA7OAHdIVWBwmTICHH4ZLLw19/oiI1GdpOQlsZq2B3wBvJZl9gJlNM7MXzGzPdGwvE1asgPPOC718Xn553NGIiGReyieBzawp8ARwsbsvKTd7CvBLd19qZp2Ap4C2FbxPd6A7QKtWrVINq8YGDQp9/owbF7p9EBGp78zda7+y2UbAc8CL7n5bNZafCxS4+9eVLVdQUOBlZWW1jqum5syBPfeE448P/f2LiOQaM5vs7jW6aymVq4AMGAHMqqjwN7NfRMthZvtF21tU221mwrrO3ho1gsGD445GRKTupNIEdBBwOjDDzKZG0/oBrQDc/R7gFKCHma0GlgOneipVjgx44onQ7DN4MOyQ06ewRURqJqUmoEypqyag77+H3XeHFi2gtDTUAkREclFtmoDyusi7+mr44otQC1DhLyL5Jm/7Apo2DYYMge7dYf/9445GRKTu5WUCWLsWevSArbeGf/wj7mhEROKRlw0fI0bAG2/AAw/AVlvFHY2ISDzyrgawYEHo6uHQQ+H00+OORkQkPnmXAC65BJYuhWHD1NmbiOS3vEoAEyeGZp8+fcLlnyIi+SxvEsDKleHEb+vW4Vm/IiL5Lm9OAg8eDO+9Fx7wvummcUcjIhK/vKgBzJ0L114LJ54Ix+XMo2lERDIrLxJAz57QoAHccUfckYiIZI963wT09NOh2WfQIIjhMQMiIlmrXtcAfvghHP23awcX/eyR9SIi+a1e1wAGDIDPPoPXX4eNNoo7GhGR7FJvawAzZ8Jtt8HZZ8NBB8UdjYhI9qmXCWBdZ29bbAE33RR3NCIi2aleNgE98EBo9hkxApo3jzsaEZHsVO9qAIsWQd++odnnrLPijkZEJHullADM7Bgz+8DMZpvZZUnmNzGzx6L5b5lZ61S2V6Gbb4aSEgAuuwy++w4e/GsJDW65OSObExGpD2qdAMysIXAXcCywB9DFzPYot1g34Ft3/zUwGMhMi3yHDlBUxMw7S7jvPhh6cgk7X1YUpouISFKp1AD2A2a7+xx3Xwk8CnQut0xn4IFo+HHgcLMMdMJcWMjqR4pp2auIwVv055wJRVBcDIWFad+UiEh9kUoC2AH4PGF8XjQt6TLuvhpYDGyT7M3MrLuZlZlZ2cKFC2sczPLfFfJ6ux5cvOQ67LweKvxFRKqQNSeB3X24uxe4e0GLFi1qvP7mZSWcMH8YXHVVeNpLdE5ARESSSyUBzAd2ShjfMZqWdBkzawQ0AxalsM3kSkqgKGr2GTAgvBYVKQmIiFQilQRQCrQ1s1+ZWWPgVOCZcss8A5wZDZ8C/MfdPYVtVhBJ6YZt/oWFYby0NO2bEhGpLyyV8tjMOgG3Aw2B+939BjMbAJS5+zNmtjHwb+A3wDfAqe4+p6r3LSgo8LKyslrHJSKSb8xssrsX1GSdlO4EdvexwNhy0/onDP8I/CmVbYiISGZkzUlgERGpW0oAIiJ5SglARCRPKQGIiOSplK4CyhQzWwh8WsvVmwNfpzGc+k77q2a0v2pG+6tmUtlfv3T3Gt1Fm5UJIBVmVlbTS6HymfZXzWh/1Yz2V83U9f5SE5CISJ5SAhARyVP1MQEMjzuAHKP9VTPaXzWj/VUzdbq/6t05ABERqZ76WAMQEZFqUAIQEclTGU0AZuZmdmvCeB8zu6aG79HRzA5MGB9pZqdUY72lCcOdzOxDM/tlTbadSWa2jZlNjf6+MrP5CeONq1i3tZnNrMNYW5rZ45XM39LMzqureKrDzNZE+3KmmY02s00rWfYsMxtai220NrPTEsYLzGxIbWPOJgn7710zm2ZmfzezBtG8nz6nmZ1gZpdFw9X6bVZz+/3Kjf83He+bTmZWYmZHl5t2sZl9sm6fVLLuBuVaXDJdA1gB/NHMmtdm5eghMh2BWu8oMzscGAIc6+5V3lxmQcZrRu6+yN3bu3t74B5g8Lrx6BnLFcWXUg+uteHuX7h7ZT/sLYGsSgDA8mhftgNWAudmYButgZ8SgLuXuXvPDGwnDuv2357AkcCxwNWw4ed092fcfWAGtr9BAnD32AvLJEYRnoOS6FTgzGrsk46kUK6lS6YLutWEs9q9ys+Ijp7+Y2bTzWyCmbWKpo80s3vM7C2gmPDD7RUdjfw+Wv0QM/uvmc2p7IjDzA4B/gkc5+4fR9N6R0eFM83s4oRYPjCzB4GZwE5m1tfMSqP4rk14z6fMbHJ0ZNQ9DfsoMd4NjqDW1WKio4XXzOwZ4L1y6+xsZu+YWYfoSPYpMxtvZnPN7ILo875jZm+a2dbROm3MbFz0OV4zs90Stj+k/L5NrHGY2Z5m9nb0/5huZm2BgUCbaNogM2sa/U+nmNkMM+uc8D6zzOyf0f57ycw2Sec+rMBrwK/N7HgzeyvaHy+b2XblFzSzFmb2RPS/LzWzg6Lph9r6Gto7ZrZ59Ll/H03rFf2fnouWv8bM7jezV6J92TNhG39J2If3mlnDOtgHtebuC4DuwAXRAVLi5yxfezrCwrO9PzSz46JlNjazf0XfhXfMrDDZumb2XPTeA4FNov3zcDRvKdnnceAPFtXYzaw10JLwWxgaTfvZ9ylaboNyrZLfXmW/pfej9T40s4fN7Agzm2RmH5nZftX6BO6esT9gKbAFMJfwOMg+wDXRvGcJmRLgbOCpaHgk8BzQMBq/BuiT8J4jgdGE5LUHMLuCba8iPIRm74Rp+wIzgM2ApsC7hIfVtAbWAr+LljuKkLgs2s5zwCHRvK2j100IyWKbNOyna6J9MxI4JXH/Ra8dgR+AX0XjraNt7wq8A+wTTT8LmA1sDrQAFgPnRvMGAxdHwxOAttHw/oQntVW4b9dtLxq+E+gaDTeO9sNP86PpjYAtouHmUUwWLbcaaB/NKwb+kqnvXkIsTwM9gK1Yf+Xb34BbE/bb0Gj4EeDgaLgVMCvh+3pQNNw0et+OwHMJ2/xpPPqf/hdoEu2DRcBGwO7Re20ULXc3cEYmf4ep7L9y074Dtiv3ORP33UhgXPT9aQvMAzYG/k54YBTAbsBn0fSf1o3mPQd0TLb9ZPFkw18Uc+do+DLglmp+n66hGuVaNX5Le0XrTAbuj+Z1JipPq/rLeHOCuy+xcGTdE1ieMOsA4I/R8L+BmxPmjXb3NZW87VPuvhZ4L9lRXGQV4QfYDbgomnYwMMbdfwAwsyeB3xMeXfmpu78ZLXdU9PdONN6U8IWeCPQ0s5Oi6TtF09P/nOOfe9vdP0kYb0Eo2P7o7om1ghJ3/x743swWEwobCIlvbzNrSqh6jjazdes0SVi/qn37BnCFme0IPOnuHyW8zzoG3GihBrYW2IFQcAB84u5To+HJhC9yJmxiZuu28xowgpAwHzOz7QnJ65Mk6x0B7JHwmbaI9tkk4LboiPRJd5+X5HOX97y7rwBWmNkCwj44nHAgUhqtvwmwoHYfMSsVR9+fj8xsDqHAP5hw4IC7v29mnwK7xBhjOq1rBno6eu1GKJTXqej7lEyy315Vv6UZAGb2LjDB3d3MZlDN31VdtSffDkwB/lXN5X+oYv6KhOGKfoVrgSJggpn1c/cba7BNA/7h7vcmLmBmHQn/0APcfZmZvUI4kkmX1UTNchbOQySeDC6/TxYTjqQOZsNmocR9szZhfC3h/90A+M7DuYdkKt237v6Ihea5PwBjzewcoPxjPrsSEtS+7r7KzOayfj8lvv8aQgGYCcvLf0YzuxO4zcPjSjsSjsLKa0CoCf5YbvpAM3se6ARMsnIn/ypQ/rM2IuzTB9z98up8iGxhZjsTPsMCQi2mIuVvLKrsRqOfvu+RdP6W6srTwGAz+y2wqbtPNrPEBJD0+1TBwUOy3151f0vJfutVqpPLQN39G0J1v1vC5P+y/gRKV8JRWjLfE5o0arPdZYSCqquZdYu2caKZbWpmmwEnVbDdF4Gz12VqM9vBzLYlNGN9GxX+uwG/q01clZhLODoEOIHQZFCRlYT4z7CEK1Gq4u5LgE/M7E/w00nvfaq7flQQzHH3IYQv/978/H/UDFgQfWELgWy5+qoZMD8aPrOCZV4CLlw3Ymbto9c27j7D3W8CSglHtrX5bk4ATom+T5jZ1pZFV6clY2YtCBcqDPWoLaISfzKzBmbWBtgZ+IDwG+savdcuhKaQDwjf9/bR8jsBie3Wq8yssu9/VnD3pUAJofllVJJFkn6fqP53J6O/pbq8D+BWQhvWOhcCfzWz6cDprG+mKe9Z4CTb8CRwtUXJ5xjgSmBHQlvb28BbwH3u/k6SdV4itN29EVWnHif8s8YBjcxsFuEE4Jvl103RP4FDzWwaoYms0ppQ1JR1HOFk0gk12E5XoFu0nXcJbYbVVQTMjJpX2gEPuvsiwlHxTDMbBDwMFET77gzg/Rq8fyZdQ2j6mkzFXe72JMQ+3czeY/3VQxdHn286oXnxBWA6sMbCZZI/u9Ahmai57krgpei9xgPb1/oTZc66k7DvAi8TCrJrE+ZXlAg+I/y+XiCcf/qRcJ6jQfR9eAw4K2oam0RohnuPcKXelIT3GQ5Mj5rcst0oYB+SJ4CKvk/VLdcy+ltSVxAiUiNmdjJwgrtXVIuSHFHn15SLSO6Kapo3EK7ckxynGoCISJ5SX0AiInlKCUBEJE8pAYiI5CklABGRPKUEICKSp/4fco01Y5RbdncAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "escoretop5 = df.sort_values(by=[\"Economic Score\"])\n", + "escoretop5 = escoretop5.head(5)\n", + "print(\"Score global en fonction des pays (les 5 pays où le score global est le moins élevé) :\")\n", + "plt.figure()\n", + "plt.plot(escoretop5[\"Country\"],escoretop5[\"Economic Score\"],'b')\n", + "plt.plot(escoretop5[\"Country\"],escoretop5[\"Economic Score\"],'rx')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "On peut constater avec ce graphique que certaines données ne sont pas disponibles au public car certains pays ne souhaitent pas les communiquer comme la Corée du Nord (régime dictatorial)." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Top 5 des pays ayant la meilleure position au niveau de la liberté de la presse en fonction de leur score politique :\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAD4CAYAAAAeugY9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmdklEQVR4nO3deZyNdf/H8ddnxk4oSwkZJKYUMqiEFLmjwkgRKRQmWVp0677L3XK30J37tvyMyE1kSRjJXbhlaCVjX5MsWUpkyb7MfH9/nGtqcltmOGeumTPv5+Mxj7nOda4z532uOed9rvM93zNjzjlERCR7i/A7gIiIXDyVuYhIGFCZi4iEAZW5iEgYUJmLiISBXJl5ZcWLF3dRUVGZeZUiItnekiVL9jjnSpxrm0wt86ioKJKSkjLzKkVEsj0z23q+bdI1zGJmvcxstZmtMbPe3roXzWyHmS33vppeZF4REblA5z0yN7OqwGNAbeAEMMvMZnpn/9M5948Q5hMRkXRIzzBLNLDIOXcEwMwWALEhTSUiIhmSnmGW1UA9MytmZgWApkBZ77wnzGylmf3bzC4904XNrIuZJZlZ0u7du4MUW0RE0jpvmTvn1gH9gTnALGA5kAzEAxWB6sCPwFtnufwI51yMcy6mRIlzvhkrIiIXKF1vgDrnRjnnajrn6gP7gA3OuV3OuWTnXAowksCYenANGACJiX9cl5gYWC8iIr9J72yWkt73qwiMl08ws1JpNmlJYDgmuGrVgvvv/73QExMDp2vVCvpViYhkZ+mdZz7VzIoBJ4Huzrn9ZjbEzKoDDtgCdA16uoYNYfJkjrdqwbIWdag1YwmRH0wJrBcRkd+kq8ydc/XOsO6h4Mc5g4YNmdfkGu4a/V9erg/TNzxNy4iWxEbHcm2JazGzTIkhIpKVZf2/zZKYyF1zt7D3mSd4ZmVBbtl4nH7z+1E1viqVh1am79y+LNq+iBSX4ndSERHfWGb+p6GYmBiXoY/zp46RT54cGFrxTu8ZM4wPSu4hYX0CiVsSOZVyitKXlKZFlRbERsdSv1x9ckVk6l8qEBEJGTNb4pyLOec2WbrMBwwIvNmZdow8MREWL4ZnnwVg39F9zNwwk4T1CczaOIujp45yWf7LuLfyvbSs0pLGFRqTP3f+IN8SEZHMk/3LPIOOnDzC7I2zmbZ+Gh99+xEHjh+gYO6C3FXpLmKrxNK0UlOK5CsSsusXEQmFHFfmaZ1IPsH8LfNJWJfA9G+n89Ohn8gdkZtGFRrRskpLmldpTsmCJTMli4jIxcjRZZ5Wikth4faFTFs3jYT1CWzatwnDuPWqW2lZpSUto1sSVTQq03OJiKSHyvwMnHOs3LWShPUJTFs3jVU/rwKgxhU1iI2OpWWVlpryKCJZiso8HTbu3UjCugQS1ifw9favAbim2DW0rBKYyx5zZQwRlvVncIpI+FKZZ9DOgzv5cP2H/zPlMXUoRlMeRcQPKvOLkDrlcdr6aczeOPsPUx5jq8TSuGJj8uXK53dMEckBVOZBcvjEYWZ/P5uE9Qma8igimU5lHgKa8igimU1lHmJnmvIYYRHULVv3t5kx5YqW8zumiGRzKvNMdLYpjzeWuvG3mTHRxaM15VFEMkxl7iNNeRSRYFGZZxGpUx6nrZ/G/C3zNeVRRDJEZZ4F7T2697e/8pg65bFY/mLcU/keTXkUkTNSmWdxZ5vy2LRSU1pWaUmza5pROG9hv2OKiM9U5tlI6pTHaeumMX39dHYd3kWeyDzcUf4OTXkUyeFU5tlUckoyC7cv/G1mzOb9mzXlUSQHU5mHgdQpj6lz2c855TEd/5lJRLIflXkYOtuUx9gqsXTYW5Yq3f+GnfY/U3/7H6oiki2pzMNc2imPiZsTSXbJtN5VnFHjD/FrxwcpPX6GilwkDKjMc5C0Ux5rDf+Iv8xP5oeeD3PVoDF+RxORi5SeMtdHEMPEZfkvo0O1DiSU7Enf1UUZ0qQoBUeN4+CsGX5HE5FMoDIPJ94YecTkD6gzajYPtIaU+1vj5s3zO5mIhJjKPJwsXvzbGHnt0rW589HXaRF7gm+m/5/fyUQkxFTm4eTZZ//wZucztzxDrjsa0fDyT1i7e62PwUQk1FTmYSzCIhjbYiyF8hSizZQ2HDt1zO9IIhIiKvMwV+qSUoxpMYZVP6+iz5w+fscRkRBRmecATSs15cmbnmTo4qHM+FazW0TCkco8h3j9jtepcUUNOn7YkR2/7vA7jogEmco8h8ibKy8TW03k2KljtE9oT3JKst+RRCSIVOY5SOXilRl611Dmb5nPG1+84XccEQkilXkO80j1R2hTtQ1/m/83vt72td9xRCRI0lXmZtbLzFab2Roz633aeU+bmTOz4iFJKEFlZgxvNpyyRcrSdmpb9h/b73ckEQmC85a5mVUFHgNqA9WAu83sau+8ssCdwA+hDCnBVSRfESa2msj2X7fTbWY3MvOPrYlIaKTnyDwaWOScO+KcOwUsAGK98/4JPAuoDbKZm8rcxCsNX+H9Ne8zevlov+OIyEVKT5mvBuqZWTEzKwA0BcqaWXNgh3NuxbkubGZdzCzJzJJ2794dhMgSLM/WfZbby99Oj096sH7Per/jiMhFOG+ZO+fWAf2BOcAsYDmQF/gL0C8dlx/hnItxzsWUKFHi4tJKUEVGRDKu5Tjy58qvj/uLZHPpegPUOTfKOVfTOVcf2AesAcoDK8xsC1AGWGpmV4QsqYTElZdcyZgWY1ixawV95/b1O46IXKD0zmYp6X2/isB4+bvOuZLOuSjnXBSwHbjROfdTyJJKyNx9zd30rN2TQYsGMXPDTL/jiMgFSO8886lmthb4COjunNsfukjih/6N+1Pt8mp0/LAjOw/u9DuOiGRQeodZ6jnnrnXOVXPOfXqG86Occ3uCH08yS75c+ZjYaiKHTxzmoYSH9HF/kWxGnwCV30SXiGbwXYOZt3keb371pt9xRCQDVObyB51rdKb1ta15IfEFFm1f5HccEUknlbn8gZkx4p4RlL6kNG2ntuXAsQN+RxKRdFCZy/8omq8oE1pN4IcDPxD3nzh93F8kG1CZyxndUvYWXrztRSaunsjYFWP9jiMi56Eyl7N67tbnaFCuAd0/7s6GXzb4HUdEzkFlLmcVGRHJe7HvkTdXXtpMacPxU8f9jiQiZ6Eyl3MqU7gM/7733yz7aRl/+fQvfscRkbNQmct5Na/SnO61ujNw4UA++e4Tv+OIyBmozCVd3mz8JlVLVuXh6Q/z0yH9CR6RrEZlLumSP3d+JrWaxMETB+mQ0IEUl+J3JBFJQ2Uu6XZdyev4V5N/8d9N/+Wtr97yO46IpKEylwzpUrMLsdGx/GXeX1i8Y7HfcUTEozKXDDEzRt4zklKFStF2alsOHj/odyQRQWUuF+Cy/JcxPnY8m/dvpvvH3f2OIyKozOUC1StXj371+zFu5TjGrRjndxyRHE9lLhfsr/X/Sr2r6vH4x4+zce9Gv+OI5Ggqc7lguSJy8V7se+SOyE3bqW05kXzC70giOZbKXC7KVUWu4p173yFpZxLPz3ve7zgiOZbKXC5abHQsXWt25c2v3mTO93P8jiOSI6nMJSgGNhnItSWupUNCB3Yd2uV3HJEcR2UuQVEgdwEmtZrE/mP7eeTDR/Rxf5FMpjKXoLn+8usZ2GQgszbOYtDCQX7HEclRVOYSVHExcTSv3Jw/z/0zS39c6ncckRxDZS5BZWaMuncUJQuWpM2UNhw6ccjvSCI5gspcgq5YgWKMjx3Pxr0b6fFJD7/jiOQIKnMJiQZRDXi+/vOMWT6GCasm+B1HJOypzCVk+jXoxy1lb6HbzG5s2rfJ7zgiYU1lLiGTKyIXE2InEGERtJ3alpPJJ/2OJBK2VOYSUuWKlmPkPSP5Zsc39Evs53cckbClMpeQa31dax6t8Sj9v+zP3E1z/Y4jEpZU5pIp/vWnf1G5eGUeSniI3Yd3+x1HJOyozCVTFMxTkEmtJrH36F46ftgR55zfkUTCispcMk21K6rxj8b/4D/f/Ych3wzxO45IWFGZS6Z6ovYT3H3N3fT5bx+W/7Tc7zgiYSNdZW5mvcxstZmtMbPe3rpXzGylmS03szlmdmVIk0pYMDNGNx9NsfzFaDOlDYdPHPY7kkhYOG+Zm1lV4DGgNlANuNvMrgbedM7d4JyrDswENO9M0qV4geK8F/seG37ZQK9ZvfyOIxIW0nNkHg0scs4dcc6dAhYAsc65X9NsUxDQO1qSbreXv53nbn2OUctG8f7q9/2OI5LtpafMVwP1zKyYmRUAmgJlAczsVTPbBrTjLEfmZtbFzJLMLGn3bk1Jk9+9eNuL3FTmJrrM7MLmfZv9jiOSrZ23zJ1z64D+wBxgFrAcSPbO+6tzriwwHnjiLJcf4ZyLcc7FlChRIli5JQzkjszNhNjAH+F6cNqD+ri/yEVI1xugzrlRzrmazrn6wD5gw2mbjAdaBTuchL/yl5ZneLPhLNy+kJcWvOR3HJFsK72zWUp6368CYoEJZlYpzSbNgfXBjyc5Qdvr29Kxekde+/w1Ejcn+h1HJFtK7zzzqWa2FvgI6O6c2w+84U1XXAncCWhaglywwXcNplKxSrRPaM+eI3v8jiOS7aR3mKWec+5a51w159yn3rpWzrmq3vTEe5xzO0IbVcJZoTyFmNRqEnuO7KHzjM76uL9IBukToJJl1ChVg/6N+jPj2xkMWzzM7zgi2YrKXLKUXnV60bRSU56e8zQrd630O45ItqEylywl9eP+l+a/lDZT2nDk5BG/I4lkCypzyXJKFizJuJbjWL9nPU/OetLvOCLZgspcsqRGFRrxbN1nGbF0BFPWTvE7jkiWpzKXLOuVhq9Q68paPPbRY2zdv9XvOCJZmspcsqzckbmZ2GoiySnJtJvWjlMpp/yOJJJlqcwlS6t4WUXim8Xz5bYveWXBK37HEcmyVOaS5bW7oR0dqnXg75//nQVbFvgdRyRLUplLtjD0rqFUuLQC7RPas/foXr/jiGQ5KnPJFi7JewmTWk1i16FdPDrjUX3cX+Q0KnPJNmpeWZPX73idhPUJvL3kbb/jiGQpKnPJVp68+UmaVGzCk7OfZPXPq/2OI5JlqMwlW4mwCN5t8S6F8xamzZQ2HD151O9IIlmCylyyncsLXc7YFmNZs3sNT8952u84IlmCylyypSZXN+Hpm58mPimehHUJfscR8Z3KXLKt1+54jZqlatJ5Rme2HdjmdxwRX6nMJdvKE5mHia0mciL5BO2mtSM5JdnvSCK+UZlLtlapWCWGNRvG5z98zqufv+p3HBHfqMwl23vohodod307XlrwEl/88IXfcUR8oTKXbM/MGNZsGFFFo2g3rR37ju7zO5JIplOZS1gonLcwE1tNZOfBnTz20WP6uL/kOCpzCRu1S9fm1dtfZeq6qbyz9B2/44hkKpW5hJVnbnmGRhUa0WtWL9buXut3HJFMozKXsBJhEYxtMZZCeQrRZkobjp065nckkUyhMpewU+qSUoxpMYZVP6+iz5w+fscRyRQqcwlLTSs1pXed3gxdPJQZ387wO45IyKnMJWy90egNql9RnY4fdmTHrzv8jiMSUipzCVt5c+VlUqtJHDt1jPYJ7fVxfwlrKnMJa5WLV2boXUOZv2U+b3zxht9xREJGZS5h75Hqj9Cmahv+Nv9vfL3ta7/jiISEylzCnpkxvNlwyhYpS9upbdl/bL/fkUSCTmUuOUKRfEWY2Goi23/dTreZ3fRxfwk7KnPJMW4qcxOvNHyF99e8z+jlo/2OIxJUKnPJUZ6t+yy3l7+dHp/0YP2e9X7HEQmadJW5mfUys9VmtsbMenvr3jSz9Wa20swSzKxoKIOKBENkRCTjWo4jf678+ri/hJXzlrmZVQUeA2oD1YC7zexq4L9AVefcDcAG4LlQBhUJlisvuZLRzUezYtcK+s7t63cckaBIz5F5NLDIOXfEOXcKWADEOufmeKcBFgJlQhVSJNjuqXwP07fewopJg5i5YebvZyQmwoAB/gUTuUDpKfPVQD0zK2ZmBYCmQNnTtukEfHKmC5tZFzNLMrOk3bt3X1xakSC668F+TJ0ayTtvtWPnwZ2BIr//fqhVy+9oIhl23jJ3zq0D+gNzgFnAcuC3z0Wb2V+BU8D4s1x+hHMuxjkXU6JEiWBkFgmKPI2acHDsO4x871fmtr+FlNatYfJkaNjQ72giGZauN0Cdc6OcczWdc/WBfQTGyDGzR4C7gXZOE3clGyrX8hF2truXDjO20v+GA/Q5+TG7Du3yO5ZIhqV3NktJ7/tVQCwwwcz+BDwL3OucOxK6iCIhlJhItYSv2P1UHN2XRLJ04ltEDYqi96zegaEXkWwivfPMp5rZWuAjoLtzbj8wFLgE+K+ZLTez4SHKKBIaqWPkkydT4q1hFJ7+CbM/KsqLrgFDvxlKhUEVeOLjJ9h2YJvfSUXOyzJzdCQmJsYlJSVl2vWJnNOAAYE3O9OOkScmwuLFbHrsPl7//HXGrBiDYXSq0Ym+t/YlqmiUb3El5zKzJc65mHNuozIXObut+7fyxhdvMGrZKByOh6s9zHO3PkfFyyr6HU1ykPSUuT7OL3IO5YqWI/7ueL7v+T3danbjvZXvUXloZR6Z/ggbftngdzyR36jMRdKhbJGyDGk6hM29NtOzTk8mr5lM9P9F035ae9btXud3PBGVuUhGlLqkFAObDGRzr808ffPTJKxP4Lph1/HAlAdYtWuV3/EkB1OZi1yAywtdzoDGA9jSawt9b+3Lx999zA3Db6DV5FYs/2m53/EkB1KZi1yEEgVL8Nodr7G191ZeqP8CczfNpcbbNWg+qTlJO/Vmv2QelblIEFyW/zJebvgyW3tv5aXbXuKzrZ9Ra2Qtmk1oxsLtC/2OJzmAylwkiIrmK0q/Bv3Y2nsrr93+Gou2L+LmUTdz57g7+eKHL/yOJ2FMZS4SAoXzFua5es+xpfcWBjQawPKfllNvdD1uf/d25m+Zr/9BKkGnMhcJoUJ5CtGnbh+29N7CwDsHsm7POhq+25AGYxowd9NclboEjcpcJBMUyF2AJ29+kk09NzH4T4PZtG8Tjcc1pu6/6zJr4yyVulw0lblIJsqfOz896vTg+57fE98snh0Hd3DX+Luo804dZm6YqVKXC6YyF/FB3lx56RbTje96fMfIe0ay58ge7pl4DzVH1CRhXQIpLsXviJLNqMxFfJQnMg+P3vgo3z7xLaObj+bgiYPETo6l+vDqfLDmA5W6pJvKXCQLyB2Zm0eqP8K67usY13IcJ5JPcP+U+7k+/nomrppIckry+X+I5Ggqc5EsJFdELtrf0J41j69hYquJADw47UGuHXYt41aM41TKKZ8TSlalMhfJgiIjImlTtQ2r4lbxQesPyJcrHx2md6DK0CqMXjaak8kn/Y4oWYzKXCQLi7AI7rv2PpZ1Xcb0B6ZTJF8ROs3oxDVDr2HEkhGcSD7hd0TJIlTmItlAhEXQvEpzkh5LYmbbmZQsWJKuM7ty9eCrGbZ4GMdOHfM7ovhMZS6SjZgZza5pxsLOC5nVbhZlCpeh+8fdqTi4IoMXDeboyaN+RxSfqMxFsiEzo8nVTfiy05fMfWguV192Nb1m9aL8oPIM/Hogh08c9juiZDKVuUg2ZmbcUeEOFjyygPkPz+e6ktfx9JynKT+oPP2/6M/B4wf9jiiZRGUuEiYaRDXg0w6f8kXHL7ix1I30/bQvUYOiePWzVzlw7IDf8STEVOYiYabuVXWZ1X4WCzsv5OYyN/N84vNEDYripfkvse/oPr/jSYiozEXCVJ0ydZj54EySHkuiQbkGvLjgRaIGRfHCvBf45cgvfseTIFOZi4S5mlfWZHqb6SzruozGFRrz98//TtSgKJ6b+xy7D+/2O54EicpcJIeofkV1ptw/hVVxq2hWqRn9v+xP1KAo+szpw65Du/yOJxdJZS6Sw1QtWZVJ901izeNriI2OZeDCgUQNiqL3rN7sPLjT73hygVTmIjlUdIloxrUcx/ru62lTtQ1DvxlKhUEVeOLjJ9h2YJvf8SSDVOYiOVylYpUY3Xw0G3ps4KEbHuLtJW9TcXBFus3sxpb9W/yOJ+mkMhcRACpcWoGR945kY4+NdK7RmX8v+zeVhlTi0RmP8v3e7/2OJ+ehMheRPyhXtBzxd8fzfc/v6VazG++tfI/KQyvz/sM12TZ97B83TkyEAQP8CSp/oDIXkTMqW6QsQ5oOYXOvzfSs05PRuVaTr93DvPpSI9buXhso8vvvh1q1/I4qQC6/A4hI1lbqklIMbDKQXXX/zLQqvejy4vvEz7uOnstys3rIC9zUoJ6KJAvQkbmIpMvlhS6na59JFOjxFP0+g9E35aXeln6UH1SeVxa8wo8Hf/Q7Yo6WrjI3s15mttrM1phZb29da+90ipnFhDSliGQNiYkUHDUWXniB3svy8Vm5l4guHk2/+f246l9X0fqD1szbPA/nnN9Jc5zzlrmZVQUeA2oD1YC7zexqYDUQC3wW0oQikjWkjpFPngwvv4xNnky9PkOYU+Y5NjyxgV51evHppk+5Y+wdRP9fNIMWDmL/sf1+p84x0nNkHg0scs4dcc6dAhYAsc65dc65b0MbT0SyjMWLA0XesGHgdMOGgdOLF1OpWCX+cec/2PHUDsY0H0PRfEXpPbs3V751JZ0/7EzSziR/s+cAdr6XQ2YWDXwI3AwcBT4FkpxzPbzz5wPPOOfO+9uKiYlxSUn6pYrkBMt+XEZ8UjzjV43nyMkjxFwZw+Mxj/NA1QcokLuA3/GyFTNb4pw753D2eY/MnXPrgP7AHGAWsBxIzkCILmaWZGZJu3frL7SJ5BQ1StVgxD0j2PnUTgb/aTCHTxym04xOlB5YmidnPcm3e/TCPpjOe2T+Pxcwew3Y7pwb5p2ej47MReQ8nHN8tvUz4pPimbZuGidTTnJ7+duJi4mjeeXm5I7M7XfELCs9R+bpmh5qZiWdcz+b2VUE3vS8KRgBRSTnMDMaRDWgQVQDdh3axahlo3h7ydu0/qA1pQqV4tEbH6VLzS6UKVzG76jZUrqOzM3sc6AYcBJ4yjn3qZm1BIYAJYD9wHLnXJNz/RwdmYtIWskpyXz83cfEJ8Uza+MsIiyCeyrfQ1xMHI0qNCLC9FEYSN+ReYaHWS6GylxEzmbTvk2MWDKCUctGsefIHq6+7Gq61uxKx+odKVagmN/xfKUyF5Fs5/ip40xZO4X4pHi+3PYleSPz8kDVB4iLiaNO6TqYmd8RM53KXESytVW7VhGfFM+4leM4dOIQ1a+oTlxMHA9e/yCF8hTyO16mUZmLSFg4ePwg41eNJz4pnpW7VlI4b2E63NCBbjHduK7kdX7HCzmVuYiEFeccX237ivikeD5Y+wEnkk9Qv1x94mLiiI2OJU9kHr8jhoTKXETC1u7Duxm9fDTDk4azef9mShYsSecanelasyvlipbzO15QqcxFJOyluBTmfD+H+KR4Zm6YiXOOZtc0Iy4mjiYVmxAZEel3xIumMheRHOWHAz8wYskI3ln6DrsO7yKqaBRda3alU41OlCxY0u94F0xlLiI50onkE0xfP534pHjmb5lPnsg83HftfcTFxFG3bN1sN71RZS4iOd7a3WsZnjScd1e8y6/Hf6VqyarExcTR/ob2FM5b2O946aIyFxHxHD5xmImrJxKfFM/SH5dSKE8h2l3fjriYOKpdUc3veOekMhcROY1zjsU7FxOfFM+k1ZM4duoYt5S9hbiYOO679j7y5crnd8T/oTIXETmHvUf3Mmb5GIYnDee7vd9RLH8xOtXoRNeaXal4WUW/4/1GZS4ikg4pLoV5m+cRnxTPh+s/JNkl86er/0RcTBzNKjXzfXqjylxEJIN2/LqDkUtHMnLpSHYe3EnZwmXpUrMLj974KFcUusKXTCpzEZELdDL5JB9t+Ij4pHjmbppLrohcxEbHEhcTR4NyDTJ1eqPKXEQkCDb8soG3k95m9PLR7Du2j+ji0XSL6UaHah0omq9oyK9fZS4iEkRHTx7l/TXvE58Uzzc7vqFA7gK0rdqWuJg4al5ZM2TXqzIXEQmRpT8uJX5xPBNWT+DIySPULl2buJg4HrjuAfLnzh/U60pPmesf7ImIXIAbS93IyHtHsuOpHQz60yAOHj9Ixw87UnpgaZ6a/RQbftkAAwZAYuIfL5iYGFgfZCpzEZGLUDRfUXrW6cmax9eQ+HAijSs2Zsg3Q6g8tDLP7Huf461akPzp3MDGiYlw//1Qq1bQc+QK+k8UEcmBzIzbom7jtqjb+OnQT4xaOoq3l7zNknt/ZUrzJvza6UHKT5wFkydDw4bBv36NmYuIhEZySjL/+e4/HOr7FA9O/x5eeAFefjnDP0dj5iIiPoqMiOTenZfw4BcHAkUeH/+/Y+hBojIXEQmV1DHyyZMDR+STJwdOh6DQVeYiIqGyePEfx8gbNgycXrw46FelMXMRkSxOY+YiIjmEylxEJAyozEVEwoDKXEQkDKjMRUTCQKbOZjGz3cDWC7x4cWBPEOOEO+2vjNH+yhjtr4y7mH1WzjlX4lwbZGqZXwwzSzrf1Bz5nfZXxmh/ZYz2V8aFep9pmEVEJAyozEVEwkB2KvMRfgfIZrS/Mkb7K2O0vzIupPss24yZi4jI2WWnI3MRETkLlbmISBgIeZmbmTOzt9KcfsbMXgz19WYXZpZsZsvNbI2ZrTCzp80syzzJmtkhvzOci5n91dt3K739WCeIPztL3/YLleY+l/rV9xzbtjCzay/iumLMbPCFXj6rOMM+izKzr9JxuflmFpTpiGa2xcyKn+38zPgfoMeBWDN73TmX4QnzZpbLOXcqBLmyiqPOueoAZlYSmAAUBv7mZygzM8D8zHA+ZnYzcDdwo3PuuHdHz+NzrOzgt/tcOrQAZgJrL+SKnHNJQDj83esz7bNb/AhyNplxBHiKwLu4T55+hvfsNs87qvrUzK7y1o8xs+FmtggYYGarzKyoBfxiZh287caaWWPv53xuZku9r1vSnN8izfWNN7PmmXCbL4hz7megC/CEd1sjzexNM1vs7aOuAGZ2m/eMP8XM1nu3y7zztpjZ697RQ5KZ3Whms83sezPr5m1TyNvfS71929xbH2Vm35rZWGA1UDY1m5kVN7OvzaxZZu+XcygF7HHOHQfwDhZKm9k0ADNrbmZHzSyPmeUzs03e+opmNsvMlnj3myre+vLebVxlZn9Pe0Vm1ifN7+Elb12Uma0zs5Heq4M5ZpY/M3dAMJnZG2a21ruN//AeR/cCb3r3p4pmVt3MFnrbJJjZpd5l55tZfzP7xsw2mFk9b/1tZjbTW67t7d9lZvaVmVX279ZePPNeuZ3r8Xja9vHeY3JN6n3IW7/FzF5K83hMvT8W8+5Ta8zsHc53cOWcC+kXcIjAkeYWoAjwDPCid95HwMPecidgurc8hsDRQKR3ejjQDKgKLAZGeuu/AwoCBYB83rpKQJK33CDNzywCbAZyhfo2Z3T/nGHdfuByAsX+vLcuL4EjnPLAbcABoAyBJ+SvgVu97bYAcd7yP4GVwCVACWCXtz4XUNhbLg5s9O4oUUAKcNNpv7/LgUVAY7/312n7qRCwHNgADPN+37mATd75//DuL3W98yZ66z8FKnnLdYB53vIMoIO33D31dwPcSeCAxLz9PROo7+2vU0B1b7vJQHu/90s69luyt99Svx4AigHf8vsMt6Le9zHAfWkuuxJo4C2/DPzLW54PvOUtNwXmesu3ATO95cKpjz+gETDV731xgfsswVuXev841+NxPhDjLV/mfY/01t/gnd4C9PCWHwfe8ZYHA/285WaAA4qfLWNmDLPgnPvVO9rrCRxNc9bNQKy3PA4YkOa8D5xzyd7y5wQePFuBeKCLmZUG9jnnDptZEWComVUnsNOv8a53gZkNM7MSQCsCd57sNGRzJ3CDmd3nnS5C4MnqBPCNc247gJktJ1AsX3jbzfC+rwIKOecOAgfN7LiZFQUOA6+ZWX0C5V2aQGEDbHXOLUyTITeB8uvunFsQ9Ft4EZxzh8ysJlAPaAi8D/QFvjezaKA2MJDAfScS+NzMChF4efxBmoOnvN73ugTuJxC4P/b3lu/0vpZ5pwsR+D38AGx2zi331i8h8HvI6v5nyMDMcgHHgFHekfTM0y/kPc6KprkfvAt8kGaTad73s+2HIsC7ZlaJQDHlvojbkNnONzR1rsdjqvvNrAuBA45SwLUEnhzhj/sutRPrpy475/5jZvvOFTBTytzzL2ApMDqd2x9Os/wZgSOlq4C/Ai2B+wiUPASGcHYB1Qg8Mx5Lc9mxQHugDdDxwqJnHjOrQOAJ6WcCR4I9nHOzT9vmNgLvRaRK5o+/y9TzUk7bLsXbrh2BI/WazrmTZrYFyOdtk3a/Q+DIcwnQBMhSZQ7gPeHPB+ab2SrgYQL3l7uAk8BcAkeXkUAfAveP/ed4YJ7pgxcGvO6ce/sPK82i+N/fQ7YcZnHOnTKz2sAdBB5bTwC3Z/DHpO6L0++PqV4BEp1zLb19N//C0mZJ53o8YmblCYxK1HLO7TOzMfz+mEt7+bPtu/PKtFkTzrm9BF6Gdk6z+isCJQuBgvn89Mt5l91GYDigknNuE4FnvGcIPGgh8Iz/o3MuBXiIwAM31Rigt/dzLuhNnMzivYIYDgx1gddWs4E4M8vtnX+NmRUMwlUVAX72irwhUO4c2zoCQ2BVzOzPQbjuoDGzyt5RXqrqBF69fU7gd/61c243gSGEysBq59yvwGYza+39DDOzat7lv+SP98dUs4FO3lE9ZlbaAm9Whw3vthVxzn1M4OAodZ8cJDBMh3PuALAvdTycwGMtI0/wRYAd3vIjF5s5mylM4EDpgJldTuBg43w+Ax4EMLO7gEvPtXFmHpkDvEXgGT9VD2C0mfUBdnPuI+dF/F7SnwOv8/vLmGHAVAu8MTqLNEeXzrldZrYOmB6MGxAC+b2XZbkJHAWPIzA0APAOgZdrS703VHYTmF1wscYDH3lHsknA+nNt7JxLNrO2wAwzO+icGxaEDMFQCBjiDR2dIjD234XA7/9yfn+yXwlc4T1BQqCo483seQL7fRKwAugFTPCetD5MvRLn3Bxv2OZrb2jmEIFXe6nDgNlN6n0u1SxgEPChmeUj8ErkKe+8ScBIM+tJ4Ij9YWC4mRUANpGxV7sDCAyzPA/85+JuQvbinFthZssIPNa2EThwOJ+XgIlmtobAge8P59o47D/O793pVhGYvnbA7zwiIqGQZT6cEgpm1ghYBwxRkYtIOAv7I3MRkZwgrI/MRURyCpW5iEgYUJmLiIQBlbmISBhQmYuIhIH/B09tEvX4Ee9vAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Score supérieur à 95% des scores politiques : 87.25099999999999\n" + ] + } + ], + "source": [ + "postop5 = df.sort_values(by=[\"Position 2022\"])\n", + "postop5 = postop5.head(5)\n", + "print(\"Top 5 des pays ayant la meilleure position au niveau de la liberté de la presse en fonction de leur score politique :\")\n", + "plt.figure()\n", + "plt.plot(postop5[\"Country\"],postop5[\"Politic Score\"],'g')\n", + "plt.plot(postop5[\"Country\"],postop5[\"Politic Score\"],'rx')\n", + "plt.show()\n", + "print(\"Score supérieur à 95% des scores politiques :\",pscore.quantile(0.95))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Les pays qui ont la meilleure position dans le monde au niveau de la liberté de la presse sont ceux qui ont un score politique dans les 5% les plus élevés." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/ProjetStats/Untitled.ipynb b/ProjetStats/Untitled.ipynb new file mode 100644 index 0000000..ad70408 --- /dev/null +++ b/ProjetStats/Untitled.ipynb @@ -0,0 +1,559 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "id": "117db053", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "la taille de notre échantillon est : (50,)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZPklEQVR4nO3df/BddX3n8eeLEOwXdPqNzXcp+SYYZsvEobISvRN16Tr8EILImJRaC9N1sl2drDvQVcelG7sd6dqdITu0dreLo5OFLNhSpBWIaUVDBphBncryDYlC+LGkiJIvkXw1BLBkhyS894/vuXBzc+7vc885957XY+Y7uedzzr3nc6O8v5+8z+fz/igiMDOz8XZC0R0wM7Phc7A3M6sAB3szswpwsDczqwAHezOzCjix6A6kWbx4cSxfvrzobpiZjYwdO3b8LCKmWp0vZbBfvnw5MzMzRXfDzGxkSPpxu/NO45iZVUDHYC9pmaT7JT0mabekTyXtb5W0XdJTyZ+LWrx/XXLNU5LWZf0FzMyss25G9keAz0bEWcB7gasknQVsAO6NiDOBe5PjY0h6K3At8B5gFXBtq18KZmY2PB2DfUTsi4iHk9cvA48D08Aa4JbksluAtSlvXw1sj4gDEfECsB24JIN+m5lZD3rK2UtaDqwEHgROjYh9yamfAqemvGUaeLbheG/SlvbZ6yXNSJqZm5vrpVtmZtZB17NxJL0ZuAP4dES8JOn1cxERkgaqqBYRm4BNALVazdXZzGysbNk5y/XbnuS5g4dYMjnBNatXsHZl6th3KLoa2UtayHygvzUi7kyan5d0WnL+NGB/yltngWUNx0uTNjOzytiyc5bP3fkIswcPEcDswUN87s5H2LIzv3DYzWwcATcBj0fEFxtObQXqs2vWAd9Iefs24GJJi5IHsxcnbWZmlXH9tic5dPjoMW2HDh/l+m1P5taHbkb25wIfAy6QtCv5uRTYCFwk6SngA8kxkmqSbgSIiAPAnwAPJT9fSNrMzCrjuYOHemofho45+4j4LqAWpy9MuX4G+ETD8WZgc78dNDMbdUsmJ5hNCexLJidy64NX0JqZDdk1q1cwsXDBMW0TCxdwzeoVufWhlLVxzMzGSX3WTZGzcRzszcxysHbldK7BvZnTOGZmFeBgb2ZWAQ72ZmYV4GBvZlYBDvZmZhXg2ThmZjkpshiag72ZWQ7qxdDqNXLqxdCAXAK+g72ZWQ46FUMb9ojfwd7MLAetip7VR/jDHvH7Aa2ZWQ5aFT1bIOVS/tjB3swsB62KoR2N9I35si5/7GBvZpaDtSunue7ys5menEDA9OTE68dpsi5/3DFnL2kzcBmwPyLekbTdDtRrc04CByPinJT3PgO8DBwFjkRELZNem5mNoFbF0Bpz9jCc8sfdPKC9GbgB+Gq9ISJ+p/5a0p8BL7Z5//kR8bN+O2hmNkxFbwSeV/njbnaqekDS8rRzyf60HwUuyLRXZmY5KHrue10e5Y8Hzdn/K+D5iHiqxfkA7pG0Q9L6dh8kab2kGUkzc3NzA3bLzKyzMmwEnpdBg/2VwG1tzv9GRLwL+CBwlaT3t7owIjZFRC0ialNTUwN2y8ysszJsBJ6XvoO9pBOBy4HbW10TEbPJn/uBu4BV/d7PzCxrrWa85LkReF4GGdl/AHgiIvamnZR0iqS31F8DFwOPDnA/M7NMlWEj8Lx0DPaSbgP+AVghaa+kjyenrqAphSNpiaS7k8NTge9K+gHwf4BvRsS3s+u6mdlgWs19L3Kv2GFRtFi9VaRarRYzMzNFd8PMrKWip2w2k7Sj3VomF0IzM+tRWaZs9sLlEszMejSKUzYd7M3MejSKUzYd7M3MejSKUzYd7M3MejSKUzb9gNbMSqlss10a5VW8LEsO9mZWOp1mu5ThF0Eexcuy5GBvZqXTabbLqE17LAPn7M2sdNrNdhnFaY9l4JG9mZXOkskJZlMC/pLJiZGc9thOXikpj+zNrHTazXYZxWmPrdSfTcwePETwRkpqy87ZzO/lYG9mpdOuQNkoTntsJc+UlNM4ZlZKrWa7jOK0x1byTEk52JvZyBm1aY+ttHs2kTWncczMCpJnSqqbzUs2S9ov6dGGtj+WNCtpV/JzaYv3XiLpSUl7JG3IsuNmZqMuz81Tuknj3AzcAHy1qf3PI+JPW71J0gLgS8BFwF7gIUlbI+KxPvtqZtaVMqyw7VZeKamOI/uIeAA40MdnrwL2RMTTEfEq8DVgTR+fY2bWtTynM46SQXL2V0v6YZLmWZRyfhp4tuF4b9JmZjY0XmGbrt9g/2XgnwPnAPuAPxu0I5LWS5qRNDM3Nzfox5lZRY3bCtus9BXsI+L5iDgaEa8B/4v5lE2zWWBZw/HSpK3VZ26KiFpE1KampvrplpnZWK2wzVJfwV7SaQ2Hvwk8mnLZQ8CZks6QdBJwBbC1n/uZmXVrnFbYZqnjbBxJtwHnAYsl7QWuBc6TdA4QwDPAv0uuXQLcGBGXRsQRSVcD24AFwOaI2D2ML2FmVjdOK2yzpIgoug/HqdVqMTMzU3Q3zMxGhqQdEVFrdd4raM3MKsDB3sysAhzszcwqwMHezKwCHOzNzCrAwd7MrAK8eYmZZW6Uqk5WhYO9mWWqXnWyXoysXnUScMAvkNM4ZpYpV50sJwd7M8uUq06Wk4O9mWXKVSfLycHezDLlqpPl5Ae0ZpYpV50sJwd7M0s1yPTJvDbRtu452JvZcTx9cvw4Z29mx/H0yfHTMdhL2ixpv6RHG9qul/SEpB9KukvSZIv3PiPpEUm7JHk3ErMR4emT46ebkf3NwCVNbduBd0TEvwD+L/C5Nu8/PyLOabeDipmVi6dPjp+OwT4iHgAONLXdExFHksPvA0uH0DczK4inT46fLHL2/xb4VotzAdwjaYek9e0+RNJ6STOSZubm5jLolpn1a+3Kaa67/GymJycQMD05wXWXn+2HsyOsqw3HJS0H/j4i3tHU/p+BGnB5pHyQpOmImJX0z5hP/fx+8i+FtrzhuJlZb4a24bikfwNcBvxuWqAHiIjZ5M/9wF3Aqn7vZ2Zm/esr2Eu6BPgD4MMR8UqLa06R9Jb6a+Bi4NG0a83MbLg6LqqSdBtwHrBY0l7gWuZn37wJ2C4J4PsR8UlJS4AbI+JS4FTgruT8icBfR8S3h/ItzKwv3mSkOjoG+4i4MqX5phbXPgdcmrx+GnjnQL0zs6HxKtlq8Qpas4ryKtlqcW0csxGURfrFq2SrxcHebIRs2TnLH2/dzcFDh19v6zf9smRygtmUwN7NKlnn+keP0zhmI6KeY28M9HX9pF/6XSVb78fswUMEb/yy2bJztqf7W748sjcrufooOm0U3qjX9Eu/m4y0y/V7dF9eDvZmJdY8Y6adfoqU9bPJiHP9o8lpHLMSSxtFp8mzSJkrYo4mB3uzEutmtLzo5IW5FilzRczR5DSOWYm1mjEDMDmxEAkOvnL49YezeQR8byg+mrqqepk3V700m9cqZz+x8ASOvBYcPhoNbQtchrjChlb10syGr15XftHJC49pP3T4tWMC/XybV79aaw72ZiW3duU0J5/UXcbVM2KsFQd7sxHQbRD3jBhrxQ9ozQaQV9mAdg9q6zwjxtrxyN6sT3mWDUib7rjwBLHo5IXeI9a60tXIXtJm5rcg3F/fh1bSW4HbgeXAM8BHI+KFlPeuA/4oOfyvEXHL4N02K16eZQM83dEG1W0a52bgBuCrDW0bgHsjYqOkDcnxf2p8U/IL4VrmNyUPYIekrWm/FMxGTd5lA/opbWBW11UaJyIeAA40Na8B6qP0W4C1KW9dDWyPiANJgN8OXNJfV83KxWUDbJQMkrM/NSL2Ja9/yvyes82mgWcbjvcmbceRtF7SjKSZubm5Abpllo+0PDrAK68ecblfK51MHtDG/DLcgZbiRsSmiKhFRG1qaiqLbpkNVX3B0+TEsQueXnjlsOu7W+kMEuyfl3QaQPLn/pRrZoFlDcdLkzazsbB25TSnvOn4R19ezWplM0iw3wqsS16vA76Rcs024GJJiyQtAi5O2szGRjcParfsnOXcjfdxxoZvcu7G+zzqt9x1Fewl3Qb8A7BC0l5JHwc2AhdJegr4QHKMpJqkGwEi4gDwJ8BDyc8XkjazsdHpQa238bMy6GrqZURc2eLUhSnXzgCfaDjeDGzuq3dmJdFupew1q1ccV5lSwPlvn3/25G38rAy8gtasg04j87Urp/mtd0+jhvcEcMeOWbbsnPU2flYKDvZmHbQbmdfd/8TccdPR6td4Pr6VgYO9VU6vD0u7GZm3u8bb+FkZONhbpfTzsLSbkXm7a+rz8acnJ1y0zArjEsdWKf08LE17ANs8Mu90jevaWNEc7K1S+nlY2k3FSVeltLJzsLdKabUJSKeHpd2MzD16tzJzzt4qxQ9Lrao8srdKcbrFqsrB3irH6RarIqdxzMwqwCN7G0vtatmYVZGDvY2d+sKp+pz3+sIpwAHfKstpHBs73dSyMasaB3sbO64yaXY8B3sbO64yaXa8voO9pBWSdjX8vCTp003XnCfpxYZrPj9wj8068MIps+P1/YA2Ip4EzgGQtID5jcTvSrn0OxFxWb/3MeuVF06ZHS+r2TgXAv8YET/O6POsgrKcLumFU2bHyipnfwVwW4tz75P0A0nfkvTrrT5A0npJM5Jm5ubmMuqWjQpvym02XAMHe0knAR8G/jbl9MPA2yLincD/BLa0+pyI2BQRtYioTU1NDdotGzGeLmk2XFmM7D8IPBwRzzefiIiXIuIXyeu7gYWSFmdwTxszni5pNlxZBPsraZHCkfSrkpS8XpXc7+cZ3NPGjKdLmg3XQMFe0inARcCdDW2flPTJ5PAjwKOSfgD8BXBFRMQg97Tx5OmSZsM10GyciPgn4Fea2r7S8PoG4IZB7mHV4OmSZsPlQmhWGp4uaTY8LpdgZlYBDvZmZhXgYG9mVgHO2VvfvBuU2ehwsLe+eDcos9HiNI71xeUNzEaLR/bWUVq6ZlTKGzjVZDbPwd7aapWumTx5IS+8cvi468tU3sCpJrM3OI1jbbVK10RQ+vIGTjWZvcHB3tpqlZZ58dBhrrv8bKYnJxAwPTnBdZefXaoR86ikmszy4DSOtbVkcoLZlOC4ZHKi9OUN2vXdrGo8sre2Rrka5Sj33SxrHtlbW2nVKM9/+xTXb3uSz9y+q9QzXFxJ0+wNKmN5+VqtFjMzM0V3w1I0z3CB+dHyIPl6T480G5ykHRFRa3U+iz1on5H0iKRdko6L0Jr3F5L2SPqhpHcNek8rTtYzXLzRuFk+ssrZnx8R57T4rfJB4MzkZz3w5YzuaQXIeoaLp0ea5SOPB7RrgK/GvO8Dk5JOy+G+NgRZ7xXr6ZFm+cgi2Adwj6QdktannJ8Gnm043pu0HUPSekkzkmbm5uYy6JYNQ9YzXLzRuFk+sgj2vxER72I+XXOVpPf38yERsSkiahFRm5qayqBbNgxrV05nupjK0yPN8jHw1MuImE3+3C/pLmAV8EDDJbPAsobjpUmbjagsF1N5eqRZPgYK9pJOAU6IiJeT1xcDX2i6bCtwtaSvAe8BXoyIfYPc18ZL2Vfimo2DQUf2pwJ3Sap/1l9HxLclfRIgIr4C3A1cCuwBXgF+b8B7mplZjwYK9hHxNPDOlPavNLwO4KpB7mPl4kVQZqPH5RKsJ64RbzaaHOxLYlRGy+0WQZWxv2Y2z8G+BPodLRfxC8KLoMxGk4N9CfQzWs4zndL4S+UEiaMpxfO8CMqs3FzPvgRajYpnDx7i3I33pRYFy6umTHOhsrRA70VQZuXnYF8C7UbFswcP8Znbd/FHWx45pj2vdEraLxWABVJptyM0s+M52JdAWsmARgHc+v2fHDPCz6umTKtfHq9F8KONH+J7Gy5woDcbAQ72JdBYb6aVgGNSNIPWlNmyc5ZzN97HGRu+2TJVBC5UZjYuHOxLYu3Kab634YK2Ab9xlD1IQbJeNgxxoTKz8eDZOCVzzeoVfOb2XaRtFtk8mu63pkwvs39cqMxsPDjYl8zaldP87cxP+N4/Hjju3Plvz6b0c68Pd12ozGz0OdiX0DM/Tw+63/zhPu5/Ym7gEfaSyQlmUwK78/Bm48s5+xJqNcJ+4ZXDmWzM7Ty8WfU42JdQtyPsfhdRZb3blJmVn9M4JXTN6hXHlEJop99FVM7Dm1VL3yN7Scsk3S/pMUm7JX0q5ZrzJL0oaVfy8/nBulsNaSPvyYmFqdc6z25m3RhkZH8E+GxEPCzpLcAOSdsj4rGm674TEZcNcJ9Kah55Nxc+A+fZzax7fQf7ZB/ZfcnrlyU9DkwDzcHeMuD57mY2iExy9pKWAyuBB1NOv0/SD4DngP8YEbuzuGcVOc9uZv0aONhLejNwB/DpiHip6fTDwNsi4heSLgW2AGe2+Jz1wHqA008/fdBumZlZg4GmXkpayHygvzUi7mw+HxEvRcQvktd3AwslLU77rIjYFBG1iKhNTWWzUtTMzOYNMhtHwE3A4xHxxRbX/GpyHZJWJff7eb/3NDOz/gySxjkX+BjwiKRdSdsfAqcDRMRXgI8A/17SEeAQcEVEylZHZmY2VIPMxvkuoA7X3ADc0O89zMwsG15BO2SNm3V7uqSZFcXBfoiaF0LVi5cBDvhmlisH+yFqtUnIf/m73R7tm1muHOyHqF2p4hdeOQx4tG9m+XCwz0habr7VJiHNWm0JaGaWlbEN9nk+GG2Vm/+td09zx47ZoZYqNjPrxlhuXlIPvlns6tSNVrn5+5+Yc6liMyuFsRzZtwq+w0qVtNvA26WKzawMxnJk3y74DkOrUXlau7cENLMijOXIvtWD0WGlStK2EWw3WnepYjPL21gG+16Db7daPfTtdWMRr6o1s7yNZbAfxq5OnVbDdjta96paMyvCWAZ7yD5VktVD37wfHpuZwRgH+251m1LJ6qFv3g+PzcxgTGfjdKuX+fi9zLhpJ6vPMTPrRaWDfbuUSrNrVq9gYuGCY9r6eeib1eeYmfVi0D1oL5H0pKQ9kjaknH+TpNuT8w9KWj7I/bLWS0olq/nxnmdvZkXoO2cvaQHwJeAiYC/wkKStEfFYw2UfB16IiF+TdAXw34DfGaTDWep1Pn5WD309z97M8jbIyH4VsCcino6IV4GvAWuarlkD3JK8/jpwYX0D8jJwSsXMqmKQ2TjTwLMNx3uB97S6JiKOSHoR+BXgZ80fJmk9sB7g9NNP77kzvS5Uql9/6PBRFkgcjWDaC5zMbEyV5gFtRGyKiFpE1Kampnp6b69VLhuvBzga8fqI3oHezMbRIMF+FljWcLw0aUu9RtKJwC8DPx/gnql6mVXTz/VmZqNukGD/EHCmpDMknQRcAWxtumYrsC55/RHgvoiIAe6ZqteFSl7YZGZV03fOPsnBXw1sAxYAmyNit6QvADMRsRW4CfhLSXuAA8z/QshcN7NqGnP6JyQ5+nbXm5mNk4HKJUTE3cDdTW2fb3j9/4DfHuQe3ehU5bK5+FhaoPcsHDMbZ2NRG6dTlcu0HD3AAonXIlxm2MzG3lgEe2i/UKlVLv61CH608UPD7JaZWSmUZurlMLn4mJlVXSWCvVfKmlnVjU0ap51h7FxlZjZKKhHswcXHzKzaKpHGMTOrOgd7M7MKcLA3M6sAB3szswpwsDczqwANoQjlwCTNAT9uc8liUjZAqRB//2p/f/Dfgb//8d//bRHRcjOQUgb7TiTNRESt6H4Uxd+/2t8f/Hfg79/793cax8ysAhzszcwqYFSD/aaiO1Awf3+r+t+Bv3+PRjJnb2ZmvRnVkb2ZmfXAwd7MrAJGLthLukTSk5L2SNpQdH/yJGmZpPslPSZpt6RPFd2nIkhaIGmnpL8vui95kzQp6euSnpD0uKT3Fd2nPEn6TPL//Ucl3Sbpl4ru07BJ2ixpv6RHG9reKmm7pKeSPxd1+pyRCvaSFgBfAj4InAVcKemsYnuVqyPAZyPiLOC9wFUV+/51nwIeL7oTBfkfwLcj4u3AO6nQ34OkaeA/ALWIeAewALii2F7l4mbgkqa2DcC9EXEmcG9y3NZIBXtgFbAnIp6OiFeBrwFrCu5TbiJiX0Q8nLx+mfn/0CtVpF/SUuBDwI1F9yVvkn4ZeD9wE0BEvBoRBwvtVP5OBCYknQicDDxXcH+GLiIeAA40Na8Bbkle3wKs7fQ5oxbsp4FnG473UrFgVydpObASeLDgruTtvwN/ALxWcD+KcAYwB/zvJI11o6RTiu5UXiJiFvhT4CfAPuDFiLin2F4V5tSI2Je8/ilwaqc3jFqwN0DSm4E7gE9HxEtF9ycvki4D9kfEjqL7UpATgXcBX46IlcA/0cU/38dFkpdew/wvvSXAKZL+dbG9Kl7Mz5/vOId+1IL9LLCs4Xhp0lYZkhYyH+hvjYg7i+5Pzs4FPizpGeZTeBdI+qtiu5SrvcDeiKj/a+7rzAf/qvgA8KOImIuIw8CdwL8suE9FeV7SaQDJn/s7vWHUgv1DwJmSzpB0EvMPZ7YW3KfcSBLz+drHI+KLRfcnbxHxuYhYGhHLmf/f/r6IqMzILiJ+CjwraUXSdCHwWIFdyttPgPdKOjn5b+FCKvSAuslWYF3yeh3wjU5vGKkNxyPiiKSrgW3MP4nfHBG7C+5Wns4FPgY8ImlX0vaHEXF3cV2ynP0+cGsy2Hka+L2C+5ObiHhQ0teBh5mfmbaTCpRNkHQbcB6wWNJe4FpgI/A3kj7OfDn4j3b8HJdLMDMbf6OWxjEzsz442JuZVYCDvZlZBTjYm5lVgIO9mVkFONibmVWAg72ZWQX8f16IOhf2d0MfAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "# un exemple simple x réel et y aussi\n", + "rng = np.random.RandomState(42) #pour générer les mêmes données\n", + "#constituer un exmple de points aléatoires\n", + "x = 10 * rng.rand(50)\n", + "print('la taille de notre échantillon est :',x.shape)\n", + "y=2*x-1 + rng.randn(50) # définir une relation entre x et y + bruit\n", + "#afficher data y=f(x) [y en fonction de x] comme un nuage de points\n", + "plt.scatter(x, y);\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "5c7f44f9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "la tailles des entrées est : (50, 1)\n", + "----- la solution -----\n", + "la valeur trouvée de a est : 1.9776566003853107\n", + "la valeur trouvée de b est : -0.9033107255311146\n", + "[4.04083078]\n", + "[-2.88096733 -0.02435224 2.83226285 5.68887794 8.54549303 11.40210812\n", + " 14.25872321 17.1153383 19.97195339 22.82856848]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYcUlEQVR4nO3df5DcdX3H8dc7dwdmE0GSnDdA2D1IkDbR+iMXRXQcW6yD6ARbhZFs5Dp1vLFqi04aG8yMmjDnYFErg9VOqkj0ljDBn4xQlaF2bEdFDmv5EYpYundAQ3IkYwiEIZe7d//47oW7y/e7v3e/3+/e8zGzs7vf293vOzeX133u8/38MHcXACB9FsVdAACgPgQ4AKQUAQ4AKUWAA0BKEeAAkFLd7TzZihUrvL+/v52nBIDUu++++5529975x9sa4P39/RodHW3nKQEg9cxsLOw4XSgAkFIEOACkFAEOAClFgANAShHgAJBSBDgAtNrhw9LatcF9ExHgANBqd9wh7d0r3XlnUz+WAAeAVtm4UVq6VBocDJ5fdVXwfOPGpnw8AQ4ArbJjh5TNSj09wfOeHimXk669tikfT4ADQKusXh2E+OSktGRJcL99u7RqVVM+ngAHgFbasycI7+3bg/vbbmvaR7d1LRQAWHC2bJFuvFHq65M2bZIef7xpH02AA0ArrV//4uO+vuDWJHShAEBKEeAAkFIEOACkFAEOAClFgANAShHgAJBSBDgApBQBDgApRYADQEoR4ACQUgQ4AKQUAQ4AKUWAA0BKEeAAkFIVA9zMzjGzn5rZXjN7yMyuLh1fZmZ3mdmjpfszWl8uANSgRbvBJ0U1LfDjkja7+xpJF0r6iJmtkbRV0t3ufr6ku0vPASA5WrQbfFJUDHB33+fuvy49PiLpYUlnS7pM0q7Sy3ZJeneLagSA2rR4N/ikqKkP3Mz6Jb1W0j2S+tx9X+lLT0kK3WbCzIbMbNTMRicmJhqpFQCq0+Ld4JOi6gA3s6WSviPpY+7+zOyvubtL8rD3uftOdx9w94He3t6GigXQGQqFgvr7+7Vo0SL19/erUCg09wQt3g0+KaoKcDPrURDeBXf/bunwfjM7s/T1MyUdaE2JADpJoVDQ0NCQxsbG5O4aGxvT0NBQ80O8hbvBJ4UFjecyLzAzBX3ch9z9Y7OOXy/poLtfZ2ZbJS1z90+U+6yBgQEfHR1tvGoAqdXf36+xsbGTjudyORWLxead6N57g26Uvj5p//5gN/iBgeZ9fhuZ2X3uflLx1QT4myX9u6QHJE2XDn9SQT/4HklZSWOSrnD3Q+U+iwAHsGjRIoXljplpeno65B2ICvDuSm909/+QZBFfvrjRwgAsLNlsNrQFns1mY6gm3ZiJCaCthoeHlclk5hzLZDIaHh6OqaL0IsABtFU+n9fOnTuVy+VkZsrlctq5c6fy+XzcpaVOxT7wZqIPHABqF9UHTgscAFKKAAeAlCLAAbRdy2diLhAEOIC2ipqJ+eEPf5hQrxEXMQG0VdRMTDObM8Enk8kwOqWEi5gAEmF8fDz0+PzG5NGjR7Vt27Z2lJRaBDiAtqplxmVU2CNAgANoq7CZmMGaeSdjen15BDiAipo5aiRsJuaHPvQhptfXw93bdlu3bp0DSJeRkRHPZDIzm7a4JM9kMj4yMtL08+RyOTczz+VyTf/8NJM06iGZyigUAGXVtX734cPSRRdJP/+5dPrprS1wAWAUCoC6RF1ILHuBscN3g08KAhxAWVEXEkOPL5Dd4JOCAAdQVk3rdy+Q3eCTggAHUFYt63cX7rlHfzUxocnnn9dzZpo+dqwjd4NPCi5iAmiKmTVOvnH0qN4u6VpJn5L0+ze8Qblf/jLm6tKNi5gAWmrbtm06evSorpd0gaQvSnqFpI+GjGBBc1Tc1BgAqjEzKmX239gHJN2xf38s9SwEtMCBDtXuNbdrGq2CpiDAgQ4UteZ2oVBoWbCz23z7cRET6EBRsyeXL1+u559/XkePHj1xrJnrbhcKBW3btk3j4+PKZrMaHh5mPe8m4CImsIBEzZI8ePDgnPCWmrvudj6fV7FY1PT0tIrFYtXhzRZr9SHAgQ5Ua79znOtul+vuQXkEONCBovqjly9fHvr6OC80zgw/nI3deKpDgAMdKGr25A033JC4C411LZYFSYwDBzpWPp+P7INO0oXGbDYbesGV4YeVVWyBm9lNZnbAzB6cdewzZvakmf2mdLu0tWUCaJZ6LzS2CsMP61dNF8rNki4JOf4P7v6a0o1Ff4EUi3MUSC2LZWGuil0o7v4zM+tvQy0AYjAzCmTmQuLMKBBJbQvRct09iNbIRcyPmtn9pS6WM6JeZGZDZjZqZqMTExMNnA5AKzAKJL3qDfCvSlol6TWS9kn6QtQL3X2nuw+4+0Bvb2+dpwPQKowCSa+6Atzd97v7lLtPS/pnSa9vblkA2oVFqNKrrgA3szNnPf0zSQ9GvRZAGx0+LK1dG9xXiVEg6VXNMMLdkn4h6QIze8LMPiDp783sATO7X9IfS/p4i+sEUI06doNnFEh6sRoh0Ak2bpRuv1164QXp+HGpu1s69VRpwwbpllvirg4NYjVCoJOxG/yCRIADnWD16iDEJyelJUuCe3aD73gEONAp9uwJwnv79uD+ttvirggtRoADKVFxuvuWLdIjj0ibNwf3W7bEUyjahtUIgRSoarr7+vUvvqGvL7iho9ECB1KA6e4IQ4ADKcB0d4QhwIEUYLo7whDgQAow3R1hCHAgRtVupMB0d4RhKj0Qk/kjS6SgVU0wYz6m0gMJw8gSNIoAB2LCyBI0igAHYsLIEjSKAAdiwsgSNIoAB2LCyBI0igAH2iRsyGA+n1exWNT09LSKxSLhjZqwmBXQBlUtRgXUiBY4UIdqJ+DMYMggWoEAB2pQKBS0YsUKbdq0SWNjY3J3jY2N6W8/+EH9fuXKyN3gaxkyWOsvByxcBDhQpZlukIMHD570tT9+/nm97MknI3eDr3bI4Mw5Zv9yGBoaIsQRigAHqlAoFDQ4OHhSN0hB0hFJu2YOXHWVtHRpsEv8LNUOGaSrBbUgwIEKZlrFU1NTJ33tU5LGJR2bORCxG3y1QwaZnYlasJgVUEF/f7/GxsYiv/4eSbsl6dRT1TM1Je3eLb33vU09Vy6XU7FYrOszkX4sZgXUqVLr9wpJR810/3ve0/Bu8MzORC0IcKCCSmuTXC/pFe56y/e/r+989rMN7QbP7EzUgi4UoIKwdbuj0NWBVojqQmEmJlDBTOt3cHAw9ELmbFxsRDvRhYKO1qxJMfl8XtPT0xVfx1KwaCcCHB2r2ZNiKoUzFxvRbhUD3MxuMrMDZvbgrGPLzOwuM3u0dH9Ga8sEatfsSTFhI0TMTJK42IhYVNMCv1nSJfOObZV0t7ufL+nu0nMgUZo9KSZshMi3vvUtuTtLwSIWVY1CMbN+ST9091eWnj8i6a3uvs/MzpT0b+5+QaXPYRQK2ilqUszy5cv19NNPx1ARUJ9mT+Tpc/d9pcdPSeorc+IhMxs1s9GJiYk6TwfUbnh4WD09PScdP3LkCItDoSM0fBHTgyZ8ZDPe3Xe6+4C7D/T29jZ6OqBq+Xxep5122knHjx07dqIfnKVbkWb1jgPfb2ZnzupCOdDMooBmOXToUOjx8fFxdslB6tXbAr9d0mDp8aCkHzSnHKAx81vUy5YtC33dsmXLWLoVqVexBW5muyW9VdIKM3tC0qclXSdpj5l9QNKYgvV8gFiFtah7enrU3d2t48ePz3ntM888E7oxg8RsSqRHxRa4u1/p7me6e4+7r3T3r7v7QXe/2N3Pd/e3uXv436lAk1TTVx3Wop6cnAyd/j45Oamurq7QczGbEmnBWihIvGr7qqNazlFDZaemppTJZOaEPrMpkSZMpUfiVdtXHdVyjmppz8yeZOlWpBUBjsQrO6Py8GFp7Vrp8OHIzRCGhoYiN0nI5/MqFouanp5mNiVShwBH4pXd0f2OO6S9e6U774zcDOErX/kKLW10JDZ0QOKFbahwa1eX/ry7O9iD8vhxqbtbOvVUacMG6ZZbYqwWaD72xERqhbWsX/K5z6nnvPOCXeClyN3ggU5GgCNxwoYMzu+rvmzzZmnHDmlyMthIeHJS2r5dWrUq7vKBtiHAkSg1bcKwZ08Q3tu3N7wbPJBG9IEjUaKWgA3dLPjee6VsVurrk/bvlx5/XBo4qZsQSD02NUYq1LQJw/r1Lz7u6wtuwAJCFwoSpeyQQQBzEOBIlKjJOExvB05GgKNl6tksIWoyDpNugJNxERMtETb5JpPJEMZAHZjIg7ZiswSg9QhwtERNo0kA1IUAR0swmgRoPQIcLcFoEqD1CHC0BKNJgNZjFAoAJByjUFC3esZzA2g91kJBWdVuKAyg/WiBoyzGcwPJRYBjjvndJWFLu0rtGc9N1w1QHgGOE8I2UzCz0Ndms9k5O8K3o5bIjR2ABYpRKDghqsVtZpr9c3JiTRMzKZ8PNhG+8sq21BK6sQPQ4aJGoRDgOGHRokWK+nnI5XIaHx9XNpvVT886S+fef7/0wgst2xE+qhYz0/T0dFPOAaQFwwhRUdQ095lW78yGwud+85vBVmYt3BGeqfhAZQQ4Tgib/m5mGhsbm3sRcfXqsjvCN+PiI1PxgSq4e903SUVJD0j6jaTRSq9ft26dI9lGRkY8l8u5JDczl3TilslkfGRkJHjh5Ze7n366++c/H9xfccWJ92cymej31VGLmXkul6vrM4BOEJWvDfWBm1lR0oC7P13N6+kDT4+KFxEjdoTn4iPQfOxKj5pUXM87Ykd41gEH2qfRPnCX9BMzu8/MhsJeYGZDZjZqZqMTExMNng7tUu9FRC4+Au3TaIC/2d1fJ+kdkj5iZm+Z/wJ33+nuA+4+0Nvb2+Dp0C71XkTk4iPQPg0FuLs/Wbo/IOl7kl7fjKIQv3rX82YdcKB96u4DN7Mlkha5+5HS47dL2tG0ypBa+XyewAbaoJGLmH2SvldaK6Nb0i3u/qOmVIXYsYwskHx1d6G4+2Pu/urSba2708nZAnGtyMcyskDyMRMzwapdka8VIc9wQCD5CPAEq6YV3OxlV2d+GURN8GI4IJAcBHiCRbV2x8bGtGLFChUKhaZ2dcz+ZRCG4YBAsrCcbIKV2xFHkk455RQdO3Ys9Gv1LLta7ny5XE7Dw8NcwARiwHKyKRQ2KWa2Y8eOqaurK/RrUV0d5frLo1r8ZqZisUh4AwlDgCfYzKSYcqampqqe+Vipv5xp8EC6EOAJl8/nlcvlIr++fPnyqmc+VuovZxo8kDJha8y26sZ64PUZGRmZs772/Fu1a2XPX9975mZmc87FGtxAsqgV64HXiouY9Zu9O/xpkn4u6SJJz5SOndhouEw/NWt1A+nERcyUm92N8k5JayVdOuvr1QwdpIsE6CwEeEoMDw/r1q4uHZG0q3Tsm5KOSJoZR1JpliQrBQKdhS6UFPnBF76gNVu36qzjx7VE0nMKNiXdIOkx0RUCdCq6UDrAZZs36/zdu7V40SI9K+kUSZ9WEN50hQALDwGeNnv2aNFLX6pHNm7U82a6XKIrBFig6EJJm4jd4AF0Lnal7xQRu8EDWHjoQgGAlCLAYxbXjjsA0o8ulBix7ySARtACj1HU4lKDg4O0yAFURIC32ewuk6jNE6amppqyPRqAzkaAV9DMPur563FXg53gAUShD7yMZvdRh3WZVIOd4AGEoQVeRjM3DJbKB7GZ1bw9GoCFjQAvIypw620RRwVxLpfT9PS0du3axXKvAKpGgJfRyB6RYX3nldbjzufzGhwcPNES7+rq0uDgIEMKAYQiwMuodwOEqM2DJZVdj7tQKGjXrl2ampqSFIxG2bVrF6NQAIRiMasKCoWCtm3bpvHxcWWzWQ0PD1dsEde7dRlbngEIw3rgdcrn8yoWi5qenlaxWJwT3lFDDOvtO292nzuAzsYwwjqVG2KYzWZDW9KV+s7rfR+AhamhFriZXWJmj5jZ78xsa7OKmq1QkPr7pUWLgvu4uoMLBelV2cN6yNbqVdnDuvrqeyKHGNbbd17N+5L0/Yi7jiTUQB3UEWsd7l7XTVKXpP+RdJ6C3b3+S9Kacu9Zt26d12JkxD2TcZdevGUywfF2mqnjShXcJX+fbnHpWZeudElzbmZWes+I53I5NzPP5XI+UmXR5d6XtO9HnHUkoQbqoI521SFp1MNyOOxgNTdJb5T041nPr5F0Tbn31Brgudzcf/jMLZer7R9fi7AA/X7mSj+iJX5M3e6SH1O3H9ESL2jDSQGea2FxcXw/klpHEmqgDupoVx2tCPD3SvrarOfvl/TlkNcNSRqVNJrNZmsq2iz8H19q5DbdyMiIZzKZOYGcyWR8lX7rD+kP/Vktdpf8WS32B7XGz9NvT3pttS3terT7+5HkOpJQA3VQR7vqiArwlo9Ccfed7j7g7gO9vb01vTfq2l2rrulFTZ0vdi3Wp7RDp2hSR7REp2hSn9Z2PaaeE6/r6upq+cbC7f5+JLmOJNRAHdQRdx2NBPiTks6Z9Xxl6VjTDA9L867pKZMJjrdC1HC9qam/0/vsVj2nJfqMtus5LdHl2i3pkydeMz093fIZk+3+fiS5jiTUQB3UEXsdYc3yam4KhiA+JulcvXgRc22599TaB+4edPbncsGfHLlcay9C5HK5k/q0Jfny5cv9wq53+cv1K5em/OX6la/T29vW9z1bO78fSa8jCTVQB3W0ow5FdKE0NBPTzC6V9CUFI1Jucveyv1eSPhNz/thuKRjGt3jxYh08eDDyfZlMpuXdJwAWrpbMxHT3O939Fe6+qlJ4p0E+nw9dq+TQoUOR75m/ngkAtAtroVSBNUoAxIm1UBpQ78xKAGglArwKUV0rdJsAiBNdKACQcHShAECHIcABIKUIcABIKQIcAFKKAAeAlCLAASClCHAASCkCHABSigAHgJRKR4AfPiytXRvcAwAkpSXA77hD2rtXuvPOuCsBgMRIdoBv3CgtXSoNDgbPr7oqeL5xY7x1AUACJDvAd+wIdv/sKW0e3NMj5XLStdfGWxcAJECyA3z16iDEJyelJUuC++3bpVWr4q4MAGKX7ACXpD17gvDevj24v+22uCsCgETojruAirZskW68UerrkzZtkh5/PO6KACARkh/g69e/+LivL7gBAFLQhQIACEWAA0BKEeAAkFIEOACkFAEOACll7t6+k5lNSBpr2wlrs0LS03EXUYe01i1Re1yoPR6N1J5z9975B9sa4ElmZqPuPhB3HbVKa90StceF2uPRitrpQgGAlCLAASClCPAX7Yy7gDqltW6J2uNC7fFoeu30gQNAStECB4CUIsABIKUWfICb2SVm9oiZ/c7MtsZdT7XM7Bwz+6mZ7TWzh8zs6rhrqpWZdZnZf5rZD+OupRZm9jIz+7aZ/beZPWxmb4y7pmqY2cdLPysPmtluM3tJ3DWVY2Y3mdkBM3tw1rFlZnaXmT1auj8jzhrDRNR9fenn5X4z+56ZvawZ51rQAW5mXZL+UdI7JK2RdKWZrYm3qqodl7TZ3ddIulDSR1JU+4yrJT0cdxF1uEHSj9z9DyS9Win4N5jZ2ZL+RtKAu79SUpek98VbVUU3S7pk3rGtku529/Ml3V16njQ36+S675L0Snf/I0m/lXRNM060oANc0usl/c7dH3P3Y5JulXRZzDVVxd33ufuvS4+PKAiRs+OtqnpmtlLSOyV9Le5aamFmp0t6i6SvS5K7H3P338daVPW6JS02s25JGUn/F3M9Zbn7zyQdmnf4Mkm7So93SXp3O2uqRljd7v4Tdz9eevpLSSubca6FHuBnS5q9xc8TSlEIzjCzfkmvlXRPzKXU4kuSPiFpOuY6anWupAlJ3yh1/3zNzJbEXVQl7v6kpM9LGpe0T9Jhd/9JvFXVpc/d95UePyUpjTu8/KWkf2nGBy30AE89M1sq6TuSPubuz8RdTzXM7F2SDrj7fXHXUoduSa+T9FV3f62k55TMP+PnKPUVX6bgF9BZkpaY2aZ4q2qMB2OgUzUO2sy2Kej+LDTj8xZ6gD8p6ZxZz1eWjqWCmfUoCO+Cu3837npq8CZJG8ysqKDb6k/MbCTekqr2hKQn3H3mr51vKwj0pHubpP919wl3n5T0XUkXxVxTPfab2ZmSVLo/EHM9VTOzv5D0Lkl5b9IEnIUe4PdKOt/MzjWzUxRc1Lk95pqqYmamoB/2YXf/Ytz11MLdr3H3le7er+B7/q/unorWoLs/JelxM7ugdOhiSXtjLKla45IuNLNM6WfnYqXg4muI2yUNlh4PSvpBjLVUzcwuUdBluMHdjzbrcxd0gJcuKnxU0o8V/DDvcfeH4q2qam+S9H4FrdfflG6Xxl3UAvHXkgpmdr+k10j6bLzlVFb6i+Hbkn4t6QEF//cTPS3dzHZL+oWkC8zsCTP7gKTrJP2pmT2q4K+K6+KsMUxE3V+W9FJJd5X+r/5TU87FVHoASKcF3QIHgDQjwAEgpQhwAEgpAhwAUooAB4CUIsABIKUIcABIqf8HYg5Alt9WFlsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + " # On peut résoudre ce problème de régression linéaire avec sklearn\n", + "# on choisit et on charge le modèle\n", + "from sklearn.linear_model import LinearRegression\n", + "\n", + "X = x[:, np.newaxis]\n", + "print('la tailles des entrées est :',X.shape)\n", + "\n", + "models = LinearRegression(fit_intercept=True)\n", + "models.fit(X, y)\n", + "\n", + "a=models.coef_\n", + "print('-'*5,'la solution','-'*5)\n", + "print('la valeur trouvée de a est : ', a[0])\n", + "\n", + "b=models.intercept_\n", + "print('la valeur trouvée de b est : ', b)\n", + "\n", + "#solution pour un seul point\n", + "xnew=np.array([2.50])\n", + "ynew = models.predict(xnew.reshape(-1, 1))\n", + "print(ynew)\n", + "\n", + "#solution pour un tableau de points\n", + "xnew=np.linspace(-1,12,10)\n", + "#s'assurer d'avoir le bon format\n", + "xnew=xnew[:, np.newaxis]\n", + "ynew = models.predict(xnew)\n", + "print(ynew)\n", + "\n", + "plt.scatter(x, y,color='k');# données apprentissage en noir\n", + "plt.scatter(xnew, np.zeros(xnew.shape[0]),color='b');# x_i non observés en bleu\n", + "plt.scatter(xnew, ynew,color='r', marker='*');# y_i prédit ave la régression␣\n", + "\n", + "\n", + "\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "bb29179b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50,)\n", + "Biais ou erreur en chaque point : \n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAi/klEQVR4nO3deXiU9bn/8fedsGhURBGsFTJpXXpEEZW4V+tWD1attj9PtQwtKhCkVRTb4hKtaziu1A2XAFYko2JdjrjUDUXrEbUBF7Yi6klY1BpEhcqe3L8/ngkNyUwyWWYmT/J5XddcZCbPzHOr+Mk339XcHRERCZ+cbBcgIiItowAXEQkpBbiISEgpwEVEQkoBLiISUl0yebNddtnFCwoKMnlLEZHQmzNnzkp3713/9YwGeEFBAeXl5Zm8pYhI6JlZZaLX1YUiIhJSCnARkZBSgIuIhJQCXEQkpBTgIiIhpQAXEQkpBbiISEgpwEVE0unLL+Gii+Cbb9r8oxXgIiLp4A5/+Qv07w8TJ8Lrr7f5LRTgIiJt7dNP4ec/h1/8Avr1gzlz4NRT2/w2CnARkbbiDlOmBK3u55+Hm26Ct96C/fdPy+0yuheKiEiH9cknUFQEM2fC0UfD5Mmw115pvaVa4CIirVFdDbfdBgMGwDvvwD33wKuvpj28QS1wEZGWW7gQhg8PuklOPjkI7379MnZ7tcBFRJpr40a47jo48EBYsgRiMXj66YyGN6gFLiLSPH//e9DqnjcPzjoL7rgDejc4ayEj1AIXEUnF2rUwbhwcdliwOOepp+Dhh7MW3qAWuIhI0157DUaMgI8+gpEj4eabYccds12VWuAiIkmtXg2jR8Mxx0BNTTBFsLS0XYQ3KMBFRBJ79lnYd98gsH/3u6DP+7jjsl3VVhTgIiJ1VVVBNAqnnAI9e8Ls2XDLLZCXl+3KGlCAi4hAsAz+kUeCZfB/+QtcfXWwh8khh2S7sqQ0iCkismJF0Nf99NNBYE+ZAvvtl+2qmqQWuIh0XjU1QR93//7w8stw663w5puhCG9QC1xEOqvaKYGzZsGxx8KkSbDHHtmuqlnUAheRzqW6Omhp778/zJ0bBPfMmaELb1ALXEQ6k/nz4dxzg+Xwp54abD61++7ZrqrFmmyBm1k/M3vVzBaa2QIzuzD++s5m9pKZLYn/uVP6yxURaYGNG4NZJQcdBBUVwWyTp54KdXhDal0om4HfuXt/4DDgt2bWH7gUmOnuewEz489FRNqXt98Ogvuaa+DMM4MtYM88E8yyXVmrNRng7v6Zu8+Nf70GWATsDpwGTI1fNhU4PU01iog037ffwsUXw+GHByfCP/MMTJsGu+yS7craTLMGMc2sADgQeBvY1d0/i3/rc2DXJO8pMrNyMyuvqqpqTa0iIql55ZVgkPJPf4JRo2DBguDAhQ4m5QA3s+2Bx4GL3H113e+5uwOe6H3uXuruhe5e2DuL2y6KSPsRi8UoKCggJyeHgoICYrFY23zw118HUwOPPx5ycoIpgvfcAz16tM3ntzMpzUIxs64E4R1z9yfiL//TzHZz98/MbDfgi3QVKSIdRywWo6ioiLVr1wJQWVlJUVERANFotOUfPGNGsJry88+Dfbuvvhq23bYNKm6/UpmFYsAUYJG7T6jzrRnAsPjXw4Cn2r48EeloiouLt4R3rbVr11JcXNyyD/zii+BknNNOC/q3334bbryxw4c3pNaFciTwK+A4M3sv/vgJcAPwYzNbApwQfy4i0qilS5c26/Wk3IOzKPv3hyefDM6oLC+HwsI2qDIcmuxCcfc3gGTzbY5v23JEpKPLz8+nsrIy4espW7YMzjsPnnsuOOJsypQgyDsZLaUXkYwqKSkhr97e2nl5eZSUlDT95pqaYFBy332DAcrbboM33uiU4Q0KcBHJsGg0SmlpKZFIBDMjEolQWlra9ADmkiXBplO/+Q0cemiwLP7CCyE3NzOFt0MWzADMjMLCQi8vL8/Y/USkA9i8GSZMgKuugu7dg6/POadDrKRMlZnNcfcGnfvazEpE2q/334fhw4OTcU4/HSZOhO9+N9tVtRvqQhGR9mfDBrjyymBGybJl8Oij8MQTCu96FOAiknGNrsScPRsOPBCuvx6GDAk2n/qv/+pUXSapUheKiGRUspWYf581i/2nT+fsNWv4NDeXD//wB4676aYsV9u+qQUuIhmVaCXm4WvXcuHkyZy7Zg13A/tUV3PqxIltt0dKB6UAF5GMqrvisicwGXgZ2AgcBVwA/ItWLq/vJBTgIpJRtSsuTwcWEmyk9N/AQOCNetc2e3l9J6MAF5GMunXcOB7LzeVJgoMEDgGKzdiQ4NpmLa/vhBTgItKkNtm/2x0efJD/d8UVnG7GTT17ciiwKhLhvPPOa/ny+s7M3TP2GDRokItIuJSVlXleXl7toS0OeF5enpeVlaX+IZWV7oMHu4P7EUe4L1qU8D6RSMTNzCORSPM+v4MDyj1BpmopvYg0qqCgIOHugZFIhIqKisbfXLv51KWXBi3wG24I9jLJ0S//zaGl9CLSIi3ev3vxYhgxItgt8MQT4b77oKCg7QvsxPRjUEQalWwgMekA46ZNQUt74MDgMOEHHoDnn1d4p4ECXEQa1az9u999N9jq9bLLglPgFy6EYcO0DD5NFOAi0qiU9u9evx6Ki6kpLKTq/fc5AyiYM4fYzJlZq7sz0CCmiLTO//5vsOXr4sU8mJvLRdXVfBX/Vl5eXmqHNUijkg1iqgUuIi3zr3/BmDFw1FGwfj2/6tOHYXXCG7QcPt0U4CLSfC+8EJxLedddcMEFMH8+saqqhJdqOXz6KMBFOqg2WT1Z36pVcPbZMHgw5OXB3/4Gt98O22/f/Nkq0moKcJEOqHbP7crKStx9y57bsVis5cH++OPB6e+xGBQXBzNOjjxyy7dbddq8tEyi5ZnpemgpvUhmRCKRrZa+1z569erV/GXxn37q/vOfB8vgDzrI/d13k16q5fDpQZKl9ApwkQ7IzBIGeLJHJBJp+CE1Ne733+/es6d79+7uN9zgvmlTWupV8DcuWYCrC0WkA2puv3ODgcaKCvjP/4Rzz4UBA+CDD+CSS6BL2+++0Vh3jzROAS7SASXrj+7Vq1fC67cEfnU13HEH7LdfcLjwxIkwaxbsvXfaak10xJqmH6ZGAS7SASVbPXn77bcnH2hctCiY033hhXD00cE+JhnYObDFm2WJdiMU6aii0WjSFZDFxcUsXbqU/Px8xl9zDUMqKoLuku23h2nTIBrN2P4l+fn5Cber1fTDpjX5o9XM7jezL8xsfp3XrjazFWb2Xvzxk/SWKSJtJRqNUlFRQU1NDRWPP86QCRPgiivg9NODVvjQoRndfErTD1suld+NHgAGJ3j9T+5+QPzxXNuWJSJptW5dcMjCoYdCVRWvXXQRBW+/Tc53vtN2i35SlNJmWZJQk10o7v66mRVkoBYRyYTXXw8OWliyBEaM4NGDD+acsWO3DCTWzgIBMhaijXX3SHKtGZ0438w+iHex7JTsIjMrMrNyMyuvSrJXgohkwOrVwaDkj34EmzfDyy/DpEmMGz9es0BCqqUBfg+wB3AA8Blwa7IL3b3U3QvdvbB3794tvJ2ItMpzzwVTA++9F8aOhXnz4PjjAc0CCbMWBbi7/9Pdq929BpgEHNK2ZYlIm1i5En71q+B0nB12gDffhAkTYLvttlyiTajCq0UBbma71Xn6M2B+smtFJAvcYfr0YPOpRx6BP/4R5s6Fww5rcKlmgYRXk4OYZvYwcAywi5ktB64CjjGzAwj2UagARqWvRBFplk8/hdGjYcYMKCyEmTOD5fBJ1A4e1p0bXlJSokHFENCRaiIdhTtMmQK//z1s2ADXXx+sqkzD/iWSWcmOVNN/WZGO4JNPYORIeOWVYJbJ5Mmw557ZrkrSTHuhiIRZdTX86U/BDJPycrjvviDEFd6dglrgImG1YEFwGvzbb8Mpp8A990DfvtmuSjJILXCRkKg9Cq27GRN69qR64ED4+GN46KFgwFLh3emoBS4SArWHHvRfu5angQHffMP03Fxyr72WM375y2yXJ1miFrhICFx32WVcs3YtbwE7AacCZ1VX8/sbb8xyZZJNaoGLtHezZvHMsmXsCdwLXAKsjn9Ly907N7XARdqrb76BUaPg2GPp0qULxwKj+Xd4g5a7d3YKcJH26JlnYN99g/ncv/89b913H+9oubvUowAXyaLamSU5OTkUFBTw2D33wJAhcOqpsPPO8NZbcPPNnHXuuTr0QBrQUnqRLKmdWVK7F/dZwB3Azrm55P7xj8GJOd26ZbVGaR+SLaVXC1wkS4qLi1m7di27AzOAh4GPgcF9+gS7Byq8pQmahSKSJcsqKykCbib4H3EsQQvcP/88q3VJeCjARbLho494o3t3Dt+wgZnASOD/4t+KaGaJpEhdKCKZtHkz3HILDBjAoJwcftOtGyfw7/DWzBJpDgW4SKbMmwdHHAF/+AOceCLdlizhyPvv18wSaTF1oYik24YNMH48NSUlrHLnfOCt996jZNYsotGoAltaTAEukk5vvx1s+bpgAdNzc7mgpoYvAZYupaioCEABLi2mLhSRFqi/ACcWi219wbffwsUXw+GHwzffcHafPgyprg7CO27t2rUUFxdntG7pWBTgIs0Qi8XYZZddGDp0KJWVlbg7lZWVFBUV/TvEX3kF9t8/OCnnvPNgwQIerKpK+HmJNqNq8oeDSC13z9hj0KBBLhJWZWVlnpeX50DCx4B+/dxHjHAH9732cn/ttS3vjUQiCd8TiUSavEdeXp6XlZVl+J9W2hOg3BNkqgJcJAVlZWWem5ubNLxPBV8O7jk57uPGua9d2+D9qQRzqkEvnUuyAFcXikgTavcsqa6ubvC93gRL4GcAq7t2DQYtb7wRtt12q+ui0WhKm1El299b+35LItrMSqQJBQUFVFZWNng9CtwObA/c0LUre02axJBhw9Jyr0gkQkVFRas+W8JLm1mJtFD91m9f4BmgDFgMHAjc2aMH3qX1s3JLSkrI077fkiIFuEgTak+9MeA8YAFwDDAGOApYBHz55Zdbz0RpoVS7WkRAXSgiTYrFYtw0YgR3rl/P0cBLQBFQkeBadXVIOiTrQtFKTJHGbN5MdMUKzqyuZg1wDvBAI5drsFEySV0o0qG1alHM++/DoYfCJZfQ5ZRT2JfGwxt0yLBklgJcOqza6X9JV0wms2EDXHklFBbC8uXwl7/A44/TLRJp9G0abJRMazLAzex+M/vCzObXeW1nM3vJzJbE/9wpvWWKNF/tkWV1Nbn/yOzZcOCBcP31EI3CokVwxhlglnCGiJkBaLBRsiKVFvgDwOB6r10KzHT3vYCZ8eci7UqzFsX8619w0UVw5JHBRlTPPw8PPBCcDB+XaIbItGnTcHcqKioU3pJxKc1CMbMC4Bl33y/+fDFwjLt/Zma7AbPc/QdNfY5moUgmJVsU06tXL1auXPnvF156CYqKoKICzj8fxo+HHXbIXKEiTWjrhTy7uvtn8a8/B3Zt5MZFZlZuZuVVSXZkE0mHkpISunbt2uD1NWvWBP3gX30F554LJ54I3bvD3/4Gd96p8JbQaPUgZnyjlaTNeHcvdfdCdy/s3bt3a28nkrJoNEqPHj0avL5x40ZeHzsW+venZupUJvbowbaLF1MwdKi2bpVQaWmA/zPedUL8zy/ariSRtrNq1aqtnu8KPArcV1XFqu7d+WG3bpy/ejXrIfVZKiLtREsDfAZQu2vPMOCptilHpHXqz/veuc4g5K+BhcCpwHV5eRzizuz167d6v07JkTBpciWmmT1MsPXDLma2HLgKuAF41MyGA5XAL9JZpEgqaud9104drKyspGvXrnw/N5eJ1dUMBt4ARgCfbNrEJm3dKiHXZAvc3X/p7ru5e1d37+vuU9z9S3c/3t33cvcT3H1VU58j0hqprKisP+/bgKJNm3i/upofAucDRxPsILhp0yZyc3MT3kurKSUstBeKtHuJWtaJTnSv23LeG5gC/BB4HhgF1G9XV1dXk5eXt1XoazWlhImW0ku7l+qKyvz8fLoQrCp7H+hPMEBzSk5Og/CGf6+e1NatElYKcGn3Ul1ReffIkfzdjP8GniYI8Mfy8igaNSrpIQnRaJSKigpqamq0mlJCRwEu7V6yPuktr69fD5dfzk+uuoof9OjBqN69OdOMbeIt6rvvvlstbemQdKCDtHv1+8AhaEGXlpYSjURg+HD48EM45xy49VbYSXurSceiMzEltBJtInX/7bcTnT0bjjoq2P71xRfh/vsV3tKpKMCl3Uk0ZXCrvup77+XM666Du++GMWNg/nz48Y+zXbZIxmkaobQrjU4ZHDwYLr4YHnwQ/uM/4I034IgjslmuSFYpwKVdSTZl8I2LLiKakwOrVsEVV0BxMWyzTZaqFGkfFODSrtSfGvgdYCLw85UrYdCgoK974MCs1CbS3qgPXNqVulMGzybYfOok4L979oS33lJ4i9ShAJd2paSkhH222YYXgT8D84DDttmG/Lvugi76hVGkLgW4pE0qG1Btpbqa6MqVfODO4Wb8BhiWn8+4yZO16EYkATVpJC1S3YBqi4ULYcQImD2bLiedxPb33svd2hVQpFFqgUtapLoBFZs2wfXXw4EHwuLFMG0aPPssKLxFmqQWuKRFShtQzZkTHCr8wQfwi18EBwr36ZOhCkXCTy1wSYtGN6Batw4uuQQOOQSqquDJJ2H6dIW3SDMpwCUtSkpKEm7hOmno0GAq4E03Ba3vhQvh9NOzU6RIyKkLRdKidqCyuLiYpUuX0r9vX57Ye2/2LimB730PXn4Zjj8+y1WKhJta4JI2WzageuYZ5ruz9yuvwNixMG+ewlukDSjApUnNns9da+VKGDoUTj4ZevSAN9+ECRNgu+3SW7BIJ6EuFGlUs+dzA7jDo4/CBRfAV1/BH/8Il18O3btnqmyRTkEn8kijCgoKqKysbPB6JBKhoqKi4Rs+/RRGj4YZM6CwEKZMgf33T3+hIh2YTuSRlNTvLkkU3pBgnrc7TJ4M/fsHOwbefDPMnt2q8G5x141IJ6EuFNkiUXeJmZHot7St5nl//DGMHAmvvgo/+lEQ5Hvu2ea1NNl1I9LJqAUuWyRa/u7umNlWr+Xl5VFSUgLV1cGg5IABUF4O990Hr7zS6vBOVkvCpfginZgCXLZItvzd3bc6ULi0tJTowIHBcWa/+x0cd1ywIKeoCHLa5q9USkvxRTo5BbhskWz5e+2AZU1NDRUffkj0o4/goIOCrpNYDJ5+Gvr2zUgtyV4X6YwU4LJFouXvZkZlZSUFBQX89dprg2PNrr4azjgDFi2CIUOgXhdLWww+JluKX1JS0uzPEumw3L3FD6CC4NCU94Dypq4fNGiQS/tWVlbmkUjEATczB3xb8JvBN4N/u9NO7jNmNPr+vLw8B7Y88vLyvKysrMW1mJlHIpEWfYZIR5AsX1s1D9zMKoBCd1+ZyvWaBx4etVMIjwEmA3sA9wIT+/VjXiP90M2eNy4iTUo2D1zTCCWhrysruRcYBXwEHAvMAmz58kbfp8FHkcxpbR+4Ay+a2RwzK0p0gZkVmVm5mZVXVVW18naSEU8/zT9ycxkB3AzsTxDe0PQgogYfRTKntQH+Q3c/CDgJ+K2ZHV3/AncvdfdCdy/s3bt3K28naVVVFQxK/vSnbLPbbhzbvTvjgHXxb6cyiKjBR5HMaVWAu/uK+J9fAE8Ch7RFUZJh7vDQQ7DPPvDYY3DNNfT8+GNGTZnScP53E6sgo9EopaWlzX6fiDRfi/vAzWw7IMfd18S/PhG4ts0qk8xYtizYfOrZZ+HQQ4PNp/bdt1UfGY1GFdgiGdCaQcxdgSfjy6y7AA+5+/NtUpWkX00NTJoEf/gDbN4cLIkfMwZycwHtRSISBi3uQnH3T9x9YPyxr7urkzMN0rIj35IlwfL3886Dgw+G+fODk3Li4Q3ai0QkDLQSsx2rbQVXVlbi7ltawfVDPOWQ37wZbrkl2OL13XeDFvjLL8P3v9/gUk0HFAmBRKt70vXQSszmqV0RWf8RiUS2XJPyysf333cvLHQH95/+1H358oT3rLsSs6l7i0hmkGQlpgK8Hatdyp7o0atXr0bDdkvQrl/vfuWV7l26uPfu7T59untNTcL7Jfph0OQPBhFJu2QBriPV2rHGTsQB6NatGxs3bkz4PTOj5s03YfjwYKvXoUPhttugV68W3S8SiVBSUqIBTJEs0JFqIZRoUUxdGzduJLfOwGOtPGDS9tsH+3WvXh1MEZw2DXr1arS/PFn/tplRUVGh8BZpZxTg7VjtopjGVFdXbxXyxwHzzRi+Zk0wy2TBAvjJT4CmB0W1DF4kXBTg7Vw0GiUSiST9fq9evSgtLWVAv35MBmYCvXbdFV57De6+G3r02HJtU1MDtQxeJFwU4CHQWIB++eWXzBo7lrfWrGF4bi5ccgk9PvkEjm6wLU2TUwO1DF4kXDSIGRL1DxYG6APcAZwJfGDGimuv5aQrrkj6GdqrWyScNIgZcvW7UYYCC4HTgWJgkDujJ09u9DPURSLSsSjAQ6I2fPsBzwLTgMXAAcB4YDNNr5JUF4lIx6IulLCoqeGdc8+l/4MPYu5cDtwF1NS5RF0hIh2TulDC7MMP4ZhjOGTqVLY/4QRemjCByXl5W4W3ukJEOh8FeHu2eTPceGOw+dS8efDnP8MLL3D62LHqChERdaG0W++9FyyDnzsXfvYzmDgRdtst21WJSBaoCyUs1q+H4mIoLIQVK4Ijzp54QuEtIg205kQeaWu1m0/94x8wbFhwSs7OO2e7KhFpp9QCz7JYLEb//HzuNKPmyCP5tqoKnn8eHnhA4S0ijVKAZ1EsFmP68OE8t2wZvwUmAt9fu5bYypXZLk1EQkABni1ffUW3UaOYsWED64GjgTHAF+vWMWzYsLY9A1NEOiQFeIbFYjFG9enDZzvvzM++/ZbxBKsp/7fONdXV1Y2egSkiAgrwJrXlqfCPT5xI3rBh3FdVxefAwQT7mGxo5D06CV5EktEslEbUHoBQu4d2bYsYaN6iGXd48EGOHzOGbWpquAy4hWD/klToJHgRSUQt8EY0dQBCSioqYPBgOPts5tfUcABwAw3D28wSHo8GOhFHRBJTgDeiqQMQGlVTA3feCfvtF8zvvusufpWfz+IEl0YiEWpqapg6daq2exWRlCnAG9HiMyL/8Q++2GcfGDOG57/9liN33JFYz55cP358owEdjUYZNmzYlpZ4bm4uw4YN0x4nIpKQArwRzT4AYdMmGD+e6gED6PLhh/waOAl4c8WKLX3njW1CFYvFmDp1KtXV1UAwG2Xq1KmahSIiibl7xh6DBg3ysCkrK/NIJOJm5pFIxMvKyhJfOHeu+wEHuIM/k5fnfcCp94hEIo3eKxKJNHhPKu8TkY4NKPcEmardCFshFotx7eWXc87Spfwe2LTjjmx7//3knHEGif69mhk1NTUNPyguJyenRe8TkY5NuxG2sVgsxp+HD2fG0qVcCkwF9ty4kdi6dS3uO29xn7uIdEqtCnAzG2xmi83sIzO7tK2KavfWrGHz6NG8vGED3YATgBHAp+vWUVxc3OLDg3XosIg0S6J+lVQeQC7wMfB9oBvwPtC/sfeEsQ+8gb/+1T0/36vB/wS+Xb3+ajNz92b0ndfT0veJSMdFkj7w1gT44cALdZ5fBlzW2HvCEOBJA3TlSvdf/9od/OvvftePzMnRgKOIZESyAG/NUvrdgWV1ni8HDq1/kZkVAUXQ/vtyEy6dHzmSfu+8w9GPPAKrVjH/tNM46sUX+TrBoKK6O0Qkk9I+iOnupe5e6O6FvXv3TvftWqX+0vnvANPWrePoO+6Afv2gvJxT3nuPr9eta/De3NxcHSwsIhnVmgBfAfSr87xv/LXQqrtE/hxgIcFCnHHAQ2PGUHDaaVRWViZ8b01NjcJbRDKqNV0ofwf2MrPvEQT3WcCQNqkqS/Lz87HKSkqBHwOvASOBVb16sW706AYbW9V/r4hIJrW4Be7um4HzgReARcCj7r6grQrLuOpqHjvqKOYTdOSfBxwLrIhP62ssvNX3LSLZ0Ko+cHd/zt33dvc93D28CbZwIRx1FIVlZXw9cCD/ufvulJqRH9+rZNWqVUnfWn8/ExGRTOncBzps2gQ33gjXXQc77ABlZew+ZAizzba6rLi4OGHfdyQSoaKiIkPFiohsrfMupS8vh8JCuPJK+NnPglZ4NAr1whu0QlJE2qfOF+Dr1sG4cXDoobByJfzP/8Ajj0CfPknfEo1GG90GVkQkGzrXboSvvQYjRsBHH8HIkXDTTdCzZ/bqERFJQefejXD1ahg9Go45JjjqbOZMKC1VeItIqHX8AH/uOdh33yCwL74YPvgAjjsu21WJiLRaxw3wlSth6FA4+WTo0SM4WPjWW2G77bJdmYhIm+h4Ae4eDErusw9Mnw5XXQVz5waDliIiHUjHmge+YgX85jcwYwYcfDBMmQIDBmS7KhGRtOgYLXB3mDQJ+veHl16CW26B2bMV3iLSoYW/Bf7xx8GUwFdfDWaZTJoEe+6Z7apERNIuvC3w6mqYMCFoZc+ZA/fdF0wPVHiLSCcRzhb4/PkwfDi88w6ccgrccw/07ZvtqkREMipcLfCNG+Gaa+Cgg+CTT+Chh4IBS4W3iHRC4WmBv/NO0OqePx+GDIHbboN2fkSbiEg6haMFfv31cPjh8NVX8PTTEIspvEWk0wtHgO+xRzDTZMGCoM9bRERC0oXyy18GDxER2SIcLXAREWlAAS4iElIKcBGRkFKAi4iElAJcRCSkFOAiIiGlABcRCSkFuIhISJm7Z+5mZlVAZcZu2Dy7ACuzXUQLhLVuUO3ZotqzozW1R9y9wf4hGQ3w9szMyt29MNt1NFdY6wbVni2qPTvSUbu6UEREQkoBLiISUgrwfyvNdgEtFNa6QbVni2rPjjavXX3gIiIhpRa4iEhIKcBFREKq0we4mQ02s8Vm9pGZXZrtelJlZv3M7FUzW2hmC8zswmzX1Fxmlmtm75rZM9mupTnMrKeZPWZm/zCzRWZ2eLZrSoWZjY3/XZlvZg+b2TbZrqkxZna/mX1hZvPrvLazmb1kZkvif+6UzRoTSVL3zfG/Lx+Y2ZNm1rMt7tWpA9zMcoGJwElAf+CXZtY/u1WlbDPwO3fvDxwG/DZEtde6EFiU7SJa4HbgeXf/D2AgIfhnMLPdgTFAobvvB+QCZ2W3qiY9AAyu99qlwEx33wuYGX/e3jxAw7pfAvZz9/2BD4HL2uJGnTrAgUOAj9z9E3ffCDwCnJblmlLi7p+5+9z412sIQmT37FaVOjPrC5wMTM52Lc1hZjsCRwNTANx9o7t/ndWiUtcF2NbMugB5wKdZrqdR7v46sKrey6cBU+NfTwVOz2RNqUhUt7u/6O6b40/fAvq2xb06e4DvDiyr83w5IQrBWmZWABwIvJ3lUprjNmAcUJPlOprre0AV8Od4989kM9su20U1xd1XALcAS4HPgG/c/cXsVtUiu7r7Z/GvPwd2zWYxLXQu8Ne2+KDOHuChZ2bbA48DF7n76mzXkwozOwX4wt3nZLuWFugCHATc4+4HAt/SPn+N30q8r/g0gh9A3wW2M7Oh2a2qdTyYAx2qedBmVkzQ/Rlri8/r7AG+AuhX53nf+GuhYGZdCcI75u5PZLueZjgS+KmZVRB0Wx1nZmXZLSlly4Hl7l77285jBIHe3p0A/J+7V7n7JuAJ4Igs19QS/zSz3QDif36R5XpSZmZnA6cAUW+jBTidPcD/DuxlZt8zs24EgzozslxTSszMCPphF7n7hGzX0xzufpm793X3AoJ/56+4eyhag+7+ObDMzH4Qf+l4YGEWS0rVUuAwM8uL/905nhAMviYwAxgW/3oY8FQWa0mZmQ0m6DL8qbuvbavP7dQBHh9UOB94geAv86PuviC7VaXsSOBXBK3X9+KPn2S7qE7iAiBmZh8ABwDjs1tO0+K/MTwGzAXmEfy/366XpZvZw8Bs4AdmttzMhgM3AD82syUEv1XckM0aE0lS913ADsBL8f9X722Te2kpvYhIOHXqFriISJgpwEVEQkoBLiISUgpwEZGQUoCLiISUAlxEJKQU4CIiIfX/ARPlu53pwyzLAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAD4CAYAAAAeugY9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQy0lEQVR4nO3dfWyd5XnH8d9FPLDdkHVVoibjZUEaaonCoi4Wa1epmQaaqFyNJaJLSpjaDilv62DTqhWWPzZAkSYNVZs018PqgE6jNBW4gGAbpWxqhFSqOjTaQkM3lKwQ5gRX1bYkxMqcXPvD9uY4ts+xz/Pcb8/38w/2iX2e+3B8fud5rvu672PuLgBA3i6LPQAAQOcIcwAoAGEOAAUgzAGgAIQ5ABSgK8ZBV65c6WvXro1xaADI1sGDB3/s7qvm+rcoYb527VqNjIzEODQAZMvMfjTfv1FmAYACEOYAUADCHAAKQJgDQAEIcwAoAGEOABUaPTWqTY9t0onTJ4IelzAHgAo9eOBBvfzmy3rg2w8EPa7F2AK3r6/P6TMHUJKefT0anxi/5Pburm6d3Xu2kmOY2UF375vr3zgzB4AKHL37qO5Yf4d6u3olSb1dvdp+43Ydu+dYkOMT5gBQgTVXrtGKK1Zo/Py4uru6NX5+XCuuWKHVy1cHOT5hDgAVOXnmpHZt3KVX7npFuzbuCjoJSs0cADJBzRwACkeYA0ABCHMAKABhHlCslWEAykeYBxRrZRiA8tHNEkCIlWFAjkZPjWrbU9u0//b9wfqxc0Y3S2SxV4YBqeJqtTrZh3kOdejYK8OA1PTs65HdbxocGdQFv6DBkUHZ/aaefT2xh5at7MM8l3f2mCvDgNRwtVq9rtgDWKrZdejBkUENjgwmW4ce3jr8f18P9A9EHAkQH1er1cv2zJx3diBvXK1WK9szc97ZgbxxtVqtbM/MJd7ZAWAafeYAkAn6zAGgcIQ5ABSAMAeAAhDmAFAAwhxA8XLY9qNThDmA4uWy7UcnaE0EUKzStp+mNRFAIzVp2w/CHECxmrTtB2EOoGhN2faDmjnQAh9thlTUXjM3s0fM7B0zO1zF/QEpaUInBPJXyZm5mX1M0mlJf+Pu61v9PGfmyEFpnRDIX+1n5u5+QNJPqrivJmnCQoacNakTAvkLNgFqZjvMbMTMRsbGxkIdNmkpXb7zxnKpJnVCIH/Bwtzdh9y9z937Vq1aFeqwSUrxk8lTemNJSVM6IZC/yrpZzGytpOeombc2empUn//m5/X060/r3Yl31dvVq803bNZDv/ZQ8LM+6sJIGZ1EF2MFaGKmL9/PTpyVyXR24my0y/d26sKUYBALV4ztq6o18QlJ35H0ATM7bmZ3VXG/JTt55qTWrVonSVq3al20oGynLswLCqGlWIpMHYuGIkittLFl/xatWb5GOzbu0NDBIY2eHtXw1uHkxonmSKkUmRLKLIlJreVteOuwBvoHtGH1Bg30D2h463CS41wsykP5opNo8QjzCHL5Q81lnPOhPJQ3OokWhzJLJPOVNlKTyzhnojyEUi1UZiHMURzqrSgVNXMkpe5adu7lIWApCHMEF6KWTb0VTUOZBcFQywY6Q5kFSci91RFIGWGOYKhlA/UhzBEUtWygHtTMASAT1MwBoHCEeQbYYwRAK4R5BthjBEAr1MwTRl82gJmomWeKvmwA7SLME0ZfNoB2EeaRtZrcpC8bQDuomUe25/k9evjgw9q5cae+1P+l2MMBkDD2M08Qk5sAFosJ0AQxuYnZZpfcWF+AxSDMI2FyMz2xw3N6PcEXXvyCNj22Sfe9dB/rC9A2yiwR5fj5miVrNX8xempU257apv2376/0TXe+kttslOBAzRxFqipc252/qGuyevozS796+Kvz/sz2G7fzGaagZo4yVbXNQav5i559PbL7TYMjg7rgFzQ4Mii739Szr6fjxyD9f8nNZLrMLn5JLrNlMhklOLREmCM7VYdrq/mLEJPVJ8+c1O6+3drywS0X3b7lhi3a3bebSdCMxJp7IcyRnTrCdaHFWSEmq4e3Dmugf0Dn/bz29O3RoZ2HtKdvjyYuTGigf4C5lIzE2hiPmjmytPu53Rp6dUiXL7tc586fq33RFZPVaCXE2pFiauaxW8eQjtDbHEyfOW9YvYEzZcwp9tqRriBHqcjMyxeWvjfbzDAd6B+IOBJgUuy1I1mE+ezLl8GRQQ2ODNJ3CyAp01eMM8txoWRRM5/uw3369af17sS76u3q1eYbNtN3C6BRsq+Zx758AUrFPFQ5sghziX29gTrw+bLlyKLMAqBabMGcp+zLLACqFbuNDtUjzDEnaqllYx6qPIQ55kQttXzMQ5WFmjkuQi0VSFftNXMzu9XMfmhmb5jZvVXcJ+KglgrkqeMwN7NlkgYkfVzSOkmfMrN1nd4v4qCWCuSpijPzmyS94e5H3f2cpK9Juq2C+0Uk1FLRDibJ01LF3ixXSXprxvfHJf3S7B8ysx2SdkjStddeW8FhURc2sUI72PguLcE22nL3IUlD0uQEaKjjAqgWG9+lqYoyy9uSrpnx/dVTtyWDy0GgOkySp6mKMP+epOvN7Dozu1zSNknPVnC/lcmtZ5o3H6SMSfI0dRzm7j4h6XOSXpB0RNLX3f21Tu+3CnV/qnpdcnvzQfMwSZ6eohcN5bYPOgt2ACyksRtt5XY5SC0SwFIVHeZSXpeDub35AEhHFp8B2onceqZjfoYggHwVf2YeQpXdJ8NbhzXQP6ANqzdooH/gojcjNAPdTOWq87klzBdprieD7pNmqTts+XsqV53PbdHdLHXY8/wePXzwYe3cuFOPHnqU7pMGmvk3UOUydrqZylXVc7tQNwth3qb5nozL7DJ1L+vOovURnak7bHNrpUX7qnpuG9uaWKX52gbvvPFOuk8aou7WUbqZyhXiuSXMZ5mvHjrfk3Hq3KlsWh/RmRAvyJxaabE4dT+3lFlmWageumX/Fq1ZvuaitkG6TZqFvwHERM28DUw+AZht9NSotj21Tftv359EuYuaeRtYSo9U0XceT05tooT5FCafkKpOA4U3g8XLccdVwnwGJp+QkqoCJaezy1TkeKVe/N4si5HbPi4o29G7j87bm9wOPt5t6XK8UufMHKhQlSWNTgMlx7PLlOR2pV70mXlqM9EoX9WfWN/JLpo5nl2mJLcr9aJbE+vaQwOYLdXWVvriy9K4PvNUX1goF/uqhNfEK+/G9ZlTK0RolDTCo0vnYkXWzHlhIQY+JSoMunTmVmSYS7ywEF5uE2a56rRls1TFhjkvLKBMXHnPrciaOYCy5dYDHkKR3SwAUKLGdLOwoRCApioqzGlVAtBURZRZWCQEoAmKL7OkukiIsg+AUIoI81RblSj7AAilmD7zlBYJsUINQGhF1MxTk9KmS03cjAgoVfE189SkVPZZaqmHej+QF8K8JrFXqHX6+ZHU+4G8UGYp1FJLPbR5AumizNJASy31pNrmCWBhhHnBllLqSaneD6B9xbQm4lJL3QY4pTZPAO3pqGZuZp+U9CeSbpB0k7u3VQinZg4Ai1dnzfywpC2SDnR4PwCADnRUZnH3I5JkZtWMBgCwJMEmQM1sh5mNmNnI2NhYqMMCQCO0PDM3s29JmquVYa+7P9Pugdx9SNKQNFkzb3uEAICWWoa5u98SYiAAgKWjzxyS2IsFyF1HYW5mm83suKSPSHrezF6oZlgIjb1YgLyxN0vDsRcLkA/2ZsG82IsFKANh3nCh9mKhJg/UizBHkL3XqckD9aJmjlpRkweqQ80c0VCTB8IgzFEr9kcHwiDMUbvYn4cKNAE1cwDIBDVzACgcYQ4ABSDMAaAAhDkAFIAwB4ACEOYAUADCHAAKQJgDQAEIcwAoAGFeI/bwBhAKYV4j9vAGEAp7s9SAPbwB1IG9WQJjD28AoRHmNWAPbwChEeY1YQ9vACFRMweATFAzB7AktNfmgzAHMC/aa/NBmQXAJWivTRNlFgCLQnttfghzAJegvTY/hDmAOdFemxdq5gCQCWrmAFA4whwACkCYA0ABCHMAKABhDgAFIMwBoACEOQAUoKMwN7M/M7PXzeyfzewbZvbeisYFLAq7+6HpOj0zf1HSenf/BUn/Kum+zocELB67+6HpKlsBamabJd3u7ttb/SwrQFEVdvdDk4RaAfrbkv5+gUHsMLMRMxsZGxur8LBoMnb3AyZ1tfoBM/uWpLm2Stvr7s9M/cxeSROSHp/vftx9SNKQNHlmvqTRArOwux8wqWWYu/stC/27mX1G0ick3ewxdu1C403v7rdj4w4NHRzS6OnR2EMCguuoZm5mt0r6oqRN7t527YSaOQAsXp0187+UdKWkF83skJn9VYf3BwBYgpZlloW4+89XNRAAwNKxAhQACkCYA0ABCHMAKABhDgAFIMwBoACEOQAUgDAHgAIQ5gBQAMIcAApAmANAAQhzACgAYQ4ABSDMAaAAhDkAFIAwB4ACEOYAULPRU6Pa9NgmnTh9orZjEOYAULMHDzyol998WQ98+4HajtHRZ4AuFZ8BCqAJevb1aHxi/JLbu7u6dXbv2UXfX52fAQoAmMfRu4/qjvV3qLerV5LU29Wr7Tdu17F7jlV+LMIcAGqy5so1WnHFCo2fH1d3V7fGz49rxRUrtHr56sqPRZgDQI1OnjmpXRt36ZW7XtGujbtqmwSlZg4AmaBmDgCFI8wBoACEOQAUgDAHgAIQ5gBQAMIcAAoQpTXRzMYk/ajFj62U9OMAw0kVj5/Hz+Nvrvke/8+5+6q5fiFKmLfDzEbm66dsAh4/j5/Hz+NfzO9QZgGAAhDmAFCAlMN8KPYAIuPxNxuPv9kW/fiTrZkDANqX8pk5AKBNhDkAFCC5MDezW83sh2b2hpndG3s8IZnZNWb2T2b2AzN7zczuiT2mGMxsmZl938yeiz2W0MzsvWb2pJm9bmZHzOwjsccUmpn9/tTf/2Eze8LMumOPqU5m9oiZvWNmh2fc9j4ze9HM/m3qvz/T6n6SCnMzWyZpQNLHJa2T9CkzWxd3VEFNSPoDd18n6cOSfqdhj3/aPZKOxB5EJH8h6R/c/YOSNqhh/x/M7CpJd0vqc/f1kpZJ2hZ3VLV7TNKts267V9JL7n69pJemvl9QUmEu6SZJb7j7UXc/J+lrkm6LPKZg3H3U3V+d+vqUJl/IV8UdVVhmdrWkfklfjj2W0MzspyV9TNJfS5K7n3P3/4w6qDi6JPWYWZekXkn/EXk8tXL3A5J+Muvm2yR9Zerrr0j6jVb3k1qYXyXprRnfH1fDwmyama2V9CFJ3408lND+XNIfSroQeRwxXCdpTNKjU2WmL5vZe2IPKiR3f1vSQ5LelDQq6b/c/ZtxRxXF+919dOrrE5Le3+oXUgtzSDKz5ZKekvR77v7fsccTipl9QtI77n4w9lgi6ZL0i5IG3f1Dks6ojcvrkkzVhm/T5Bvbz0p6j5ndGXdUcflk/3jLHvLUwvxtSdfM+P7qqdsaw8x+SpNB/ri7D8ceT2AflfTrZvbvmiyx/aqZ/W3cIQV1XNJxd5++GntSk+HeJLdIOubuY+7+P5KGJf1y5DHFcNLM1kjS1H/fafULqYX59yRdb2bXmdnlmpz4eDbymIIxM9NkvfSIu38x9nhCc/f73P1qd1+ryef+H929MWdl7n5C0ltm9oGpm26W9IOIQ4rhTUkfNrPeqdfDzWrYJPCUZyV9eurrT0t6ptUvdNU6nEVy9wkz+5ykFzQ5i/2Iu78WeVghfVTSb0n6FzM7NHXbH7n738UbEgL7XUmPT53MHJX02cjjCcrdv2tmT0p6VZPdXd9X4Uv7zewJSb8iaaWZHZf0x5L+VNLXzewuTW4X/pst74fl/ACQv9TKLACAJSDMAaAAhDkAFIAwB4ACEOYAUADCHAAKQJgDQAH+F2IxCTg8DtUBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "L'erreur globale peut être donnée l'erreur quadratique moyenne : 0.8230711437486881\n" + ] + } + ], + "source": [ + " #on peut aussi afficher la fonction f\n", + "plt.scatter(x, y,color='k');\n", + "#plt.scatter(xnew, ynew);\n", + "plt.plot(xnew, ynew,'r');\n", + "#l'erreur est donnée par la somme cumulée des distances\n", + "#entre les points en noir et la droite en rouge\n", + "ypred=models.predict(X)\n", + "print(ypred.shape)\n", + "print('Biais ou erreur en chaque point : \\n')\n", + "plt.figure()\n", + "plt.plot(x, (y-ypred), 'g*')\n", + "plt.show()\n", + "print('L\\'erreur globale peut être donnée l\\'erreur quadratique moyenne : ',np.mean((y-ypred)**2))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "505d3fb3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD5CAYAAADfunvKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACGBElEQVR4nO2dd3hb5fn+P6+m955xEjvD2XsQRtkJUFYCCbtAmf2yRwmz0LLKKBv6ayktUKBQICQESICyE0Z24sQZznS8915a5/39cXxOZFuyJVuyHdB9Xb4Sy9I5r6Tz3ueZ9yOklIQQQgghdAfDQC8ghBBCGPwIEUUIIYTQI0JEEUIIIfSIEFGEEEIIPSJEFCGEEEKPCBFFCCGE0CNMPfw9lDsNIYTgQwz0AnpCyKIIIYQQekSIKEIIIYQeESKKEEIIoUeEiCKEEELoESGiCCGEEHpEiChCCCGEHhEiihBCCKFHhIgihBBC6BEhogghhBB6RIgoQgghhB4RIooQQgihR4SIIoQQQugRIaIIIYQQekSIKEIIIYQeESKKAUJI/TyEwwk96VGEEGBIKXE6nbS0tCCEwGw2YzKZMBqNGAwh3g5hcEL0cGcL3fYCCCkldrsdRVFwOBxIKTtYFhpRhIeHYzKZEGLQ65mEEBgM+i86ZFH0E5xOJw6HAwAhhP6jQUqJoihs2rSJGTNmAGA0GjtYHCHiCGGgECKKIENKSVNTE9XV1aSlpSGE0C0J940vhNAtCqPRqBNHW1ub/pwQcYQwUAgRRRChuRitra1UVlaSnp7e7fM7E4cniyNEHCEMBEJEEQRIKXG5XLqroVkIfYE34mhtbdUfDxFHCMFCiCgCDCklDocDl8vVIRYR6HSodlzNXQkRRwjBRIgoAghFUbDb7Xr8QduYnYnCnTwCtXm9EUdNTQ0VFRVkZWVhMpkwm80YjcYQcYTgF0JEEQBotRFOp7PDZtUwEBvS3Zqx2WwYDAZcLhdOp1N/jkYcJpMJg8EQIo4QvCJEFH2Ee21E5ziCBiEEiqIMwOo6rqFzjMOdOIQQmEwm/SdEHCG4I0QUfYAWsOzsagwmeIuNeCKOzrUeIeIIQUOIKHqBnlyNzjAYDANqUfiywUPEEUJ3CBGFn1AUhZKSEqKioggLC/Nrs9TVwcGDAoMBhg6FiIjgrbOv8EQcDodDJ46KigoyMjL04GiIOH7eCBGFj3CvjSgvL8dkMhEeHu7Taw0GA7W1Jl5/3YDdDooiiI42ceGFDqKjg7zwAEEIgdFo1H8vLCwkJSWlg8WhBUa1PpUQcfx8ECIKH9C5NqI3XZ7btkVhMsGwYQCSgwcFO3YYmDPn8Oy760wcWlDXZrMBKjmazWbd4ggRx+GNEFH0AE+1Ef5mMQwGA21tgsTEQ4+ZzdDWJvi5NOi6E4cWQLXb7djtdkD9DNzrOEIt9YcXQkThBe6uRmcrwmAw+FxpqShqXMJicVFcrBKEy6WSxMiR3ZPNwYOCxkZBQoJkyJDBQyg9vXf3ylD354eI4/BFiCg8oKfaCF9LsqWETz8VbNxooKQkCrNZUF4uyciAc891MHSoxJsUwZdfGvnoIyNVVeoGuuACB/Pnuzoc++BBQUODIC5OMnx4/xGJvxWlIeI4/BEiik7wVobtDl/TncXFsGmTgeHDJU6njSFDJC0tgssuc+F0qtaGJ1RXw2efmWhqEqSkKDgc8OabJiZNUhg1St1kq1YZ+f57AwYDuFyCk092ctRR/ZOCDUSDG3QkDiklhYWFuFwuhgwZosc4QupfgwMhomiHP7URvloUNhsYDOoPQHi4SgI9cYzdLqirg4gIBbNZdVdMJsH+/YJRoyT19fDTT0aGDVMwGsHplHz3nZEpUxQiI/14031AIAOTnXtfNNfOZrN1CY66Z1VC6D+EiIJDuhHdlWG7w1eLIjkZLBaor1fJobgYsrMlRmP3ZJGQIImJkVRUCCwWSUODIDJSIS5O/bvDIRBCPQ6AyaRuNrudfiGKQDazdT6uVo/RuYajM3GEOmP7F79oe05KSVtbG83NzT6TBPhuUcTEwMUXuzCboabGwrhxkjPP7JlgrFa4+WYHMTGSoiKB0Sg57jiFCRPU18bGShISJGVlKjmUlgpSUxViYnp+z4FAMInCW6+MwWDQu141om5ra6OpqYn6+noaGxtpa2vD6XSGFM6DgF+sRaG5GgUFBQghGD58uM+v9UdfIiMD/u//FH78sYCjjx7q8zmysiR/+YudsjKBEDBkiCQsTP2b2Qznn+/kf/8zUVqqZk/mzXPhVtZwWEJRFJ9iESH1r/7HL5Io3F0No9GIy+Xq+UVu6GvvRlNTE9u2bcNoNBIfH09CQgJRUVEdLuamJvjmGyMlJYKMDElqasc1xsbCeec5Ox+6X9DfFkVP6En9q6WlBYPBQFxcXIg4eolfFFF4qo0wGAx6GbKv6EvbeElJCfn5+YwfPx6DwUBdXR0FBQU0NTURGRmJ3W6nsbGFJUtiqKgQxMdLcnMNVFcLLr3Uib/B/2CY4cEiCl8tip7QWcSnoaEBRVGwWq0h9a9e4hdDFN5qI3pjHfRG2k5KSW5uLi6XiyOOOEK/66Wnp5Oeno6UkpaWFrZs2cLmzfls2JDE8OECuz2S1NRIiovN1NVBQoJfp9XXG0gMNovCl+Nq2RLt986yge6dsSHi6IpfBFF0VxvRG6Lw9zXNzc20tLQwbNgwhg0bhhCiixUjhCAyMhKLxUJ29gRWrTITE9NCa2szNTV1lJebOXiwAUWJJS4ujpYWE3l5BlwuyM5WOpSHBxvBChYG01Ixm836755kA0PqX93jZ00UvtRG9MaN8MeiKCsrY//+/YSFhfkcMI2NlRxxhMKaNZFYLBGAYP58O8OHG6itrSU3t4jlyzNwuSIJCwsjJsbKNdc4SU3tv2j/YHY9OsPlcvVYF9OT+pe7q/JLJI6fLVH4IlEH/vVtuL+mJ3JRFIW8vDza2tqYPXs269ev9+nYGgnNm+ciK0tSXQ1JSZLRo0GIRKqqkli/3kRzs2Ts2Cba2uooLnbx1ls2zjtPIT4+vktgNNA43FwPfwkoJBvYFT9LovA0vs8bghGjaG1tZevWraSmpjJu3DivtQHdnwPGjOm4ro8/NvL3v1uoroamJkFLSyzHHReNxQIJCXZMplI9MBoREUlhYTp790YC8SQnCxITA2NxBMv1CJZF0dfjdqf+tXfvXrKzs3/2xPGzIorOroYvX1agiaKiooK8vD2UlExjyZIYDAY4/XS1FLsvx66rg1dfNZOWppCUBDt3Gti2zciIEQqKYuC004wMGTKEIUOGIKXk88/tLFtmwGRqoLnZwL599dx0UxvDh8dhsVj8er/e1hloDBaLoie4l5w3NDToMSf3m9PKlSs5+eSTSUlJCdh5BxI/G6JQFIXi4mKio6P9kqjzhyjWrBGsWyeASKZOrWXs2I7n37NnD01NTTidc1i92srw4WqX55IlBmbPjuToo7se0+GA9esNlJQYSElRMJs9r7u5WeByqVWb4eGqtbF9uxGXS3DeeQ4mTz70HoQQrFsXzbhxEimN1NfXU1AQy9/+ZiQurpKJE2uZPNlKfHy8XlvgD4K5oQ8HotDgcrn0DElnEZ933nmH2bNnh4hisKCzRJ3VavVZog58J4rvvhP8+99G4uIkDQ1mNmxIZeJESEqCtrY2tm7dSmJiIjNmzODvfzeSmIhuRURGQkFBZJcNJiV89JGRnTuNxMYqbNpkoqlpOFargQkT0CsxAeLiJOnpkvJyQXKyxOkUjBnjYvFiO/HxXdcrhNpPIgTU1ZnIzw8jPd1MbGwcW7dmkZlZhRCV5Ofn68VICQkJxMTE9Lipgt3rEWgEmyg6QyvyioqKCvg5BwqHNVF0lqgzGo1By2B88YWB1FRJZCRERkp27BBs3y6YOLGSvLw8xo0bR2J7jjIhAfbtQ2/istkgPd3ZZYPV10t27TIyfLhCTY1g714DxcXxmM0WxoyByy936GQRGQl33mnnuecsFBUJEhMVbr/d6ZEkAObNc/Lee2YsFgN79oQTGwsjR0qsVrWprKgogZkzYwFVF6Kuro6ysjJ2796N1apaG94Co4djerQ/iQLUlHiIKAYBPNVGBLMc22hU3QQVKrmUlBQTEVHMrFmzsFqt+nPnzVPYtctIfr5qNWRkSKZMaeiywbQ9ISXs2GHAYpFERjoZNsxFcbFaJzF16qG1jRolee45Gzab6n50t6eOPFIhOtrBxo12bLZW4uMj0JbocIDbcrFYLKSkpOhmcmtrK7W1tR0qRrVSc81aO5w2tFaqH2h0l3Zta2vzy7Id7DjsiKK72ohgFk+dcYbCyy8baWmRNDSAxdLEmDGtzJgxq8umSUiAO+5wceCA2tA1apQkJ0d2IYqYGJgyxcWWLUZqa9VO0MREB+HhYRiN0C7+1AFGo+8y/xMnKgwb1kZ2diXff59EYaG6TqtVMmuW9/ccHh5OeHi4Hhhtbm6mtraW3bt3Y7PZCAsLw+VyYbfbAxIY1RAsi6KnOoreoicC+jmJ7RxWRNFTbUQwieKIIyQRES5Wr26murqAI45oZubMmV6fHxkJkyZ1HEzsyWQ//XQXQ4ZILBYje/YYSEpqobExBiEImLxdQoKLK690kJenXrjjxik+l4ILIYiKiiIqKophw4bpc03Kysr0knQtvhEbG+t3YNQdh2swszM0/YyfEw4bovBlfF8wXQ8pJRER+5kxo5IxY8aQn5/v13k8EYXNBp98YiI310BsrOS001xs2GAgPFyycKEjoJWWiYlw9NF9l8ozGAxERkYSExPDmDFjcLlc1NXVUVtby4EDBzAYDHp8w5fAqDuCFcwMpqXSnUXxc6qlGPRE4Y9EXbAavOx2O9u2bSMyMpLZs2frVk1fz/P++2bWrDGSmiopKzNQViY5++wyZs+O7hDz6AuCdWdz78JMTEzUA7l2u53a2tougdGEhAQiIyO73TzB2tDu6w0kurMofm4Y1ETRG4k6fy2Kno5ZV1fH9u3bGT16NKmpqfpr/L0YOr9GUWD9eiPDh0sMBggPlxQWCsrKwgf9hdbdhrZYLKSmpuqflRYYzc/Pp7m5mcjISBISEoiPj+8S7AsmUQQD3mIfbW1tRAzmeZG9wKAkCvfaCOi5DFuD0Wj0W1uiuzUcPHiQsrIypk+f3uGLDwRRGI0CqxU9gwEqeZjNg9+/9WdDewqM1tTU6IHRmJgY3VU5nEgCVKIweyi5VUvoQ0QRVEgpqa+vp6GhgZSUFL8unt5YFJ7gcDjIzc3FarVyxBFHdLlrBMrFOe88B//+t6Vdcl/NUgwf3trn9QcbvSUy98Do8OHDURSFhoYGamtrKS4uprm5mT179pCQkEBcXFxQUpqBhMvlIsy9Kq4dTU1NP6saChhkRKHVRrS0tFBdXa2br76irxJ1oKoh5ebmMmLECNLT0z0+JxAWBcDs2S6Sk+0cPGggOloydapCXp7/xx4IBOLur1WExsXFMWLECNatW0dCQgI1NTXs37+/g1RgdHT0oEs3ekuPtrS0ENlfcxP6CYOCKDpL1JnN5l5ZBn2xKKSUFBUVUVRUxNSpU7v9ogMZNB05UjJyZN+toEChslKwapWBlhbB1KkKU6Z0fZ/BiiUIITwGRktLS8nLy8NqterxjZ4Co+5rDRa8BTO1WMzPCQNOFJ5qI3q74XtTwq2tYdu2bRgMBo444ogeTd7eCsC6X7QOhwObzdYloNcbayVQqKmBF180Y7erlZubNhm55BKHXpxls8EXXxhZvz6W8HALl18uSE8P3lp7CoxGRUXp8Q1vVZDBqqEA70QRcj0CDG8Sdb3d8L250zc1NdHc3ExWVhYZGRl+n7M3qK2tZfv27ZhMpg4FS3Fac8gAIS/PSFOTOioA1ArOr782MWuWWiL68cdGNm0yERkpqakx869/mbn5Znu/zRPpHBhtamrqUDEaExOjWxxakDHYROHp2D+3Pg8YIKLoqTaiN4VT4L/roSliR0REMGTIEL/P5w80EnPPpBiNRqSU1NXV6X65zWbDYrGQlpYWdKWqzhBCG5qsEoWU2mNqRiYnRx1j2NwsiY930dwMJSUGYmL6Z+Zpx7UKoqOjiY6O7hAYrampoaioCEVRiIuLC+pn6C1GMRiJQggxDIiTUm7rzev7nSh8qY3oLVH4aom4XC527typK2Jv2LAhaI1DGjS9ivDwcGbPnq13vnYuWNq2bRsmk0lvyIqKiiIhIYGEhISAFWF5w7hxCjExkuJigcWiqmhdeqmabjYYVHfEbj8Uo3C51HRuINBXd8s9MAqqylldXR2VlZU0NDSwadOmgAdGD4cYhRBCSPXDnQ5cIIRYCmwDCqWUPqfY+o0o/KmN6G32wpfXNTc3s3XrVjIyMnRFbO11nb/0vDzBf/5joKEB5syRLFyo0JseqJaWFqqqqhg6dChjxowB8EqEJpOJpKQkoqOjdfP6m29aWbeuDrPZwdy5TsaNi/Y5fVhWZmD//jASElQdi+4QFwc33eRg9WoDra1qMFMbYwhw1llO3n3XRGurEbvdwJw5iu6m9BWBjston2N4eDiKopCdnU1tbS0lJSU0NjYSFhamxzd8DYx2RndEkdifsujdQB76YL8AjMBvUU3G5UKI71AJo8fio34hCn8l6nprKvZkUWiK2BMnTiQ2NlZ/3BPBlJTAX/5iJDxcEhEBK1caUBS45JKux1cUaG5WG8E636gqKyvZvXs38fHxJCcne12bywWrVxtZsyaZCRMsHHUUNDcb2L07ls8+SyI+XtLQIHn3XRu/+c1BhNiPyWTSrQ1PJvZ33xlZsiSa1lYjX31l4eKLHcyY0T2RJiZKFizwTGJTpyokJDjYurUZq9XBCSdYO4wxlFL96c3NOtiiNZ4CozU1NV0CowkJCR5rI/xZ82CyKEC3KlqBZcAyIcQJwOPAk8ASIcQLUsqd3R0j6EThbxl2X+AtRtFZEbtzNZ0noti3T+BwgBa6yMiQ/Pij4JJLOh57/354+mkTtbVq2/jvf+8iO1utrty3bx+1tbXMnj2bffv2dbhrdla6ev11E6tWmXA4oli1KornnzcxcaJCTo6BSZOUdoEawcGD4bS1jea440Zgs9moqanx6KY0N1v55BMTaWl22tocREcrvPuumQkTbPi4Dzxi2DCJ0diKoii4N4quW2dg6VITdrtg9mwX557rxB9Pqb9Fa8LDw8nIyCAjI6NDYHTXrl3Y7XZiY2N1i8NT9WV3aG5uJjo6OlBvoc+QUkohxGhgIpAF/AooB14CLMBbQoj7pZQrvR0jaEShTb6y2WxERET0S7GMp9Ria2srOTk5pKWleVXE9kQUVqu6gTW0tUHn+JTNBk8+aUJRJMOGqQK4Tzxh5KmnWtm3bytGYww//TSHv/7VgMGQwXXXeW7vrq2FH34wkZmpUFHhYv9+A4oiiI2VhIdLtm41MHSoOhVdSvS7uNVq7TBprKmpiZqaGnbs2EFxsZH6+myiohSkVAccu1ySlhb6RBTQdVPv3Sv4z3/MpKVJLBbJTz+plpg3y8QTBlKBu7vAaGFhIVJK4uLidI3Rnly+wWRRCCEMUkoFOA04D1gF3C6lLHR7zpFAtyo7QSEKrTaiqqqKxsZGsrOzg3GaLuhMAhUVFezZs4eJEyd2m3r0NNtj6lRJdrZk926BwaCa07fd1vHCr6qCxkYY2j6kPC4ODhxw8PzzB6msnMSuXZFICePGQXGxiSeftPK3v6k6m+5QFNG+frDbBVKCyaSSwoQJku++M1BcLDAaVe3MiRO7bkD3iz0zM5PRo12sWgVVVY0YjU1UVEBcnAUhXEjZt0xAZ6IoKDBgNB4ioNRUyY4dRr+IIpgWhb9Bam+B0c4Voy6XyyMRDaasRztJACyVUr6kPa4FOdv/vban4wScKNxrI0wmU59Kqnt78bgrYs+ePbtHFSYhuk4Ls1rhzjtdbNokaG1VVaoyMzu+LjZWJZC2NnWT1NQ0c/Cgi9bW0WRkGMnPF5hMMHSomk6srhbs2ydISupISgkJkkmTXGzbZsTpNNDWpgYeVetVMmuWiyOPdBETI/nVr1z4Um4RHW3kppsE//hHDCUlVrKzIznjjDJKSirZvbvv2RT37yUmRuLei9fUJMjM9O97H6wzPeBQYDSpneHtdjs1NTU4HA42bNigB0YTEhKIiIigpaWlV66HEOJV4EygQko5qf2xBOBdVJchHzhfSlnr77GllCVCCAMgpJQuLcgpO98hvSBgROGpNqK3aU44FJj0926gKAobNmzQFbF9IRpv2RKrFY46yvvnGBkpufZaF3/7m4GmpkacToVx42KwWgUxMWpXqNMJ5eWQliZQlEOdoh3PD9dd5+CTTyTr1jkYP76JysoISkoEkZGSu++2M2KE/1mBYcMkv/99A8XFlUycmA2kACld3BSn09mh6Kunz7wzgU+ZojB+vMLu3QaEUD+XBQuc3Ryh52MGCsGQwbNYLCQnJ1NcXMyMGTP0itEDBw7w6KOPsn//fj7++GPOPfdchg0b5s+hX0eNG7zh9tjdwFdSyseFEHe3/36Xv2t2c0F6hYBaFJ0DliaTqcPgV3+gBSb9IYqqqipaWlqYMGECCX6M/e5L78bs2a00N+8EUpkyJZ2334bt21U3YvJkhZ9+MlJXJ1EUC7Nm2Zg40bMrGB4O553nZNq0MpKSkoiMNNHUBNHR+Dw8yBs61zp0dlM0lSrNtO4pm9L5JmSxwLXXOti/34DDAcOGKX5Xax6uCtxCCCIiIoiIiCAjI4O33nqLuXPn0tzczO9+9zveffddn60LKeUqIURWp4fnAye0///fwLf0giiklIoQIhqIkFKW+0scASMK93oEDX21KHx9rZSSvXv3UldXR0REhF8kAb3X2qypqSEvL4/Zsw9J9Z9zjsLWrSYKCtQYw5FHKpxzjguDoYojjzRgNHavzKwRkDom0K8l9Rqdi766y6ZobkrnTW0ydR2B6A8Gs+vhCd4sFaPRiNPp5K677uLee+8NxKlSpZSl7f8vA/xrqW5He9ZjPjBLCHE1ECGEmIlqrQxsHUV/EIXNZmPr1q3ExcUxa9YsfvrpJ7/vTv4ShZQSm83Gnj17mDFjRoeGpFGj4M9/drJpkxrgO/JIhcRE2L+/zSNJ2O1QWiqIiKDHgqj+QnfZFKfTqQf7/LX4ukMwLYq+CP56Q3fvvSfJxt6iPfjY24vkGVRrZA5glFJWCiGeBI4BBpYo+uJ6+EIUNTU17Ny5kzFjxujFTN6qLLuDP0ThcrnIzc1FURSmT5/usThn6FAYOrTj8TylbsvLBX/8Yxjl5WqmY/58B8cfP7j0KDy5KXl5eTQ1NbFp06Ye3RRfcbhZFN6usSAocJcLIdKllKVCiHSgopfHyZZSni2EOE9K2dD+mAR8KuMOKlH0RUimu9dKKTlw4ACVlZXMnDmzw2btTRDUYDBQWSloaBCkpkrcijY7oKWlhZycHIYNG+Y3AXoiihdftFBZqbZqu1ywdKmZ5ORwjjnGr0P3K4xGI+Hh4SQnJ5OcnOyTm+ILDtcYhTcE8L18BFyOWkl5ObDc3wO0ZztyhRDHAfHtmZRsoFlK6dOFHFCi6Pzh9OXD8mZRdFbE9iRT503L0BtWr47kgw/iiYgwYjKpadHJkztuaq0Ue9KkScTGxlJZWenXncMTUezfbyQhQX3MaFQ7NSsqLIPKovAE9/X15Kb4mk35ucz06Mv7EEK8gxq4TBJCFAF/RCWI94QQVwEHgfN7cWgJPAvcCrQBDwHHAjf7eoABF67xBk9E4UkRuzP8tWJKS+H99+NITnaSkCBpbIRnnjHyyivO9qKnjqXYWk2Gp9qL7uCJKEaNUtixQ5Xrd7lASkFqqhMpg9PFWlMD69YZsdvVvo3MzN4TkqfN0JdsSjB7PfpznGBra2uvqzKllBd5+dPJvTrgoeNK4EchxHrgOMAM3CGlbPP1GIcFUXSniN0Z/hJFTY1a8WgyqZsmOhoKC6GpCSIjHWzdupXo6Ghmzeo4OtBfJSpPz7/pJjsPPBBGWZlaY3HuuQ4mTmwFAl/VV1MDf/6zldpa1Xr55BPB739vZ+zY3imC+XLX9CebcjjVUWjH9aZuNVgUuIUQccCdQAlQD7iAyvb/TxFCVEopD/hyrKC6Hhp6cxFosYaeFLE9vc6fTEtqqsRgELS0qE1dNTVaWrKR9eu3MWrUKI/Wi6ey7+7gyQJJTZW89FIbZWVq1iMpSZKfH9hgpnasdeuM1NaiWxHV1fDRR0YWL+4dUfQG3bkpra2tWK1WYmJiAqrA3d/BzMFUvg1YgaHAKOAo1AawYiAByAS+Aub5UlMRdIuiN1kI7XXNzc2sX7++W0Vsb+fzFUlJcM01jfzjHxEUFQni4uC3vy1hx469TJkyxeuXHgjXA9RipUDNGO3u3Hb7oWYyUIuw2tp6fwfv692/s5tSUlJCeXkjH37opKSkhKwsG8ceayYxcXBmU7zFwQYTUUgpy4HLhBDJwINSyuu1vwkhFgDTtKf2dKygE4WWIvWHKDR5uKqqKmbPnu2Xz9ebTMvMmU4eeaSIpKSRlJXtQko7kyYd0W3+vTcWhbc28+6eFyhMnarwySeC4mLIyzNQVSWYO9el62j4g2C4CXY7fPDBcGpr44iIgNWrFRSlmlmz+pZN6e9gZnNz82ByPTRLYRYwpf0xo5TSheqGzG5/qqH9d68IuuvhryvgdDrZsWMHNpuN9PR0vwNDvSnyUsvO7eTnryclJYWsrPE+iev01qLQ9DHKyqowGOIZOjSG1NQELBZL0IgiM1Nyww12fve7MOrqIC1Nsm2bkYcesvL44zb82ffBIIqiIhPFxRbGj1ffe0KCYMOGZC6+OAaTqW/ZlP6OUQwii0K7QHcDu4QQjwLfCSFSgNNRW85hMFgU/mzcpqYmtm7dSmZmJmFhYVRWVvp9vt5YFM3NzZSWljJt2jSfJcx6G8y02+1s3bqV6uoU3nhjAnV1LkwmGxdcsIesrCaMRiOxsbFBucCNRoiNlYwZo4nnSjZvNlBTo0479xXBIApFoQNZCXFID6Q32RS7Hf77XxMrVmQzbFgEl17qYurUwIkAd2dRDBai0CCl3CeE+BNwG2pwsw54XUr5Sfvfe/xg+s316AnFxcUcPHiQyZMnEx0dTW1tbdAl+6WUFBQUUFxcTHJysl86h72xKNra2tiwYQMZGaN59tkhSOkiM9NIQ0MEy5dP48UXGykp2UNtbS2VlZX6QN/ExMSACOtqwjequra6OdV5p30+dJ+Rnm4jNdVFUZHaMVtXJzjhBJfHtfmSTfn22yx++CGOsDAHDofguecsPPigLWDxoMNJqr/dBSkCft/bYwy469FZEVuLC/SHEndubi4mk4kJEyZQXFzs9blNTfD3vxvIyTGQkSG54QaX3zGK+vp6ysvLmT17NrW10bS2qlkPUFvSS0qgttZCdHQ08fHxpKWl6QN9NXM7Pj6exMREYmNje2VtjB6tMH26wvr1BiwWcDgE8+c7BkWnp8WicNVVdWzeHEFlpRo/OeEE375/T9mUDRssWCxVSGnH5aqjrS2SvDwYPjww6+0u6zFY1K00aBaDEMJIu5vhb8v5gLoenhSxfXldd/Bltod7KfbQoUNpbGzsplwcHnnEyMaNBhITJdu2CRYvNnHPPUZiYnomCq1gq6qqivT0dL3lWBW8EYSHq5J6QqjqVc3NQt+I7gN9NZUlTbUrLCyMxMREEhISvE7J6gyjER56yMbKlSYKCgTjxyvMnev/Zxwc10MhNlZw3nm96w3SoLkpGRkW6uujaG0tJSwsjLY2B4WF+9m8uZmEhARaWpKpqIgiJkYN9PrLu925Hv7OzA02hBBJgENKWd/bYwwYUXhTxO7pdT3BYDDoIwE8QdtoWik2dO9GNDXB5s2CjAyJEKpuRFkZFBaGkZLSPSk7nU62bdtGeHg42dnZ1NTUAGpR1803O3nmGQO1terAneuvdxAfr6p5e0JnlSVtkLM2JSsuLo7ExMQeg3tWK5xzTt82o7/B1k2bDHz0kQmnE046ycWJJ7q6BE9tNsjNDUcII2PGyD61rAP85jdO/vIXMxUVYdhsEUyfrnDJJWMAG1991cKLL5pxuZoRwswxxzhZvFgQHu67e+eNKFpaWgaN6+GW9bgc2A581ttjBd316ByjUBSFXbt2YbPZPCpiawj0WEFNs6K+vr6LPF53boTFor4vp1PqPr6iCCwWSXf7RbNaMjMzGTJkCNXV1R3OceyxklGj2qioMJCcLElJUf/ma5BUE0sZNmwYLpeL+vp6qqur2b9/P2azWbc2gtU34qtFkZdn4K9/tRAfr2A0wptvmrFY4Fe/OnQTsNvhlVeSKSmJJjLShNMpuOYaB8cc0/vhzePGKTz8sJ0VK4qZOjWKadPUmSxSWnnvvViGD1fHMNjtDtauNbJixR4yM+v7nE0ZjK4HEAOMAT7rrdJVv1gUNpsNUDfP1q1bSUtLY/z47lOQfYlRdH6dw3GoFHvmzJldzuuJXGpr4f33DZSVCSZPVti82YDBoPZkHHWUwqhRDhTF88dXXV3Nrl27ulgtnTdtUpIkObl3d87mZjh40IDFIhk50qhH/QHa2tp00mhsbMRoNFJZWUl8fHxAtBn8cT02bzZgtUo9DhIfr7BmjaEDUezcaaCgwMrIkS7CwyWtrZJ33jFx9NFdLQ9/MGSIZNq0OmbPPvQZu1zqZ6fpjlosZiIjLQwbNo4ZMxx+9aZ4+gwGU3rUDTXAb4QQQ4CtQog21NqJb6WUVb4cIOBE0XlDaBvXV0Vs9+MEwqJobGxk2zbvpdieXtPSAosXmygpUUVzm5pUAZpx4ySpqZITT5SUlHS1QrQsSllZGbNmzeqQqfDVUvDlfZeVCe67z0pNjdojctRRLu64w67P2QgLC9NnVtTU1FBcXExDQwMHDx7EYDDoGQNPE7JKSwU7dhiIiIBZszxnHfwhivDwjsK7drsgIqLj52C3Axw6psVCu0vWN3j6vE0mNSaRk2NgyBBJU5Oa9RkxQvrVm+INgynr4WY5VAJfAmHAPNSmsGHAHqBKCH3soFf0i0VRUVHh0eTvDr0Nlrlvem0IcXel2J1fA5CbKygpAW24eWysemd88EGHXgbdeeMrisL27dsRQnhsf/eHKHp63ssvm6mthfR01f35/nsjRx5p9JglEEIQFhbGqFGjgEMXvzYhS5sAnpCQQF6elbvusmK3q8riqamS665z8KtfuVAU2LvXgMkEDofv7syxx7r4/nsT+fmqRRYWBmee2TFGMmqUgtXqoro6jPh4qKgwcNJJzj5ZE+Cd0G66yc7f/mZhyxYDCQmS3//errt+7uiuN6WlpYU9e/Z0cVN6q8DdGUKI04DnUccA/lNK+XgfDrey/acNNajZ4ULxRYk7qETR1tbG7t27EUL4rIjdV2iahTt27MBut3dIuW7bpsrlJyRIjjlG6pu+t5qZWtC0ra1NHzKkZigEzc3qwCDtLQey4rKwUOjiOkKo2Yyysu4/Wynh88+NvP9+DFLGct55Qzn1VCeNjYcmgD/66DjsdgWz2czevRb27YOiIgPTp7uw2YRuwaSnZ/LEE2ojW09ISID77rORk2PE6YRJk5T2tHDH51x1VQk//jiS5mYTZ5zhZP58lUxaW9Gb5lJSpF/k4S2OEBsLd99t1+tJfEHnoq+1a9eSkJDQwU3Ztm0bra2tPmehujmXEfgr6t2/CFgvhPhISrnDz+NolsKNqE1grYAUQoSjjq2/T0rpk2JW0FyPqqoq8vLyyMzMpKampl9IAtRMQ1VVFSNGjOgQB/noIwP/7/8Z26XK1GDiffe5MBi6buKJEyXp6VBUBBER6pCfRYtcHZqqtNdoGhnjxqkCu198Ifh//8+IwwHZ2fCHPzhJTAysRaENBRoyRI2ZuFwwcqR3NTBQrY7nn7foQjkvvGAhPBxOOCGW2NhYRowYgaJYiYqyk5srkNKB0WjAanWwapWVxETJxInqZ7dzZyRffilYtKjHtwOo8YDjj+8+3pSS0satt7YQGXnoOikpUQulGhvVAPLcuU4WLfLd0uipurW3l6RWQ9HZTdm2bRsHDx7k5JNPZsqUKbz++us+W9CdcASwV0q5X12n+C+qMK5fROFmKfzQ/lojakfpr4FowOf0V8CJQkrJnj17qKurY9asWbhcrl6VYvcGtbW1bN++ncjISEaMGKE/7nTCK68YSUmR7ZFv+OEHA7t2KUyYcMg8LS6Gl182UlYmmDZNYdo0qK4WTJ8uOeusjhvRYDBQV1fXQSNj717B888bSUpS05B796oiOI8+6gqoRXH11XYqKy3s2GFECLj4YkeHgF1nCCFYvdpIRMShBjCbTbJqVUd35aijJP/7XzhSivbYhCQqysnBg0aiolppbHRhtYZhNiuUl1vw1iLgdMK775rYsMHIkCEKV17pJDGx+/fuyU3497/N2Gzq3FeXS/K//5mYPFlh3DjfrL/+VOC2Wq1cdtllvPLKK2zcuJG8vLzekgRABlDo9nsRqihuryCl/KbTQ28JdZK5zx9OwIkiNzcXi8WiC73Y7fZeC+xCz4EzKSE/Hw4cKMFiKWLKlCns3bu3w3PsdvT0JmjmujqHU0NTk4nf/c5EXZ1qRWzdauSccxT+9CfPQ4+Li4tpbW3lyCOP1F2bAwcABGFh6qZIS4Pt27VxgYGzKGJi4M9/tlNXpxKSLy5AdLRsDxqqsNsF0dEdz3PjjXZsNnjvPRP19YKJEyVRUeEkJBiIjIzEZGqjqamF1lZBePgBSkosHqd/P/ecmQ8/NBMRIdm40cCGDUb+9a+2LrNb3eHpey4uPjRVzWgEg0H6FeQMlrpVd8cV7QrcEyZMCPh5ewshxELABjS2/5iAJNSYhU8IOFFMnDixw++BkOz3ltJzOuEPfxB8/rkdozGFUaOG8dxzbV3OFx4OU6ZIcnIMpKRIGhrUzTV69KGNsnt3FHV1QvefIyIkH39s4I47OrocdrudnJwcrFYr0dHRHdaWmAiKIlEUtfKyoUElCw2BIgr1ebRPOPcNCxc6+eEHI4WF6kaLiZEsWtSRwCMj4YEH7CxebOfvfzezerWJsDB4/vk2Vq0ysXZtOBDOKafs55xz4mhsbGDXrl04HA694CsyMo6PPjKTkiLbm9BUtfGtW40cfbT368DT3X/UKIW9ew2kp6skJyU9Frn1dMxAwFuxVQAVuItRsxIahrY/1lv8BlW0xowqn5YMPCSlbPL1AAEnis7E0Bcl7p6I4sMP1TF8GRkGIiLCKCoSvPCClfnzO0vlw333uXjpJdiyRZCVBTfd5Owww9No7PgFa5vd/SanpVpHjx6NwWCgurq6w2umT5eceqrCF18YMRolVivcfrtL/xwGEkOGSF580cbatUakhCOOcHUJKmoID4fbbnNw222H8pq/+pWd5mb1zr5rVxlRUZOIj49j+PDhejenGpfaR2vr7PZ5rBaMRiNSih7jAZ4sissvd/DXv1ooKjIghOSCC5yMGuX7RjyMFbjXA9lCiBGoBHEhcHFvDyalPEcIYQEiZS/mlkI/pEf78qF1Z41UVFTw/fdtREZmERGhXgxRUZJ9+7oSk5Rw8KDguOMUrr5akpLS9XhjxzYyfLjkwAG16tJmE1x9tUvvASgvL2ffvn16qlWrtHS54McfBXV1gvHjJTfdpDBvnsRmg6ws2eGuH0iLojdITpZdUpO+Qgh016Hz+joH9i68UHVfjEZbe4zBxdCh9bhc3qsdPW3qhAS491479fVqPYu/ejD9rZcZqIFIUkqnEOJG4HPUAOSrUsrtvT2eEGI8cDYQCTwg1LGFSVLKDb4eY9CK64Jna8S9FPvkk6fz009GFEVNmzU2Co46qitJPPSQkU8/VSd3mc3w3HNOpk3reLGHhSn87W9O3n3XQHm5YNYsF6edJvWmrrq6ug4l52p6VOGee4ysXq0O521tVV0Wo1EljQcfPLQp/e02HczoKW50222QlQUbN1pJT1c488x6bLZaNm1S04haebl7wZe3YxqNvR+t2N8WRUtLS8DUraSUWu1Dn9AusPswUIU6FewBIA51GPKRvhRbQZDSo4FCZ4uicym2lIKtWxVWrFA36tixkltvdbHDLYm0dq3g00/VfgotbvDAA0Y++qjrnTU2Fq699hDRaE1dERERXUq/hRBs3x7O998bSEtTfeh9+9R1HH+8ZPduuO8+E//856F03kBbFIFEd9+zwaDGRBYu1B6Ja/9Ra060gq+Wlha94CsYcz36e+5oU1PTYOzzSAESpZSLhBA/tD9WxaGUlcBb+soN/WZR9FaJWyOKhoYGcnNzO5RiCwH33uvi6qtd2O0wZEhHAVmAqirVP9a+16go9BF+nZfjvsbOTV2dIYSgqcmgxzGamzU/XP3cU1Nhzx5V3TsysqNFsWuXoKBAkJJiYMKEwU8KndGXNvOwsDCGDBnCkCFDUBSFhga14Ku5uZnNmzfrLkxfBHU1DIRe5mAp33aDBEqEEKdziBCOQu3/8Bn9QhQ9BSV7ep17KbbBEMW+fao5Gh+vbtLu2v/HjFHdEptN7SGoqhJMndq1ws9dLdxTU1dnGAwGsrJaMBrVgiyjUU3DpqSolktrqxoUdC/Sk1Ly3/8a+OtfjRgMEqczjCuusHPZZYespsPBogjU+rRhx3FxcVRXVzN58uQOvRXR0dF6eXlvahJ+4VL9CJVpy4BPgd+1P/YkqtjuH9uf5tOX2S+uR2+JwmAwUFBQgNFo5IgjjiAvz8yNN5poaVFjD3fd5WLhwu4zKmPGqBWYjz9upK5O/f3hh7u6HZrgzYEDhZSXV3Rp6vL0PpOT7TzzjJOHHzZSVQVTpig4HIKyMtW6+OMfnbolo74XK3/5i5HERElsrMRuV3j9dTMnn2wjNVV9zuFAFBBYF1ODxWIhLS2NtLQ0pJQ0NjZSXV3Ntm3bkFLqsoAxMTE+nT+YFoUn4hpMw39Ar8xsRC2wWgMcTftIQSllk6/xCehni8IftLW1UVxcTFxcHFOmTAEEt95qxGZTLQm7HR5/3MiMGQpuRZg63M3jM85QOPVUhdbWjv0XHZ8vuP/+av73v6FYrdnMn6+weLELb9ymWSAzZ0o+/NDZfgzYulVQUwMjR0oyMw89f906Aw88MJ6yMkFBAWRmQlaW2mTV1GQiNdWJy+XCZrOhKAoul0sv3hlsCIbCVWcIIYiJiSEmJoYRI0bgcDiora2lpKSEXbt2ERkZqQdFvRG6oigBaavvjMPB9RBCTEYVrClEJYsyYBfQBGQKIcp9bTGHfiIKk8nkF1HU1tayY8cOUlJSdF+1vl4d/5ecrD7HYlHjDgUFghEjOpKiFg9wv5idTtUdiIzsShRtbW18/nk4n3+eyrBhFoSQfPihWujz2996tlg83fmFgKlTuxK0osDdd1uwWJoIC1Pbrg8eFFitavo0K8uI1ap22RYWFjJhwgQ92+NOGIORNLrDIRXtvh/LbDaTkpJCSkoKUkqam5uprq7uVk/U5XIFRJS4M7rLegSiczRAiADGAlmok8Fi2h8zoxZw/RO4SQhhkj5MNO8318OXMm4p1Rmj5eXlzJw5k+rqar1DMzpazUo0Nqr/dzjUZqihQ7tuTM2N0C6YZcsMPPSQWmiUlib5+9+dZGWpz9WauvLzs4mKMukWRGSkZN06g19E4Q2NjdDSIggLczBsWAtFReE0NwvCwuCppxxEREBBQQEVFRXt2RwLBQWCsDCF1FQnIHG5XPpnaDQaB621ASpBLFtm4p13TLhcgrPPdnDppc4ugebewl1PNDMzE7vdyXvv2fjuO4HZXM1ZZ9UyZUokNpstKHf4w2H4j5RyLXCWD8/zqbBm0LgeTqeT7du3YzKZdD0Ho9HIjh0KO3aonZJPP+3kllvUfgyXS616bJdZ6AD3+ovduwUPPqg2RFksqjDLLbeYWL7cSXFxMQUFBcyYMYOVK+vJzT10jLY2QXq69/iHrxWnUkoiIxVSUozU1MQRGelg6NBmGhvhzjv3ExUVzY4d6miCGTNmUF5u5IYbLFRUqO/xrLNc3HOPEymV9gIvV7fWhpRQUSEwmSAhIWAlxX5h9Wojr7xibp/rKnn3XTNxcbBgQd+0Or3hww/DWLIkmoQEhebmBN54YwiLFxfQ1lZNTU0NtbW1Psnb+Yru0qMx/kqaBwntgUwjahpuOjAadRqYEzVOsUVK6XNZ+KBwPTQ1bk0VW8OKFVE8/XQkYWFGFAUuu8zFJ584KCoSJCZKr9kOd2Lau/eQalJjo9q6fOCA4KKLGrn++hqOOmo2JpOJM844QF5eKqWl6oWUkiL53e+8r9kXi0JKiaIoSKnwzDN2br3VSk2NBaPRwpNPOpg+PZGdO3cipSQ8PJyCggIee2wEZWXqTFRFgeXLjRx1lMKJJx56b6D6306ni5UrDfz4o4nERMk559h49tkINm9Wr49TTnHyf/8X+MBjT8fbuNFAeLjasAbq0KG1aw0sWBDQZej4/HMTaWkKYWFqD0tBgZHq6qFkZjaSlJSElFLXjbBYLHpQNDw8vFefTXdZjwxN7WjgIdorPE8FLkBtU68D7KguyVXAa+LQiMFuMeCuhydVbFB1DV94IYaICDsxMerd9c03jSxYoPRYe+B+t09NVZu0WlvhwAFVeMVodLFpUzT/+c80jj1W/YxiYyUvvljPgQPxKIoaa+jO3eyp0lIjCa2QKDsbli+3UVVFu+hMK1u37iU7O5vU1FRsNhtVVVVs325Hylaam42YzRYURXVDPJ3/P/8x87e/mbBY1ODuW29ZMZtlu/KV5NNPjQwfHs5xx9V1+3kFGgkJHeXvWlqEX5PI/IXF0vF8oFpUWjAzJiZGLy9vbW2lpqaG774rZsMGK7GxYZxyipHRo2N9DnweDgrcqJYEqH0i76KqcO+XUi4TQjyMGtwE8KkRq1+cXE+uh6ZbUVBQwOzZs7vUK9TVgfqFH2ozNhrVgGZPcCeKGTMkF16oUFUlULnKRVaWQnq6mR9/NKB5DwaDAatV4eijJb/6VfckAd1rW7q7CEIInTxNJrWb1GarY8uWLYwbN04vHrNarWRkZDBjRgQQi8VixWZz0NbWgsOxh8LCQlpbWzuc59//NhEfr2aBUlNV7QwpBUaj0MvVVREaicPh0Ikr2Dj7bCepqZLiYkFxsSAmRnLJJd5HKPTVPbr4Yic1NQZKS9VCtrQ0hZkzXR7To+Hh4dTXD+O11yaTk5PNF18M4f77Y/nmm+1s3ryZgwcP0tTU1O2auotRDMLKTM39iAKmtj82FrWDFA4RSrcIiuvhSWBXU+KGnlWxAVJSIClJobRUNWObm9ULf+TIni8qd2ISAu65x0V0dB1PPRVJRoaJsDATra2qroN7nUNvhw67Q0qpW0+e/NjS0lIKCwuZPn16Fx0HgHvvdXDTTRZKSswoipnLLnNx0UVpVFdXsXPnTux2O4mJiSQlJeFypXXIKFitamGZ+t0LWlsdJCTUkpmZ2WEw0ubNsGyZFbMZLrjA5bMQjIaqKjPffWckOloybVrX4Tnx8fDcc21s3qy6jFOmuLptie9ruvXYY13ExdnYuNFAdDTMneskJsZ7HcW775qwWrV5q0YKCqKorZ3Jccc1d9ETTUxMJD4+vsNYicNhnKCbO/EZUIIqrnu9EOLfqBmQPdpTfTlev8Uomtsn23gqxfYEsxlefLGV669XqKwMIyUFnn7a6VODkPum15q6jjiinrlzZ7Nhg5HmZpUgnnjC6fE1vqDzhd3Z1fD09/3799PQ0MCMGTO8mrlpafD223aKi1UBHFXPIoLIyOF6S3d1dTWlpaUceWQzn32WQVSUESlNjBihThsrLxe0ttoYP76JxYszCAtTL2pFUVi/XnDNNWE4nWrg86OPzLz2WhOTJvnWCp+TY+DBBycTHm7B5VI36UMP2btkNKKi0N26nhCIuozJkxUmT+74/XmLJdjtArP50P4wmVQx4c5iug0NDVRXV1NYqIpNabENKaXXYOZgIQo3fA1USykdQogS4FjgKy2QOSgLrnxVxQbYuVOwZo2ZM88s4KqrIoiL8z0fr21696auI46YwYwZCt9+q6okTZkiGTdOdnhNb03gnkjC5XKxY8cOLBYL06ZN63FTmM1qi7onGI1GvZ7g8ccl48c7+OorO+HhjZxzTgkjRkSSm2sjLi6ak04aisl06FwGg4HXXrMg5aGOzJoa+M9/rDzySItucWgVop42w6OPWjAY7CQlqUSzerWJNWtcfRrWE8xSa0/HnTvXyYsvWgAFp1Pt+znqqI7rF0IQGxuru8QOh0MXIW5paWH79u16wZdWpRmIOgohxHnAn4DxwBHureBCiHtQg5Au4GYp5efdHEerurwUMAsh1gNbpZRv9GZd/eJ6CCGoqqqira2tgyq2N6xaJbjtNhMOhxGbbThr1ph44w2nz3oERqOR1tZW9u7d26Gpy2yGefMknqyt7mIO3aEnkrDZbGzdupX09PQOGZ1AwGgUXHmlhSuvBLDS3BzOli1byMw0oSj17N6tRv0TEhL0z9xup4OrYDSCy2XEYrH4lH6tqjIQHn7IrRPCP3k6TwhWpac3F+Gkk1woip0vvjBhtSqcd56T7OzubxJms5nU1FRSU1Npampi+PDhVFdXk5ubi6IobNiwgdbW1kAUeOUC5wIvuz8ohJiAGpicCAwBvhRCjPGWsXCzFNagVmgeD2wTQvwPyJVSlvizqKBbFG1tbezatQuDwcDUqVN9uiAef9yI1are9Roa7OzdG8YXXxi6KFd5Q2trqx4H8NbU1Rm9VeJyuVz6hd75vTU1NZGbm0t2drYedQ8WWlpa2LZtG2PHjiUpKYnGRoWnnlL46SeIjm7m0kuLmD49inPOSWfduhiamrSRiILzzju0odzTr9p7c7lc+v+nT7fw7bcW4uMPxUP6Oic0mBaFp+tNCJg3z8W8eb2zgoQ4JN2flZWF0+kkPz+foqIi5s2bx7hx43j77bd7VT4updypnaMT5gP/lVLagANCiL2oat0/9XC81cDq9mNeB/wDCBdCTPZVqh+CTBQ1NTXs3LmTkSNHUlpa6vNdo7FRoFpzasu2lN6H97pDq+ysqakhKyvLZ5JQX2ugrk5tVfdlmZo+4q5du0hJSSE+Pr7D+6uqqmLv3r1Mnjw56JHwuro6du7cyaRJk3TT95FHrKxapW6+vLwotmxJ4S9/KWbEiO1cfXUkX32VSXi4leuvFxx9tOfqVm3zqrUgKmHcdFMVxcVQVBRBWBjce29bn4kimL0jgSYgT+6pyWRi0aJFvPDCC2zcuJEDBw4Eo8ckA9U60FDU/li3EEJkomY54lGl+lcBw1FnfPiMoBFFfn6+XoptMBgoKiry+bUnn6ywbJmBuDhoaVGti1mzujcNXS4X27dvx2AwkJmZ6deFt3at4JZbhtHcLMjIMPHCCy7GjPF8PndXY/bs2bpW5J49ewgPDyc5OVkXZ5kxY0ZfJNt9QkVFBQcOHOiQRbHbYdUqVdFr924DLhc4nYJbbx3Khx8mc9NNTn7zm1qqqg5QW1tLTk6EnknxlInRNltjYyMVFbt49dVJCNGMyaQAh2oYuottdIdgiNYEC93J62mEN8pTubAb5s6dS1lZmf779u3btZrg+6SUywO11nZcgzqgOBz4H3CXlLLU34MEhSj27NlDW1ubXoqtmbG+4u67Va3KL780EBvr4MknnV43Lhya1JWens7w4cMpKSnpkI7tDlVVcNttJqS0k5DgpLbWzA03GPn0U2eXztHO8Qj3OZ5SqiPndu7cqU+LKi4uJikpieLiaDZtMhIZCXPnugiUgVFQUEBlZSUzZszokL4zmdR4TGGhWjvicKiBx/p6wdVXW/jpJ0lSUpJetdjc3Nxe7LUdp9Opk0ZsbKy+gSsrK9m/f3+XtK67teEe2/CHNLxlEQYjvGVSNEvDF8L78ssvOz80yYdT91aZ+0Ngu5RStyBELyaaB4UoRo4c2UU2zh//PywMHnjAxQMPuPjxx60cffTRXp+rNXWNHz9eHx7rT7whP1/gcqnCrS6XOtWqpkZQUaG6IRp6Clo6nU727NlDcnKy7rdWVVWxbFkVTz4Z0V4IZeKttwy8/rqjT2QhpWT37t04HA6mT5/eZZMZDHDDDU5uu82iz/IwmdTHq6sFa9YYOP549fNxb7DKysrSo/vFxcXs3LmT6OhojEajntY1d5pa7B7bcCcK7bPSbhBGo7HHO/HhgEAJ6PYCHwFvCyGeQQ1mZgPrenqRJwFdf0kCgkQUZrO5Q8l2sC6CoqIiCgsLmTFjRod5j/4QRXLyobF8oKpnGwx0kPLX7pjegpatra1s3bqVrKwsvTbEbDaTnp7OkiVWYmIgLMyJw2EjN1fwj38Uct55BpKTk/2OkrtcLnJzc4mMjGTMmDFeP9sLLnBRWeng3nvNGAwqUQih9kK0dTP2xT26rygKeXl5VFdXYzabycnJ0S0RT5PQNSJwj21oZKH9aH93tzaCFcwMBrwRhdPpDEhcQghxDvAiauXkCiHEFinlqVLK7UKI91BHAzqBG3zp0QgUBrUKNxyyRtwvJO0CttlsHHHEEV2+OH+EcjIz4Xe/c/HXvxqQ0ojFAg8+6NJTsT1VWmqBxAkTJngMnjY0qBWTZrMJs9lEWJggJmYILlcxubm5uFwuEhMTSU5OJjo6ultS1YYPDRkyxKfmoxtvdPLTTwa++caA1aqOM4iLg+nTfet63bNnD4qicPTRR2MwGLDZbFRXV7Nv3z5aWlqIi4vT06+eNo8WEDWZTLqL4m5laOlX7d/DAcFuMZdSLgOWefnbo8CjfT5JLzDoiUIzabVNqm2WxMRExo0b5/EC8zfVec01ClOm1LF7dyPHHTdMV6by1K/hjp7KsQFOPtnF0qUm4uNVpW6TCY4+2kxmZiaZmZk4HA6qq6spKCigsbGR2NhYkpOTu2y+lpYWtm7dyujRo0lKSvL5vb3yip1nnjHx009GUlMld9/t6DDXpLVVtabc698URWH79u2EhYUxYcIE/b1brdYOwrhaIHffvn1YrVbd2vA0zdvdRTGbzR3Srw0NDQihjp/MyzOTk2MiNlZw8sm+1850RrB6WrwRxSCtygwYglZw5Qm98UW1HgWTydRhUleKpyk+bq/x90IZM0YSHd1IZqbv5diNjY3dlmMDLF7sREr46isjcXGweLGd8eMPBWbNZrOuE6koCvX19VRVVekt0UlJSVgsFvbv398h/ekrIiLUieqdB1crCjz1lIl33zUhJZxwgos//9mByeRk69atJCUlMXz4cK/HNRgMuvAtqERWVdW1H8Vdcarz6w0GA4WFhdTV1TF58mRWrTLxxz9acbnUz/v99w387W9tREb675ZIKYMSS/CW9RhknaMBR79ZFH1V4i4rK2P//v0+lX8bjUbsdoWKCrVoy5dTauTibh5rvrQ73MuxfSkgUwOzTh54oGfRFoPBQHx8PPHtHVQtLS0cOHCA8vJywsPDKS8vR1EUn8Vlu8Py5UbeeUfVsTAY4JtvDLz4Ihx//CaGDRtGenq6X8eLiIhg+PCu/SiavqVmbbiniw8cOEBDQ4MekP3rXy1ERwsiItTq2QMHjKxaZeCooxzU1AhSUwXh4b5lUvpbqn+QzvQIGPqNKDTxmt4ocR84cEBPt3aOunvCDz9YuOaaKUhpISoK3nzT0WMdhnsaV0vX9Wc5tidoZe/HHnssQgiqq6spKiqioaGBmJgY3UXpTRBt0ya1hV+75sPCFL76qokrrxzVbRVpUZHgs88MOJ2CU05xeezmde9H0dLGVVVV5OTktCt+JbF3r6SkxIKU09m5U3DmmS6amgTh4ZpFqiqZb9xo4eGHI3C5JOHh8PTTzUyebNctEm9kEKxxgt7SoyGiCBA08Rp/ovxOp5O6ujri4+OZMWOGT3fRqir4v/+LxOFwEhYG1dWwaJGZ7dvt3aYkhRA0NjZSW1tLXFzcgJZje0t/atkIKaXuohw4cACz2Ux8fBJpacke4wOeMGyYbG+IUjM69fV25syJIDHRu7WWny+47DILDQ3qJv73v43861/2boWE3MudR4wYQV6eg0suEVRUWKirsxAZ6SIhQfLf/5o57jgXK1caSUxEz8x8+KGZ6GhJWJigqQnuuCOKTz9twmBQBiST4u1mN5hazIOBoOSkvKlc+VN01dLSwvr164mMjGTo0KE+m9r79h2anF1RoZZ+V1TAVVcZ8Ra20OY0jBo1irKyMtauXcv27dupqKjQ6yFyc3OZPHly0EnC5XKxdetWjEYjEydO9HixCyGIi4tj9OjRCHEU//d/R3L88aOZN8/I8uVb2LNnD3V1dd12w15yiYvx4xWqqhTKy20MHWrhrru6vxzeeMNIc7MgNVWSkiJxOuGf//T9XqMoCjff7KKpyUpbmxWzWWCzGTEaXezaZSciYi9z51ahKC7S0yU33ODAYpFoceKoKDX4Wl9vwWq1YrFYMJlMHbqFHQ6HLkTc33NHf85E0e8xCl9QVVVFXl4ekyZNory83C+CSU+XOByChgYT7vvkp5+MfP655Ne/PsQW7kFLg0Gta0hOTtYj8ZWVleTl5eF0OhkxYkTQC238TX+Wl8MVV1hwOlWxmLKyGJ55Zg7//W8hJSUlesGU5qK4u22RkfDEE4V8/XUNWVnZzJzppKfrvKVFYDR21HFoavLtvblcLrZt20ZJyUzi401UVan1Kk6nAKyEhUF6+nAuuKCEysq9tLW14XCkYrePwW5X09atreiiweC5H0X7PltaWhBC4HA4ui328hfdidaEXI9AnMhk6lGyX2vqqqg4NKmrqqrKL6IYPhzuusvJ4sUmvZ06Ph4URVLsVvDaXWZDM5dLS0uJj49nxIgRVFdXs337dlwuF0lJSSQnJwdkPqaG3qQ/d+5Upfw0byMqSlUZNxhSmDAhRSe8qqoqDh48iNFo1NdeU1NDRUU5F188BbPZt8vg17928b//GWlu1sY0qtPj77nHRHm5geOOc3Hppa4uIjZOp5OcnBxSU1OZONFIbq4qj6e1p7tcqtVwzDFGhg4dytChQ3G5XNTW1nL55cW88koyRqPAZDLyxBN2wsK6rtc9/VpbW0thYSGTJk3S6zR80drwBd3FKIJtbQ4k+i092pNFoTV1GY1GZs2a1eGL93fK2I03KrzxRh0HD8YSFaXqRzocgokT1TtRT5WWTqeaIoyPj2fs2LEIIYiMjGT48OE4HA49NtDc3Ex8fDzJycnEx8f3+uKrr69nx44dTJw40S+594QEtapUUbS7s/q4dgh38ZVRo0bR1tZGVVUVmzdvxm63M2TIEJqamrymMDvj+OMVHnnEzr/+pc7ruPJKB2+9ZaKuTmCxSDZvNlNZKVi8+NANweFwsGXLFoYNG0ZaWhpPPungiissVFUJ7HZJVBRMnCi55x4HmZkd5ROTkpK49VY47zw4eNBGWFgFUlawbp2LhISELv0ooHYs79mzh+nTp+vxsO6KvfwdrNRdwVWm+2i4nxkGhevR1tbGli1bGDJkSJfcfW+IAuC++3bw7LNHkZ+vFhTdeaeTo46SvSrHdodWmp2eno6iKNTW1lJZWcnu3buJjIwkOTmZpKQkn7IzcKj7c9q0aT4HIjVMnixZsMDFhx8eunD/+EcH3g5jtVppbGwkISGB7OxsamtrKSsrY9euXURFRekpzO7WfvrpCqefrjaQrFypznNNTFQ3eHi45L33TNxxh7Pd4rCxZcsWRo4cSXL7iLfhwyUrV9ooKBBERUl8ycJmZEBGhhW1J2qYx36UpKQkhBDk5+czbdq0DkHz7oq93LU2fBmsFIpRBBidVa68zfbQxge6N3W5Q62JsPt9/uRkO19/7aCyUp0spjZ9Haq07E05dmd46h6trKxky5YtCCH0mIe30l5v3Z++Qgh44gkHZ5/toqREMG6cwpQpngOYWo9IVFSU3rTnHpPpvHbNRYmIiPDqXhkMEk0zBNT29vp6eOstI0cf3UJl5WbGjBnT5Xu1WulRUao7uPejaO6V9llGRUVRUlJCcnKyx34Udd2etTZ8GeN4mClwBwz9alF03vDemrrc4a4e7S8MBlXGXr0QvFdawqFy7N7c2aFjGnDkyJHYbDY9GGqz2fR+Do2Auuv+9O+88KtfdV+Fqqmep6SkMGzYsC5/97R2TXintbVVd6/i4uI6rPXooxVSUiRlZSpZ5OeriukPPWTCaLTw9tuTSEgI7l1WCIHNZqO1tZVjjz0WRVH87keBrspe7s1s2vO0eMdgH1AcDAyI69FTU5e31/UGgVLH9hdWq5WhQ4cyZMhQHA4X9fXVFBcXs2PHDlwuFzExMV7Tn4GEzWYjJyeHzMzMblXPO689IyODjIwMFEVpD3xWkJeX16HKMibGwhtv2HjtNRMff2wkMlKSnKxOZLfbw3n5ZSsvv+y/NegPysvLKSgoYPr06bpV1tt+FOje2tDmo2h/c//uQkTRS3R2PbQN70tTlzv6QhQaQXiLR/irju0PpIQXXzTx7LMmnE7BaaeF85e/xNHSkqP76xs2bMBqtepxDW+NZb1Fc3Mz27Zt82j++wqDwdBF5KayspKcnBwAkpKSuP76ZA4ejKesTL27q+9DUF0d3LmnpaWlFBcXM336dI8E31M/ihYQ7Wwpub8eDlkbe/fu1TNd7taG0WgMEUXATmQy0drayoYNG8jOztY3S0/oLVEIIXA6nTpBdCYBjbCCVY792WcGnnnG1K42Jfn8cwN2ewNPPz1CT39mZ2fT0tJCZWVlwFOvDQ0NbN++vVeNZN7gLnIzYsQI7Ha73sA2bJgVu30cZrMFp1NV1jrttODJJZSUlFBaWsr06dN9rm/p3I9SU1NDWVlZF0vJk3zh/v37aWtr01Ou2k1IURRaW1vJyck5bFrle4N+I4ra2lpqamqYM2eOX8zbm05QKSUxMTFs3LiR5ORkUlJSOgSa+qMce/VqI06nGrhTFImiONm5M52kpI6j9SIiIjq0nAci9VpdXc2ePXt6HW/xFRaLhSFDhmA0GjnhhHwsliZeey0Ku93BWWdVccopdmy2pEBI2HdAUVERFRUVTJs2rddFcEajsUswV+tHAfTu1+joaH1ymEYScMhFsdvt/O53v+PGG2/Ux0L8HBFU1wPUTbt3715qa2uJjY312zzzx6Jwj0eMHTtW33iahmdiYiIWi4WSkhImT54cVFMxPV1iMGgmqhMhLGRkdE94gUi9lpWVUVBQ0C/Cvs3NsHdvGTZbEbNmzeTII03cfruqmt7SEkFlper6KIoSMEupsLCQqqoqpk6dGrBK2c79KHa7nerqal3R3WAwkJ2d3aXPw+FwcNVVV3HMMcewePHin7VFIXqYjtVrJ9PpdOrdlpoeY05ODrNnz/brODabjW3btjFr1qxun+fLtK68vDwqKysxm83ExcV5FIgJFBob4ZRTBEVFBsxmMxYLLF1q63ESuye4py+rqqo6lJu7p14LCgqoqqpiypQpwZCL74Dnnzfx3HMCKRXGjDHyxhv29vGHXaERdlVVFU1NTT1mIrzh4MGD1NbWMmXKlH6Rzjt48CB1dXUMGzaMmpoaqqurMZlMes3Fiy++yKRJk7jvvvv6ShKDnmGCRhT19fVs2rSJESNG6HfItWvXctRRR/l1HKfTycaNG5kzZ473RfZAEoqisHv3bpxOJxMmTNDXV1FRQU1NDREREaSkpPhVKNUdNBm5+noHZWWTsNsNHH20y6fiIl+gpV4rKyv11GtbWxtSSiZNmhT0TbRqleDyy02YTE7Cwqw0N8OcOQrvvNNzhsM9E1FTU+NzMDc/P5/6+nomT57cLyRRUFBAbW1tl/O1tbXx7bff8uCDD1JeXs7555/PjTfeyJgxY/pyukFPFEG77TQ2NjJx4kS9bqC3sz17ilH4Uo69bds24uLi9HJsQBeI0SL5FRUVbN68WfddU1JSepWF0ErRIyIimDVrAkJI1FGRgYOWeh06dCgOh4OcnBzsdjtCCHbu3ElycjKJiYlBsZSklHzzTTUORxoxMWrsISICtm71bfN6ykS4B3O12IC7OM/+/ftpbm7uN5IoLCykpqbGo+VisVhYuXIlp512Gn/6059YvXr1YSMM3BcEjSjS09N7bALzBd0RTE/Ctz2VY0PHSP7IkSNpa2vrcuGmpKT45Fvb7Xa2bt1KWlpavwjbaKSUmJhIVlYWoFpK2gwO7W7dG7VvT5BSsmPHDlJTEwkLMyKlWvDV1gajR/fO+OwczK2pqaGwsJDGxkZiYmL0zNXkyZMRQrB5s2DnTgOJiZKTT1Z8Ui/zB+4xkM7XlKIoLF68mKioKB577DEMBgOnnHJKYBcwSDHoxXU9oSdXA/wvx9YQFhbGsGHDGDZsWJcsREJCgscKRei9+G1voVkS6enpHVrS1bXFoShjiI5uweGo0NW++xJQVBRFLwG/+upUNm9W+OYbdRpZZCQ8/XTfC6s6jwrYvn07LS0tGAwGNm/ezIYNI3j55VSkNCAEHH20i+eec3TpVu0tioqK9BiPJ5LQYhHPPPPML8KKcEfQsx6Bhi8koUX++5oe7JyFcM+7R0dHk5KSQmJiIk1NTb3q/uwttMlo7s1WGr7/3sDNN1va55RYefTRKM48s2+pV01MJzExUW/a+9vf7OTkCJqaBBMnKvSynssjtBiPyWTiyCOPRAhBc3Mr11wTicmkjjI0Gs388IOVjRsFRxzR98Ku4uJiKioqPGZTFEXhwQcfpLm5mX/84x+/OJKAAbAo+jIVaqDKsaFrhWJDQwMVFRV6z0ZWVlbAKys9oampiW3btjF+/Hji3KcUAS0tcPPNFqqr1WlnUsLll1tYv76VkSN7l3p1Op16Z697nYDBANOnqyK4gYSUkry8PIQQHSp3jcZwwEJ8vBl13qkDl8vO+vV5REaq1lJiYmKvvvOSkhLKyso81mVIKXnssccoLy/ntdde+0WSBPQzUfRWYBcGthy7MzSdh/r6esLDw5k8eXL7sF+1WEcLhgZiIIw7NHfKWw1IZaWgtlYdG6iFddraYOFCK5s22XSJQG9dr1owV3NRTCYTW7Zs8atPpDvs2SOorhZkZyt4qnOTUrJz505MJhPZ2dkdvsOwMJg5U2HjRgPx8dDaaiEmBhYuHEt4uKpGlp+fj8lk0uMyvliTpaWllJaWeiWJp59+mv379/Pmm28O1CjBQYGgpUellF26RTdu3MjEiRP9vvP+9NNPzJgxw6vIiFaOnZaW5rE7MtBQg3p7eeedWGprM5gyRXLllU7M5q6pS23TeZPYlxLefNPIV18ZyciQ3H67A08hDi1AOXXqVK+fX3MzjBwZ3kWezmKBHTtafUrPauI25eXl1NXVkZyczPDhw7sIxPgDKeHhh028+aZa0m40wuuv25k1q6Ms4Y4dO7BarYwaNcpL3AkeesjMhg0GUlMlDzzgYPLkjpeoFoyuqqrSU8daP0fnY5aVlVFUVOSxDFxKyYsvvsiGDRt45513ApI27waDPj3ar0SxZcsWsrOz/erbd7lc7Nu3j4qKChISEkhJSenwpfenOra2nm3btnPffePZujUap1OVvT/xRIV//9uO+7XodDqprq6msrKSxsZG4uLiSElJ6RAX+NOfTLz8shm7XTXn09IkP/7Yhnt7RklJCcXFxUydOrXHasuFCy189tmhi14I9W68dWsbQ4b49nW6B2YVRaGysrLDiAB/U6/r1hm45BILYWHqe2xtVWe7rlunSm1rgcvIyEhGjhzp83F7gtbPUVlZSX19vS5wk5iYqGdXpk2b1sXClVLy8ssv89133/H+++8HvcKVEFF0JIrc3FyGDx/uU8CvczxCSqm3O9fX1xMTE0NYWBgVFRVBL8fWoKU/m5qGc/nlwzEYVMVvKVUVre++a2PECM8fmaIofPddMzt2NJOUVM748YKkpBSmTRsBoOt7Go3wwgt2Fi5Uay/y8/P1akRfNmdREUybFk5bm0oSQsBJJ7lYtqwjiXmDFgPpHJjVRgRUVlZSXV3tV+r1gw+M3HOPWVfekhIaGgR797ZiMKjZFK18OliQUtLY2EhlZSVlZWXY7XaysrK69AFJKXn11Vf59NNPWbZsWcD7VLxg0BNFv8YotNkePcFT0FJTXdKCibt376a4uBiTycT+/fv1yspglS5rd9lRo0ZRUpJCZw/IYJA4HJ5fC/DHP1p57bVIDAaJoozgwQcbOPbYApxORVeKEkI9qNPZcbaHp5y+NwwdCuvXt3LnnRZKSgTHH+/iD39w+kQSmnbnlClTulh92oiAuLi4Dl2vvvRyZGcr+vsymdSg64gRCgaDohfDBVtvUghBTEwMbW1t1NTUMHXqVOrq6vQ+oLi4OPbv3095eTkff/wxy5cv7y+SOCwQNIsCVH/dHbt379bTcl5P2EOlZedybCEETU1NlJeXU11djcViISUlheTk5ICZjJ3Fb+12OOkkKwcOCAwGNXCYna3wxRc2jwVA27cLTj01DClVy8HlUu/0e/a0csstZj7+2IjDIVEUiIpy8sEH+zGZqomKiuoS1AsWampq2L17N1OnTvU7paylXisrK72mXl97zcif/2zGYID4eMnrr7fS2prTIeUabFRWVnLgwIEOIjeguiiFhYXccsstbNiwgblz53LllVfy61//ul/WxS/dovAmXuMNPVVaauXYsbGxHcqxtc6/0aNH09LSQkVFha4PoJFGb+spPInfag1ef/iDhR07BJMnKzzyiMNrlWBpqcBkAu2tG42q+V1TI3jpJQdDhki++srIkCGS++9voampBJdLdXX27NmjF3kFizC0QKm7crU/8KXr9Te/SWLhQhd1dYKUFCc7duSQkpLSLxWsgF5D0pkkQL0uN27ciN1up6CggP3791NVVdUv6zpcEFSLwm63dyAKbbaEp4vDXfjW04bwpRy7M7QIeEVFhV6ZqPmkvmy6wsJCKioqmDJlSp+i3qWlgjlzwnA4VNPbbleVq3Ny2nA/rJa9GTp0KOnp6V2CcTExMaSkpPSp47WoSLBtmyA1FaZPVygvL6OwsJBhw6azZEkYjY2q4IxaI9E3dO56NRqNJCYmUlFRoUvt9Qc0Dc1p06Z5tDI/+ugjXnrpJVasWOFXFW93uPLKK/nkk09ISUkhNzcXUK22Cy64gPz8fLKysnjvvfe0gdSD3qLoV6IoKirC5XJ18EeDWY7tDofDoactW1tb9R4OT2lLrTLQZrMFTNfyyy8NXHONlbY2SEqSvPOOjUmTDn02mkqSt+xN52BieHi4XiTl6eJvaYGvvjLS2grHHquQni758ksDl11m1d2f006r54YbtjF06DROPDGS6mqBy6VmSV5/3ca8ef4JBvWE5uZmtmzZogvVugsOB8taqq6uZu/evUyfPt3j5/Tpp5/y1FNPsWLFil7LBXrCqlWriIqK4rLLLtOJ4s477yQhIYG7776bxx9/nNraWp544gn4pROFw+Ho0PlZWlpKa2urngJzH8riaXo4qLnugwcPMmXKlICpNblcLqqrq6moqKCxsbGDTy2l1Ls/veXzewtFgYYGiI2lQ3CxsbGR3Nxcv4hQ63itqqrSpfdTUlIIDw+nsRF+/WsrhYXqScxmWLbMxhlnhNHUpLo+iiIxGhXef9/Oxo0mHnvMrLtOTieMGCH19GUg0HkQkNPp1K2lvqReu4P7MCBPJPHll1/y6KOPsmLFiqD05+Tn53PmmWfqRDF27Fi+/fZb0tPTKS0t5YQTTiAvLw8OA6IYkMpM6Bi09EQS7uXYM2fODGg2w2g0kpKSQkpKiu5TayrTDoeDlJQURowYEfC7nMGg1g+4o7a2lry8PI+Zhu4QGRnJiBEjGDFihF4ktXPnThwOBytWjGX//jQsFjVO1NICixdbaGpS16Aoaum1yWSgpMRIXZ1qSWgfsRBq8VagoJFEZmYmKSkpgHotaN+Bu7UUqK7X2tpaXQ7QE0l89913PPTQQ6xcubJfmvhAVQxPb696S0tLo7y8vF/OGwgMSHq0p8xGf5Zja+XM4eHh1NXV6e3O69evJzw8PKCCNp3hHijtS59IWFiYrk/hdDp56y0Fh0PBYHDp1ayVleqUroMHtcE96tzSsjLB0qVGHA7V4rFYVIvj7LMDo6Fht9vZsmULI0aM8Jrt6px6bW5upqqqSk+9aqTha2yprq6OvLw8r8HZ77//nj/84Q96DGEg4M3NHqwYEKLQNAYGQzk2eJ79OXr06A6CNtodMFDaDkVFRZSVlfV6Spg3mEwmTj/dwPLlRsCAEBKXSzJuXClnnpnP/ffPprFRXf/llzt48km1KtRopN2qkPzmNy4efLCbohAfYbfb2bx5M6NGjfLrrh0ZGUlkZCSZmZm6fqUmXtNT12tdXR27du3qMlZQw9q1a7nrrrv4+OOP9bt7fyE1NZXS0lLd9RgokuoNghqjcDqdHVyNlpYWNmzYQFpaGqmpqV2Kc/q7HBsO3dV7ioG0trZSUVFBZWUlUspeN35JKTlw4ACNjY1MmjQpaI1Gzz9v4qmnzLhcMG+ek+uu20hsrBmj0cy+fY3ExwuefXYS//tftJ55cblg4kSFVats3R/cB2hzR0ePHh2w79I99VpbW9ul67W+vp6dO3d6tdA2btzITTfdxPLly/tloHDnGMXixYtJTEzUg5k1NTU8+eSTcBjEKPqFKNwzG+6BxJaWFj37YLfb2bdvH5MmTeq3QSq9TX/a7XYqKiqoqKjA4XDoadeeBGG0FmpFURg/fnzQTU9FAYfDxfbt6tAhdwutpaWFG24wsmxZDEajGpdwuQzMmaPw2Wd9Iwpt6HRfBg/1BC31WlFRQXV1NVJKbDYbkydP1lKOHZCTk8P//d//sXTpUkaNGhWUNbnjoosu4ttvv6WqqorU1FQefPBBFixYwPnnn09BQQGZmZm899572ucTIgp3sujsl2mkoYmppKWlkZ6eHtTiIghs+tPpdFJVVUVFRQXNzc068XVO+WkKUVrjU3/4p1oQUavL6Iw9ewQnnaRmQqSUWK0KDz+8lRNPNPY6bamleceNG9dFLyNYaGhoYNu2baSnp1NfX4/dbu8wl2PXrl1cddVVvP/++4wdO7Zf1uQnftlE0eTW79xTOfa4ceOoq6vTm748dVoGAprOZHh4OKNHjw7ohtUKpCoqKmhoaCA2Nlav1di2bZvXIcHBgBZE1BqfvGHfPsG//23C4YDzz3cyZcqhjlftPfg61kAjifHjxwescKknaKnlqVOn6m6glnrduXMn119/PU6nk7vvvpsrrrgi4BohAcIvmyguvfRSCgsLOfvss5k/fz5paWn6xnQvx+6citQk3SsqKqitrdUrEhMTE/tEGprOZH+I32rvobS0lLKyMmJiYhg+fDhJSUlBF0DRTP++xnqklB2+h+6yQC0tLeTk5PSbHCB4Jgl37Nmzh8suu4zbbruNnTt3EhERwR//+Md+WZuf+GUThZSSgwcPsnTpUpYtW4aUkrPOOotp06bxv//9jxtuuIE0b1Nj3I5RX19PeXk5NTU1REVF6RerPxvOvfvT17mnfYV2zuzsbMxms14gFRYWpr+HQGsdaIOJA236u4810MqxtbSloihs3bo1oHNOe4LWDu+t/iQ/P5+LLrqI1157jRkzZvTLmvqAXzZRdDiQlJSWlvLUU0/x+uuvM2XKFObNm8f8+fN9Lm7SNAW0TlHtDqfJtnmDp/RnsKENCfZ0Tm3DVVZW9nmOiDu0O2x/bFitj6a0tJTGxkaGDBnC0KFD+zwy0Bf0RBKFhYVccMEF/OMf/+CII44I2jqeffZZ/vnPf+rjBF577bXefochonCHzWZj0aJFvPTSS4SFhbFs2TKWLl1KbW0tp59+OgsWLGDMmDE+k0ZzczPl5eVUVVVhsVhITU0lOTm5g1nsa/ozkNCGBE+ZMqVHn7itrU0nDZfL5XGosi/Q6gcmT57s92t7C/fSc02foqexBn1Fc3MzW7du9SpWVFJSwnnnncdLL73EMcccE9Bzu6O4uJhf/epX7Nixg/DwcM4//3xOP/10fvvb3/bmcCGi8AXV1dV8+OGHLF26lLKyMk499VTOOeccxo8f7/OF5n6X1oqjtIEyfe3+9AfaqICpU6f6XZhlt9v1DEpbW5uedo2Oju6WPN2nl/eHEjgcspg6xwe0sQaVlZXU1dV1GGvQ19iMFgfxRhJlZWWcd955PP3005xwwgl9OldPKC4u5sgjjyQnJ4eYmBgWLFjAzTff3NuBQCGi8Bd1dXV89NFHLF26lIMHDzJ37lzOOeccvwbTtrS0sGPHDpqamoiMjCQ1NTUgpn1PCOSQYE1vs6KigqamJuLj4/UskDtpVFRUkJ+f77WnIRjQCpt6ErlxH2ugyef1VlRIIwlvblVFRQULFy7kiSeeYO7cuX6/p97g+eef57777iM8PJxTTjmF//znP709VIgo+oLGxkZWrFjBBx98QF5eHieffDILFixg5syZXkmjc/rTvThK6xsItJS+lJJ9+/bR0tISlCHB2l3aXS9UK1IrLS1l6tSp/WYxaS5Ob5Swmpub9VZ/8H2sQWtrK1u2bPEaY6qurmbhwoU8+OCD/aZKVVtby8KFC3n33XeJi4vjvPPOY9GiRfzmN7/pzeGEEMIspex73XyQMKiJwh0tLS18+umnfPDBB2zdupUTTjiBBQsWMGfOHN2k7Sn9abfbqayspLy8HIfDoV+ofakEVRSFXbt2YTAYOqhuBQtaFmjfvn3U19eTmJhIampqUPVCNWhyeYFwcWw2m+5mdTfWQKvNmDBhgkeS0Dbsvffey9lnn92nNfmD999/n88++4x//etfALzxxhusWbOG//f//p/fxxJCxAHrgJellM8EdKEBwmFDFO5oa2vjiy++4P3332fTpk0cc8wxzJkzhy+//JLHHnvMp/SnpvNYXl6uxwM89Z90B1W6X60FycrK6rduwAMHDtDQ0MCkSZN06T8toKuRX6DdEE0AxluzVV/QWR8kLi6O5ORkIiIi2Lp1q9cCroaGBhYuXMjtt9/OwoULA7qmnrB27VquvPJKvcv4t7/9LbNmzeKmm27y+1hCiCuAM4AxwL8HI1kclkThDrvdzt///ncefvhhRo4cyaRJk5g/fz7HHXecz5tFiweUl5fT0tJCQkICqampXof2gPchwcGElJK9e/dit9s9Bno10qisrOwiZtMXVFVVsW/fPq8CMIFE50K1uLg4MjIySExM7OBeNTU1cd5553Hddddx4YUXBnVN3vDHP/6Rd999F5PJxPTp0/nnP//ZWxIVAEKIscBHwKtSyicCuda+4rAnCikl1157Lffddx9Dhw7lu+++Y8mSJaxevZoZM2Ywf/58TjrpJJ+/QE/qV6mpqR36T7QhwSNGjOi3VmEpJbt27UII4ZOLo00sq6iowOl0+q0XqkFTru7PYKnNZmPz5s2MHTsWk8mkB0NNJhNNTU0kJiZy11138dvf/pbLLrusX9YUDNTV1WnXlQEwSimdQogxwIfAO1LKhwd2hYdw2BOFN7hcLn744QeWLFnCN998w8SJE1mwYAFz5871OZDZOYgYGxtLbGwsBQUFjBs3zmOXYjCgTdIKDw/vlTyf5mZVVFToeqG+NH2Vl5frU+H7K1jqThKdP9/W1lbeffddnn32WaSUXHHFFVx55ZX9risRCMyfP5+pU6dy1VVXkZmZqVkUpnayGIlqWXwgpRwUNec/W6Jwh6IorFu3jvfff58vv/yS0aNHc84553DKKaf4HMiUUlJUVMS+ffswm81601pf+096ghYHiYuLIysrKyDH6xwP8NR8V1ZWpo/c6y+S0IRusrOzPban22w2Lr74Ys4++2zOP/98Pv30U4455pigThgLBm6//XY+/vhjzj//fGJjY7nrrrtGSCnzoQNZZKKSxQop5b0DumB+IUThDkVR2Lx5M++//z6ff/45w4cP5+yzz+b000/vtuOxqqqKvXv36kOC6+vrdZO4t/0nPcHpdJKTk0NqampQmtg6C8FoxVF2u52ysjKPczmDBY0kvAnd2O12LrvsMk4++WRuvvnmoAWO6+rquPrqq8nNzUUIwauvvspRRx0VsONLKdmwYQPp6ens2bOH5cuX8/zzz98LvCel3AcghDBKKV3t/y8FnpRSPhuwRfQCvziicIemEbFkyRJWrFhBamoqZ599NmeeeWaHO1ppaSlFRUUehwRr/Sda5sHX/pOe0Fm1OtjQiqP27dtHXV2dPhC6c0l8MKC1xI8aNcojSTgcDq688kqOPPJI7rjjjqBmly6//HKOPfZYrr76aux2Oy0tLQHX1bDb7fp19PXXX3PyySc/A9QBLwCtgElK2SKEMAHbgaOllNUBXYSf+EUThTu0YOGSJUv4+OOPiYuL4+yzz2b//v1MnjyZRYsW9WgteOo/6U0loiYjN3LkyH7rdAVVx1NT/NJ6UKqqqjCZTHoGJdCpUYfDwebNmxk5cqRHXU2n08k111zD5MmTue+++4JKEvX19UybNo39+/f3q/CtEOJk4HjAClwH3Cyl/Hf738KklIGbm9BLhIjCA7QBwddeey3FxcUMHz6cs846i/nz55OamurzRdTS0kJ5ebneJarJ03e32bQCo2DKyHlCQUEB1dXVHqemt7a26hmUvuiFdoZGEt4Uul0uF9dffz0jRozgwQcfDPrm3bJlC9deey0TJkwgJyeHmTNn8vzzzwetyU5TfUOtzDwdeAd4Wkr5UFBO2AeEiMILvv/+ez766CMee+wxCgsL+eCDD/jwww8BOOuss1iwYAEZGRk+X7zu4ryAThruFY5aZ2RfJqJ1hssFVVWQlKQqbXtCfn4+9fX1TJ48ucfArFbdWlFRgd1u91kvtDM8zfpwh6Io3HLLLSQlJfHYY48FNWCsYcOGDRx55JH88MMPzJkzh1tuuYWYmBgefrhvWUo3QvD4OypRvAPUSClv0B6QPWzO/kSIKPyAlJKSkhI++OADli1bhs1m48wzz2T+/Pl+VWbabDa9/8Tlcul353379nntjOwNvv3WwIUXWrHbwWqF996zceyxHccEuiuC+7sZO+uFanGNnjRPnU4nmzdv7pYk7rjjDsLDw3n66af7hSRAzfQceeSR5OfnA7B69Woef/xxVqxY0avjtbS0dLC68vPzGTp0qB67ysvLw263M3nyZCGESJJSVsHgIwmAoHwDn332GWPHjmX06NE8/vjjwTjFgEAIQUZGBjfffDNff/01y5YtIz4+nltvvZUTTzyRJ598kt27d9PTd2y1Whk2bBgzZ85k2rRpOBwOXdJd6xbtK2pr4YILrDQ2Cmw2QUODYNEiK/X16t+1RrampqZeN7KZTCbS0tKYMmUKc+bMISEhgdLSUtasWcOOHTuoqqrqMFISVJLYsmULw4cP90oS9957L0ajsV9JAtBnybSP+eOrr75iwoQJvTrWLbfcwqeffqpfC+vXr+e///2v/nm0tbXx5Zdf8q9//Uvr9dCDlYONJCAIFoXL5WLMmDF88cUXDB06lNmzZ/POO+/0+gM/XFBVVcXy5cv54IMPqKio6KCp0d3dVSuPnjp1KkajsUNhlK96FJ6wfr2Bs8+20tBw6HXR0ZJPP21j2jSFffv2YbPZmDBhQsB9f3etTXf5wtjYWHJzcxk6dKjHTI6iKPzpT3+ivr6el19+uV9JQsOWLVv0jMfIkSN57bXX/C6s+/rrr5k7dy4HDhzQ54coikJzc3OHFvkdO3ZoKlnJmjUxWBFwovjpp5/405/+xOeffw7AY489BsA999zTm/UdltA0NT744AMKCgqYN28e55xzTpcYQHl5OQcPHvRYHu1yufSmte7GAHhDcbFgypQw2toOPTcsTLJ9eysNDaryeX/MFnGXLywsLCQiIoJhw4Z1yQRJKXn00UcpLi7m1VdfDboAcbBxxx13sHr1at566y2ys7O7/H3Dhg3MmjWLd955h4svvjhBSlk7AMv0GQEniiVLlvDZZ5/xz3/+E4A333yTtWvX8tJLL/VyiYc3GhoadE2NPXv26JoaGzZsICsri7lz5/ZYb6GNASgvL9f7TzyJ2HTG008fmlLudMIDD9g55ZTtAP3SEu++/i1btpCenk5sbKyuSWEwGLBYLISHh7N06VJ2797NG2+80W9FXsHGww8/zNKlS3nvvffIzs7Wg5jLly+nrq6Oyy+/XHvqoBeu+Xl8I4MYMTExXHTRRVx00UW0tLSwcuVKbrvtNmpqajj99NOJiYnpoKnhCZ0Vr2traykrKyMvL4/Y2FhSU1M9zj/5/e+dnHqqiz17DGRnuzAadyKEwWdd0kDA5XLpGiFDhgwB1NmiWVlZtLW18f3333PfffdRVlbGzTffzMGDB/tlklcw8cILLzBkyBDuv/9+HA6HLnAzfvx4QO3zONwQcCcwIyODwsJC/feioqJ+a8Me7IiIiCA8PJzs7GxycnI47bTTeOONNzjqqKO4/fbbWbVqFU6ns9tjaNPXJ0yYwJFHHklaWhqVlZWsXbuW3NxcXaRXw6RJkgULnAixHZPJ1O8ksXXrVlJSUjxeA1arlT179jBy5Ei2bdtGZmYm27dv75e1BRKdA7aVlZWsWrUKgIceeohFixZx3nnnsWnTJoAO38/hgoC7Hk6nkzFjxvDVV1+RkZHB7Nmzefvtt5k4cWLvV/kzgqIoSCk7WBB2u52vv/6aJUuWsGbNGubMmcOCBQs47rjjfC6f1pSvtP4TTSs0MTGRXbt2ER4e3m+jDEF9nzk56sxTT30qUkr+9a9/8fnnn7N06dKAV3x2hsvlYtasWWRkZPDJJ58E5RzvvPOOrsL1/fff6/E5gL/97W/89a9/5eWXX9YDpm7v+ZfnephMJl566SVOPfVUXC4XV155ZZ9JorCwkMsuu4zy8nKEEFx77bXccsstAVpx/8JTJN9isXDaaadx2mmn4XA4WLVqFe+//z733HMPM2bMYMGCBZx44ondbiYhBHFxccTFxXUIIO7YsQOr1UpiYiJOp7NfOkG1gUBJSUlem9nefPNNPvnkE5YvXx50kgBVCHf8+PE0NDQE5fgVFRWsXLkSs9lMVVUVn3zyCXa7nZKSEmbOnMmtt95KW1sbZ5xxBm+//Xa/vOdA4rAouCotLaW0tJQZM2bQ2NjIzJkz+fDDD3/2KVeXy8X333/PkiVL+Pbbb5k0aZKuqdGTapWiKLpMX1JSkl4V2tv+E1+hnTc+Pp7hw4d7fM7bb7/NO++8w8cff9wvs0CLioq4/PLLue+++3jmmWcCblF0rrTcsWMHl19+OS+88ALr16/HarXyu9/9DlAJxUP9yC/PoggG0tPTdXGS6Ohoxo8fT3Fx8c+eKIxGI8cffzzHH388iqKwZs0alixZwqOPPsqYMWM455xzmDdvXpdKTu2OHh8fr+fxo6KiGDlypC6Xt2XLFp/7T3yFRhJxcXFeSWLJkiW8+eabrFixot8GBt966608+eSTNDY2BuR47sSg/V+74QohmDBhAjNnzkRRFG6++eYOr+svRbRA47AgCnfk5+ezefNm5syZM9BL6VcYDAaOPvpojj76aBRFYdOmTSxZsoS//OUvZGVl6ZoaBoOB1atXM2nSJI+T0yMiIsjKytKzDhUVFWzbtg2gTxqbWst+bGysTk6dsXz5cl555RU++eSTgJWp94RPPvmElJQUZs6cybffftvn4ymK4tF97EwcjY2NbN68ucO0sv7sSA00DgvXQ0NTUxPHH3889913H+eee+5AL2dQQNug77//Pp988gn19fWccsop3H///X5VFHbuP0lOTiY1NdWnu76UktzcXKKioryqTa1cuZKnn36alStX9puEIKiFfm+++SYmk4m2tjYaGho499xzeeutt/w+lrsl8eijj1JWVkZiYiInnXQSxx13XIfnFhQUkJGR4Wvh2KBnkMOGKBwOB2eeeSannnoqt99++0AvZ9Chra2NM888k5NOOgmn08mKFSt0TY0zzzzTL10LTx2iqampHoV5pZRs376diIgIRo4c6fF4X3zxBX/+859ZsWKFR82J/sK3337LU0891ecYxUMPPUROTg533HEHN954I5dffnkXF0P7nLxZIJ0w6InisHA9pJRcddVVjB8/PkQSXmC1Wnn88ceZNWsWAPfffz979+5lyZIlXHTRRYSFhXH22Wdz9tln96ipYbFYyMjIICMjA6fTSWVlJfv27dOFeVNTU/WeBW1IrzeS+Pbbb3n44YdZuXLlgJJEX5CXl6cPXlYUBYfDwXvvvccjjzxCdnY2N998Mw0NDbS0tJCWltbhsx2IfpVg4LCwKL7//nuOPfbYDr0Sf/7znzn99NP7fOz+yK8PNKSUHDx4UG+PNxgMuqbGkCFD/Bp4pDWtaR2u0dHRTJgwweOGWL16Nffeey+ffPLJYamULaWkra2NhQsXMn78eO68805SU1O5+eabWb58Occccwxvv/02oFoZY8eO5YILLujNqQa9RXFYEEUw8cwzz7BhwwYaGhp+tkThDndNjaVLl2K323X1rszMTJ9IQ0rJjh07cDqdGI3GDv0ncXFxGAwG1qxZw+9//3s+/vjjoAgD9wc0t6G1tZVFixYxbdo07r33Xg4cOMAf/vAHjjjiCO69917+8pe/6CMGe6lKFiKKwYxg59cHO6SUlJeXs2zZMpYuXUpDQwOnn346CxYsYPTo0R5JQ9MWNRqNZGdnI4TQ+0/Ky8tZsmQJOTk57Nmzh88++4zRo0cPwDsLLP773//yzjvv8N1333HOOedw//33k5+fz7PPPosQgubmZv7zn/+Qlpbma0yiM0JEMZixaNEi7rnnHhobGwMS5DrcUVVVxYcffsgHH3xAVVUVp512GvPnz9fb0aWU5OXlIYTw2jOyYcMGFi9ezPjx49m8eTMPP/xwvw4PDjS+/vprbrrpJtatW0dNTQ033ngjWVlZ/OlPfyI+Pp6WlhYMBgNhYWG9JQk4DIgCKWV3Pz9bfPzxx/K6666TUkr5zTffyDPOOGOAVzS4UFNTI19//XV59tlny+nTp8vFixfLRYsWyVdffVU2NTXJ5ubmLj9r166VkydPlnl5eVJKKV0ul2xtbQ3ougoKCuQJJ5wgx48fLydMmCCfe+65gB6/M3744Qe5aNEiabPZpJRS1tbWylGjRsmzzjpLFhUV6c9TFKUvp+lpHw74zy+WKO6++26ZkZEhMzMzZWpqqgwPD5eXXHLJQC9rUKKurk6eccYZcsKECXLKlCny9ttvl6tWrZKNjY06SWzYsEFOnjxZbt++PahrKSkpkRs3bpRSStnQ0CCzs7ODes7c3Fx50UUXyTVr1sjGxkYppZR//vOf5bx582RNTU2gTjPgRNDTzy/a9dAQqPz6zxV79+7lxRdf5Nlnn6W1tZVPP/2UJUuWsGPHDk444QRmzZrFU089xVtvvcWUKVP6dW3z58/nxhtvZN68eQE7Zmtra4fq1Keeeop169bpzY1fffUVb775JpmZmV36PHqJkOvRE/posgUEgXY9amtr5cKFC+XYsWPluHHj5I8//hiwYw8mtLa2yuXLl8sZM2bIFStW9Pv5Dxw4IIcNGybr6+sDdsyPPvpI/uEPf5A2m006nU798Q8//FC+9NJL8rrrrpPbtm2TUqquVYAw4BZDTz8DThQ/R1x22WXylVdekVJKabPZZG1t7cAu6GeIxsZGOWPGDPnBBx8E7Jg7d+6Up5xyityzZ4/+WGcy0G5sASQJKQcBEfT0M6CVmYWFhdhstp9FCk1DfX09q1at4vXXXwfUKsdgtHP/kqHJy11yySUB6/mprq7m3nvvpaWlpcP35S2L8XOpuPQVA/puc3JyeP7556mpqQHQ/3WHy+XqIjU2mHHgwAGSk5O54oormD59OldffTXNzc0DvayfDaQMfDn/vn37sFqt3HzzzSQkJPDll1/qE90643DuAO0LBpQohg4dypYtW/RqtjvvvJPHHnsMu93Ojz/+iJSqZJzBYNC1JL/44gtqa2tVv2kQwul0smnTJq677jo2b95MZGTkz2oI0kDjhx9+4M033+Trr79m2rRpTJs2jZUrV/b6eM3Nzfzzn//k1ltvZebMmdxyyy189dVXrFy5krKysgCu/DBHD75JUPHPf/5TXnXVVfr/TzrpJNnc3CxramrkhRdeKKdPny5/85vfyLq6Ov01Qgi5Zs0aKWXA/cSAoLS0VGZmZuq/r1q1Sp5++ukDt6AQuqDzdbNmzRp53333yeuvv17W1dXJ7777Ti5YsEC+/PLLev1EkDHgMYiefgbUohg+fDijRo3izTffZM2aNdxwww1ERETQ0tLC008/zaZNmxgzZow+TGjz5s0MHTqUOXPmqItv9xM1wdrBgECOpQshODAYDGzbto0nn3wSgDlz5rBw4UISEhK4//77mTZtGrfffjtHHHFEKL6koQcmCSr27Nkjp02bJufMmaOn19asWSMvvfRSOXv2bHnyySfL5ORk+eyzz0oppbz22mvlFVdcIaWUsrKyUv7www+yoaGhy3Hd01oDgc2bN8uZM2fKyZMny/nz5weyMCeEPsA9Fb97925psVjkAw88oD/20UcfyenTp8srrrhC2u32/lzagFsMPf0MKFH8+OOPMiYmRl577bVSSrVs+I477pD33nuvlFL9MtPS0vTKu/T0dLlx40ZZWVkpH374YXnDDTfIcePGydtvv72De+KOwVCnEUg888wzcsKECXLixInywgsvDHiJ9M8V2s2jvLxcHjx4UEqpuonDhg2T99xzj5RSyry8PHnZZZfJTZs29ffyBpwIevoZMNdDSslRRx1FeXm5Pv8gPj6e6OhofYjNsmXL9GE3mq7jjBkzePzxx3n33Xe56qqr2LlzJzU1NZSUlADw+9//nv379+vncY9SH46DV9xRXFzMCy+8wIYNG8jNzcXlcvHf//53oJc16CGlGhTftWsX559/Po899hi//e1vaWxsZO3atbz11ltceumlzJs3j9NOO43p06cP9JIHHQaMKLT25LCwsA49/L/+9a+prq7mqquu4oknntBLc1977TXmz59PTU0NVVVVnH766dx5551MnTqVr7/+muLiYnbv3s2SJUt0kZSPPvqI1atX68c+3AffgppVaW1txel00tLSoo/pO5zx2WefMXbsWEaPHh2UDJEmdnvDDTfwxBNPcOKJJ7J+/XpcLhfp6els27aNSy+9lLfeeouLLroo4Of/WaAHk2PAoCiKXLVqlTxw4ICUUsqIiAj5+eefS7vdLk899VRZUFAgpZSyqKhIrly5Uubn58t//OMfctGiRVJKKSsqKuTixYvlI488Ip1Op7zmmmvkd99916Hjz9t5BzOee+45GRkZKZOSkuTFF1880MvpM5xOpxw5cqTct2+ftNlscsqUKQFr8nrkkUekw+GQUkpZXFwsb731Vrl69Wo5Z84c+fnnn0sppdywYUNAS8B7iQF3LXr6GXTlZVJKFEVBCMGxxx5LVlYWoMqun3LKKZjNZiZOnMgrr7xCeXk5GRkZ/PrXvyYzM5OPP/5YHwCbl5dHW1sb8+bNY9OmTXz11Ve88cYbXHLJJSxdutTjuV0uF0II1q1b119v1y/U1tayfPlyDhw4QElJCc3Nzb1Skx5MWLduHaNHj2bkyJFYLBYuvPBCli9fHpBjf/TRR1x88cU4nU6GDBlCa2sr5557Lvfeey+nnHIKBw4c4IYbbmDv3r0BOd/PGYOOKIQQHstjTzzxRD3GcMMNN1BcXMypp57KueeeS2lpKXa7ndWrV3PxxRcDsHPnTgwGA1OnTmXJkiWceuqpPPbYY3z77becfPLJgEpKoJbv7t27F6PRSH19PXPnztU1IQcTvvzyS0aMGEFycjJms5lzzz2XH3/8caCX1ScUFxd3mD8ydOhQiouL+3RMrZJ37dq12Gw2Fi5cSGtrKxdeeCELFizgm2++4YsvvuCCCy7gggsuYMaMGX063y8BPbWZD3oIIUZJKfcJIRKBV4ANwHrgz8C/gf8HfAncB6yTUrraX2eUUrqEEKcA5wInA6tQW+vDpJS/EUII2f4BCSGMgCIH8AMTQswBXgVmA63A68AGKeWLA7WmvkIIsQg4TUp5dfvvlwJzpJQ39vJ42vdqklI62x9bitrKfTkwArgQ9Xs+KKV8ORDv4+eOQWdR+AKhwgAgpdzX/m81cD+QAVwElAIbgWOABmCfRhLtz9f+/wdgjZQyG1gCLAI03yRWCDFSe/5AkkT7GtairnETsA31+/tHb48nhHhVCFEhhMh1eyxBCPGFEGJP+7/BntZTDLiPNBva/pjfcCOJCODCdhJCSnku0Aa8CeyXUt4D3KeRhPilNnD4gcPeovAGIcQQoAK4A4gFHpBSOtr/ZpBSKu3WxF1SypPbHx+PSi7pQBhwAzAJ9S70CvB3KaXS6TwCYKBJpDcQQhwHNAFvSCkntT/2JFAjpXxcCHE3EC+lvCuIazABu1EtumJUa/BiKeX2Xh7PCnwNrAQuBn4E/iClLBdCvIX6fc6RUtoCsf5fDAY6mhrIH1TzUnh4PMLL868B/ur2+83AMiACeBbVrAeVKP4GRPpwfuNAfw5+fmZZQK7b73lAevv/04G8fljD6ahksQ/1Tt+XY70C3NH+/43A98BbQHL7Y+cO9Gd+OP78bC0KXyCESAX+BTwH7ADWAHehXrTXA/GAVqhgA/4opfxWi10IISYA10gpb/Nw7NeBXOBFOYjvXkKILOATeciiqJNSxrX/XwC12u+HA4QQmUAtqpvxjpTyv0KIYtT40w1Sypr25+nxpxB6xmExUjCIqAI+Axa3/38o8AUQA4yXUh4NIIQ4ARgNaCWfAjUY1gqMbg+kpqGaz6+i3okvA14A4oDy/ngzgUY7GR5Wm0lKeVAIEQcYUeM4AKuB7zWSaH/eYfW+Bhq/aKKQakDzJeAlIUQK8JaUsqp9cxQKIU6XUq6UUn4LfOv2OqU9znFACLEfNYgaDTRIKZuEEBcBr0spb233wQ+nO1i5ECJdSlkqhEhHjfMcbqhHtQ4fb/9eV0sp/zrAazqscVhmPQIJt+xJhZTy0/b/V6O6JHcKIXYKIR4SQmS4v04eCmqmA9cBr7q5IJcD72tPbX++R5IQQoS1b8jBgo9Q10/7v4GpfupHtH/WL6G6lG9IKe+AUHajL/hFxyh8QfsdaQhqwM/p9vhk4BzgLKBISnlO++NZwCYpZYLbc28A3pdSVrT/rsU4RgBXAGejujO3SSm/7p93BkKId4ATgCRU9+iPwIfAe8Bw4CBwvrvJfrjiMLLoBiV+0a5Hd2i3NGT75q7o9Lco4GXUeotTgWeEEPOllMuBq2h3U4QQZlSLohg13Qp0sC7+AJQAc1Dv3kcBXwshkoHTgC1SSs3PDjiklN46oE4O1jkHCiGS6Bt+8a6HN0gpvVZhSimbgFOklE+1322LAa0O+HxUtwXUSk6nlPJDKWUB6OSBEOIY1ADpc+1Zkc+BRe0E1QSMB9a2WyghhDCgCFkUvUC7GdukVQICDwHD2i2BVCnlCuhQ/alDthd9oVaA/tgeDwE4CTUVqQCtQoj/AidKKfOD/X5CCKEnhCyKXkCzNDQikFLapJR7gWuB77TnCSFGCiEeFkJECyHMQogLhBCa5TEWNTWr4SzU8mwNV6Hm/kMIYcARIorAogU4RQgxoz19uh9YKqVsBGahBg6HtzeY7UUtLUcIEQ4cDXzQ/nsUcCSHMichhDCgCBFFACGlfBaIArZr6VMp5eb2P/8G+An4vN0S2Q+cI4TIRu1sXS2l1AqzZqFmpDb06xsIIQQvCMUoAox2EvAkznmblNLu9vvHwIT2f19C7VHQcDpqj0IIIQwKhOooBhmEENHA/4DbpZQ/DfR6QggBQq7HgMFdU6MThgDmEEmEMJgQIooBglSha1sIISKEEI8D3xDKdoQwyBByPQYZ2gV3bG71FSGEMOAIEUUIIYTQI0KuRwghhNAjQkQRQggh9IgQUYQQQgg9IkQUIYQQQo/4/4DNHSuWZXunAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from mpl_toolkits.mplot3d import Axes3D\n", + "#constituer un exmple de data\n", + "x = np.array(10 * rng.rand(100,2))\n", + "y=2*np.inner(np.array([-1,1]), x)+ 2*rng.randn(x.shape[0])\n", + "fig=plt.figure()\n", + "ax = fig.add_subplot(111, projection='3d')\n", + "ax.scatter(x[:,0], x[:,1],y,c='b', marker='o');\n", + "ax.set_xlabel('valeur de x[:,0]')\n", + "ax.set_ylabel('aleur de x[:,1]')\n", + "ax.set_zlabel('valeur de y ')\n", + "model = LinearRegression(fit_intercept=True)\n", + "model.fit(x, y)\n", + "xnew = np.array(10 * rng.rand(1000,2))\n", + "ynew = model.predict(xnew)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "79d4e56e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD5CAYAAADfunvKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADxWElEQVR4nOydd5hU5dnGf+85Z/psme0Vlt57EQXBhigaxZqgRqPRxG40pmks6ZrYjSXRxN479g4WQDosLGUX2F229zJ9zjnv98e7uyLSBWPy7X1duYIzs2fquc9T7ud+hJSSXvSiF73YHbT/9AvoRS968d1HL1H0ohe92CN6iaIXvejFHtFLFL3oRS/2iF6i6EUverFH9BJFL3rRiz3C2MP9vb3TXvTi4EP8p1/AntAbUfSiF73YI3qJohe96MUe0UsUvehFL/aIXqLoRS96sUf0EkUvetGLPaKXKHrRi17sEb1E0Yte9GKP6CWKXvSiF3tEL1H0ohe92CN6iaIXvejFHtFLFL3oRS/2iF6i6EUverFH9BJFL3rRiz2ilyh60Yte7BG9RPEfQq/7eS/+m7AnP4peHGBIKTFNk3A4jBACh8OBYRjouo6m9fJ2L76bEHu4svVe9g4gpJTE43Fs2yaRSCCl/Epkoes6DocDXdcxDAMhvvN+Jr04MPjOf9G9RPEtwTRNEokEAEKInn93o5s0pJSUl5eTm5uL1+v9SsTRSxz/s/jOf7G9qcdBhpSSzs5OOjo6yMjIAKCqqootW7bgdrtJTU0lEAiQnJzck3pEIhEAbNsmGo32HKs74ugljl582+glioOI7hQjGAzS2NhIIBBg3bp1aJrGpEmTsCyLtrY26urq2LRpE06nk0Ag0JOWbF+zkFL2Ekcv/mPoTT0OAqSUWJbVk160t7dTXl5OJBKhX79+5OTkEI/Hv3ZiR6NRWltb2bp1K5qm4fF4CAQCBAIB/H7/Vx7fnabYtt1zey9x/NfiO/9F9UYUBxhSShKJBJZl9ZyodXV1tLa2MmXKFLxe7y5bo263m9zcXFpaWigqKkLTNFpbW6msrCQYDH6FOHw+H5qm9UQd3aQRiUR6iaMXBxy9RHEAYds28XgcKSVCCOLxOGvXrsXhcJCZmYnX6wVUMVMI0fO4HdF9n8fjwePxkJeXh5SSSCRCa2sr5eXlhEIhfD5fT43D6/Xukjja29sByMjI6Omq9BJHL/YFvURxANCtjTBNEyEEmqbR3NzMhg0bGDx4MC6Xi4qKit0fJB4Hp3OXdwsh8Hq9eL1e8vPzkVISDodpbW1ly5YthMNh/H4/gUCA1NRUPB5PD3FEo9GedMg0zZ5jGobRE3FomtZLHL3YJXqJ4htie21EdyRQWlpKe3s7EyZMwO1209nZuVslpmhoQFuyBOuEE2C7aGN3EELg8/nw+XwUFBQgpSQYDNLW1kZZWRnRaLSHOBKJBA6H42vF0e2JQwiBYRg9/+sljl5sj16i+AboLlh2pxDRaJQ1a9aQkZHBxIkTe060XZ74kQjaypVoLS2ILVuQH38M2dmwHwpNIQRJSUkkJSVRWFjY05ZtbW2lvr4e0zTp6OjoqXG4XK6vFUd31Hr0EkcvutFLFPuBnaUa9fX1lJWVMXz4cAKBwFcev0uicDpB1xFbtyLT09EqKrCGDEHsIQLZGwghSE5OJjk5GcMwkFKSlJREa2srJSUlJBIJUlJSelIVp9PZSxy92CV6iWIfYds2NTU1+P1+3G43tm2zceNGYrEYkydPxuFwfO1vdkoUsRiEwxCJIGprwe1Gpqcj8/MRGzeitbYimpuR/fodkNcthCAlJYWUlBSKioqwbZv29nba2tqoqqrCsqyvEIfD4fgacSQSiR7iaGlpITMzE5fL1TOn0ksc/7voJYq9xPbaiLq6OgoLC7Esi+LiYvLz8xk2bNguT5SdEYW2fDlacTFaZSU0NWHOnYvYtg3a29Hb2jCam9E7OjCTk8HnA7f7gL4fTdN60pB+/fphWRbt7e097Vgp5VeIo7vF2o3KykpSUlKwLKvnPXYXRrvnVHqJ438HvUSxF9hRG6FpGg0NDTQ1NTFq1CiSkpJ2+/dfIYq6Ojpe/gh7+XLSVn2CEBLp9+O86y7sAQMQDgcZCxbgSEpCJCXheOklrGnTsIcPP6jvUdd10tLSSEtLA9RsSjdxlJeX90Qk3cQhpexps3Z/RvF4nFgsBigicjgcPe3YXuL470YvUewBO2ojLMuiubkZn8/H5MmTMYw9f4TbE8U/Xslh09NDGNVax7DECCa6i3HE46Dr4PWiLVyIf9UqtMGDwenEGj/+oJPEzmAYBunp6aSnpwOKONra2mhpaWHr1q2EQiHKy8sJBAKkpKR8jTQA4vE48XgcUMTR3Y7tHan/70MvUewC26ca3VFEe3s769atw+v1UlRUtFckAV8SxcKF8Oo8g6kFXpJ1B/EKm9YOk4wpE8Cy0NavR9uwAU3XES0t6nk3b8Y+9NCD/G73DMMwyMjI6BlsW7JkCUlJSTQ1NbF582Z0Xe9JZboH3HqJ438HvUSxE+yojQDYunUr9fX1jB07lqqqKmzb3uvjdRNFQ4OGrkuivnSafH3wpDXQVltJRkoKYtMmSCQQ0Sh6IoHR2oo86yyk14uoq0MGAuBy7ff7OdBhvxCCrKwssrKyAEUC3a3YTZs24XA4eogjKSlpr4hDCIHL5erpqvTiu4NeotgBO6YaiUSC4uLinlSj+we9L+1LpbFQkupYzKDVmc1AO0ZGUylWShr6mjWYI0cimpqQGzfiCIfRpER+8QWRTVW0rmnGeeYJpAzPO4jv/JvB6XSSnZ1NdnY2ALFYjNbWVmpqaujs7MTlcvXIzZOSkhBCfIU4pJQsX76c0aNH90QYve5f3x30EkUX9iTDzszM7Hmspmn7FFFs3Cj4wx+GousG9fXQ3q5Tm34yE/Wn6FdgImMx0HW0jRsRsRhaPA4uF+FVZXwaz+Ruz0yizzv4/tVw/kVfHte2Ye1ajY4OGDTIpusc3Sm+7UKiy+UiJyeHnJwcQHlsdLdig8Egbrf7awNuQE/HREpJLBb7WnF0+65KL7499BIFX/pGbC/DLisro62trUeGvT32JaKwbfjTn5yYpmDAAElWFoS2NPDb44sZKSysH56DuXYtIhpFFhVhWxZ2dTUinqDUymelGEm2r4H+oRKe/PNxjE43mXByLrbQ+dvfHMyfr6NpApdLcuONccaO3XsC+zbRPeCWm5v7lQG3iooKgsEgXq+XWCxGOBz+CnHAlxHH9sTROxn77eL/NVFIKYlGoz2zELuTYW+PfSGKjg5oahKkpiqhktcjGRL+jMyVK7CnT0MvKcEaNQra25GxGPqaNVguF635w3Fv6GCm9g55sRYs3eDk8DMk37IWMfwXLG0bxvz5BkVFNrouaWmBO+908NhjsQP6GR0M7GrAbdWqVWzdurWHLLojju4Bt270mvh8+/h/SxTdqUZNTQ2JRIJ+/frtVoa9PfYl9UhOhpQUSWurQXY2xOKCxWnHc5nxGSKqCMeaOhWtshKZm4t58snE7roLd0M7QT2VNcYE+sfLEIk4g2wTMzAQ4623SKldgpdz0HUPqaFq/DqUtBYeqI/nW0X3gJvT6WTUqFFIKQmFQrS2tn5lwK27xuHxeL6mGu0ljoOL/5cVou6CpWma6LqOaZqUlJRQU1PD5MmTd0sSsG8RhabBdddZJBKC8nJBa1WYK44sJtC6FWvMGLStW9GXLkV6POgvvYTo6EBPJLCPPIzCQjASEcrj+bzumIMR8NFnmAexbRspI3JxWlFkaxuDGheRsWkxY/o2w3Zj5EiJtmwZdKkn/1sghMDv91NYWMjo0aOZNGkShYWFmKbJpk2bWLJkCevXr6euro5YLNZTU+rWcnQTeSQSoaqqivLycjo7O4lGo5im2btTZT/w/yqi2Jk2Ih6PU1VVxYABA3Yrw94e+9r1GJdZxY3XbiYr71D6LniaQEcFEcPAuOceSE7G+eCDUF8PoRDGqlUk0tIwtm4lc0pfpv90BhULqpEzz2DoujJS0g20NfX0Xf8Bf8v8hEXrUpGmZGyaZFruVsTW45CDBkFrK6KlBf2zz3COH4+dkQF5392uye6w/WRsnz59sG27ZzK2e8AtOTm5J1XpHnDr9uIAet2/viH+3xDFzrQRVVVVVFRUkJGRQZ8+ffb6WJqmfc1uf5ewbbR588h0uRh14nRsxwRa/vg2sbQ03JZF1DTxd3Tga2lBk1I9PikJMyeH2p/8msdeyaPOF6F/uwvthGNhwdsQjaKvXs1Aj4eiY4dgd4Qw8rMwZx6B9HpBSvQFC9DXr0faNhl//zuhY46BIUOUAvS/HJqmfW3AraOjg9bWVqqrq7Esq4c4EokELpdrj7aB20/G9hLH1/H/gih2JsPudsMeOnQoLS0t+3S8vY0oxIIFaJ9/DuEwWVVVWBs3Uh2LkdvWRtLMmejvv4//8MPRnn8epESGw1jhMPVHHIH0JLPoR0+xNOkynOl+1r+lUV0zlb+dlEDbuhURDGL3749wO9FGj8R2u9EqKhBLl5L44Q/VCwgG0Zqb0dvbSeTmIioqIDkZUV6OPXHi/nyU30lomkZqaiqpqak9A27dxFFXV4cQgmAw2POY7sL19sTR6/61e/xPE8XOtBHdMuyioiLy8vJobW3dJ00E7H0xUx5yCLKqCrFhAzIapammhvxAAGd2NlZJCYkzzsCePRtHRwfG008j+/ZFczpxu91stnLI3baAuZkdrHCegDNnPKtWuWmbFCFt9mz45BOwbeyBA7FOOw3j6acRjY2I2lqcf/wjorwcAUhNw/L5SHr7bRWxxONoFRXIzExkUhJ0DYH9L2F7OTmA3+9H13Xa2tp6JmO7C6MpKSlf02XszP1r+1Tl/yNx/M8SxZ5k2N1Gt/sqnoJ9qFG43diRCPVOJzG/nz7TpuFYtAhRWQl9+iCHDwfLwpo0CdHejojFkJqGSEtj5OvPskX6yW9fSIpu8b5wsTk0lCWpGQxyuUi5/HLqFrbS9l4xW3FzenUrXjOMiMfRNm/GmjIF2dyMaG4mlpeHnZKCt6IC/cMPsYcMwXjmGaxZs7D/B4lie9i2jWEYpKWl7XLATQjxFeLYMfXYGXHYto3b7cbpdP6/II7/SaLY2fq+HWXY3TiYRBEOh9mYnk7giCOoLyuj/+bNiJYW5MCBaCtXoqenY551Fvb48VhuN9aIEeirVxPSdTKefJJcLZmqWD6iM0Tf2HJyzxrGEUeMJLh4MevuXsCq92IMixXj/HQraxzVTJwIjsJspMejOh0+H+aMGbRnZZF5//1q2CwUQi8uxho2DLuoaJ/e98HEwepE2Lb9Nfn3jgNuiUSCtra2rwy4bU8cOxKBlJKNGzdSWFiIz+f7f+H+9T9FFDumGkKIXcqwu7GvHQzYO3JpaGigtLSUEUceSWpLCw1CYJ91FqKxEYJBZCCAefzxPaG/dfjh6g9rash8/XU00yTH20GgvZFCu4nxGbVkJIdJLJlI8YOllH3URLrTxkhLYWRwI0us8fjqtuA5YgBZUqIdfjjehgZkQQHezz/HystDW70aGY8js7KQ2dmQmrpP7/tg4mAMrsHOiWJHdK9T6P59xONx2traaGhooKysDMMwvjbgZtt2z+Trju5fQgjeeustjj766J6huf92/M8QRbdFndvtxu/371GG3Y0DHVHYtk1paSnBYJBJ48bhlBLttdfIaGlBdHQgli3D+uEPsVtaEK2tX65iSyRA05D9+mF0dpLIzsbV0YE720W23wajAXveq3xy+yrWdxSSGm9kIGVsiw/Fm5aNnnCh5Q4k6/jjSbz1Fp3r1/OJ7zDe+HNfhlVVc1RKM0ck+WHAAGReHuYpp8D2J6Zl/Uc7Iv9JotgRTqfzK5OxOw64OZ1OIpEI4XC4p6OyvfuXlJJnnnmGSZMm9RLFdwXbayPa2tp6ilPFxcWkp6fvUobdjf0hil39Tbf8Oz09nfHjx/P5nz+n9tH3ccY6GWMuQnc/jZx1LNrSpVhHHIE9fjwCEPX16PPmYQ8diohEsJKT0WIxpMuFXVSEVlUFnZ1sKDyapzoPY7p7Kamyk3mJE3kldBoXB97g/YJzmDXpBVIeeQQARzvE3/kEI/kkmqw01m9wI3Jy6XPMSDzTpynT3e4XHgphvPQS5mmnKdu9/wC+S0SxI3YccItGo6xcuZK6ujo2b96My+X62urH7j0r+wohRCHwOJCNWun5Tynl3UKINOA5oAgoB86UUrZ+oze2D/ivJoodLep0XaelpYXS0tI9yrC7sa9EUV0NDzzgo6Yml+9/XzBrlooJmpqa2LhxI0OHDiU9OZmFiwQ/e3E6p7lrOLHzMUIhjVbpIlBaihw8GHvWLGQwiPH558RXb6D26QU0xBfhTHKT38eFefHFZHZ2wpYtWCNGYCxcCG2dHGO+TaNvMDmOKgZo1YQTfhYOP5/rf62TPm4u1scfo3/4Ie3FjSxznECsaCixZos3XBfxrwq44u6HeXN+EWeeU0FedjkF27aRYlkkr1iBc80azFNPVUY533KOfSBO6G/ruG63G8MwGN7lPNa9M7Z79ePTTz9NR0cH27ZtIzs7e18J0AR+LqVcIYRIApYLId4HfgR8KKW8RQjxa+DXwK8O6BvbDf5riWJHbYRt2zQ0NGDbNpMmTcK5m61b22NfiKKuDn7wA4PGRh0pDRYtMrjuOpNDDy2ltbWViRMn4qqqQnv9dRY1XwC6RqoIU5Y2gTHRt6g1s0jt2xeZkaFCfacTGYuz8clVmC06mWyhpGME7zZMgaLRnPWzfuQseRN9wQKkz0ffhg1YIsHWziAxw41hx7kpcDdzf3Ec+oRxgAaNjcikJDzh9RTEthA0x1DtLCJp7RIm0UwffwfjqhZQfF8mx7w0DquyEv3pp2kRAn9VFWGnEy0SwX3UUbv8gR+MwuN3OaLYGbZ/vTuufvR4PPz0pz/lb3/7G5s2bWLRokV4PJ69PW4tUNv1704hxHogHzgZOKLrYY8B8+klil1jZ9qIYDBIcXFxzxLfvSUJ2DeieP11jaYmQX6+RSSSwLYd3HlnlEMOsZkwcCD6++8jKisRGzYwTgZYESxiaf8TEdIm3tpOWopgWN807F/+Erps9Br6T8bbcBduh0XUctAQS2ZJdCRFr27gHytbufSpE8neuhWttBQfYTwzDiGyFIjFSU7VmPC7KeiTxyn7f9tGa2hAtLWRfMhQDnlvKUZxnKVyDAXxrUzPKKHZV8jE6BJeDZ5GQ5OTotmzcb37LimbN2MVFJCIxaju7KRhyRK8Xi+BQIC0tLSvDWIdaPw3RRSwa38PIQSjR4/G4XDw3HPP7faxe/EcRcA44Asgu4tEAOpQqcm3hv8qotiVDLuyspKRI0fS2dm599LqLuxL18M0v4zIpbSJxYLouofBgwdDNIpobkasW4cMBDg8tJjnc0ewpC6HNKuJl31zuf2YT5D9cns2genvvUfGMy8TwsJjdlAXy6fUNYwj4vPJ1SOEKvxU/3kT2YEOzJNOwvHcc/RPa6Xo8kHYWdng94FowgL0jz8GXSdx/vm4fvMb3CkpTD/Bi9ZiMG3lQywzh5DmjZGI1NCuBShLGk9ysgnRKObxx6MvWYJWV4cvJ4eBfj/9vV6C/fvT2trK5s2biUQi+P1+0tLSSElJOeCk8d8YUezuvu77vwFJ+IGXgJ9JKTt2aM9KIcS3Otn2X0MUO67v216G3e2GHQqF9quDsbc48kibf/5To65OTWOapp8f/lACthJXTZuGsXQpdHTgGj6cW24ayEcvNdP/nQcxPA30sSKITZ1oDz0Ep5yCXViIt3oLGZ4I0U5olBlss/IY61xBQCRwJcLY8RwSP/kJWlUVsREjkIEAWlkZ9ujRyKQkxLZtGE88gbZ5MyQS6IsXo61ejTV8OJ72dma1LSHm7qQwtZKaZj/PFl5PqtnI+Wd1kpbmAdKxp06FrCzMlBT0+fMVaWRmkhQK4R80qGe3aWdnJy0tLdTU1BAKhdi0aRNpaWk9ez++CQ4mUfynNA3fgCQcKJJ4Skr5ctfN9UKIXCllrRAiF2g4QC9zr/CdJ4q9kWF3Q9f1fSaKfcGAAQmuuWYjzzxTQEeH4JRTJFdd9eXziUQC6/TTkQMGoL32GoG6DZyWtxUtvZzazk4QKdDRgZwxAwAtFIJEgvRMiRltwZ2RRMzKpDBei7MtzGCznkBdE8I4EXvSJPUkto01cCCORx7BLizEmjwZVq5ExGKINWsgEkEGAhirVyM9Huz0dLSWFvp4GrGvOZ8Tho+ioEAyfPiXr1vm5GC5XOiffIKIRCAWQ2zZgh6Pkxg8WL03IUj2egksWEDhzJmsXLuWjIyMr+z96K78d4uU9gUH68rf/doPJPZEPt+khiPUgf8FrJdS3rHdXfOA84Bbuv7/tf1+kv3Ad5oodrSogy9l2GPGjMG3QytP07SezVUHGu3t7axdu5aZMwdwxhk665ctY3x2NtIY1PMYOXQo2saN0Namtn498ghaczMyJYXkL76AwYMhNxdSUzEefxy2bMFs6SRUG6TVzmCgtZTbAhuJ2DZZViUBrROtNIJ1zTVYxx2HedppaCtXYrzzDiISQWzejL5yJXR2ImpqFEGtXIm2aRNWWhpaRwdaLIYpBGZ2Nv1C6yg4do56sYmE8ulzOBC1tWgbN6KvWYM9YADaF1+onSIzZihBmJRqdqSpSUUb6el4m5tJmzChZ2FQIpGgtbW1R2jmdDpJS0v7SstwdzhYEcXBgG3bX9FN7IhoNNozIrAfmAr8ECgWQqzquu06FEE8L4T4MVABnLm/T7A/+E4SxfbaCNizDLsb+6OJ2JvXsm3bNqqrqxk7diw+n494KIS3pATtvfewrr8eHA6orETU16P9859gmkiPB5GaCqWlMHQoncOGYdx/P46mJqTLhfXDH6Ldcgvzo4eQLsqpyBxDNK5Rbg/k8oLH8NVE0U2BtCy0igrMjAxwOrEnTcKqq8P49FM1QVpQgFZbi0xOxna7EUlJUFGBFgqpkXOfD6OrEyJqanDcfjvmySejbdsGoRDWoYdivPgi2rZtSI8H4403MI85Ri0dCgZ7Pgd9+XK0xYshEMD5wgsk5+SoCG7sWGReHg6H4ysipR1bht3Wdt2F0R1xMCOKAw3LsnZLFN0eoPsDKeVnwK4Y8+j9OugBwHeOKLr9EysqKujfv/9eybC7caBTD9M0WbduHbquM3nyZPXjqK7GdfvtZJeWQm4u+q9+hZwxA9mvH9qTT0JuLuLjjyE7GzQNe8YM5PHHY77wAtLlQg4cqPaLPvUUna50Vib6c7JjI1v9o8iJliMiJsXjf8Dk9r+jRaNKgJWTo8bCNQ007csR85oatNWrwe1GW7ECze1Ger1YI0eqkfNoFBmLEevXD0dLC6KpCfuQQ9AXLULbuhVME9HaCuGwCpdjMcxZs7CHDcOePPnLD8KysIcMQSstVQY74TDxtDQcDz2EXViIef752CNGqO3sAKEQbp+P3NzcHjPdbmu70tJSotEoSUlJPRGH0+k8aBHFwTimZVm7JbVgMLhfYqvvMr5TRNGtjehe29evX7+9kmF340CmHp2dnRQXF3+tDkJ+PmRl4VqwAJGfj92/P/Zxx6lt5EVFiA8/VFfiQADKy5HXXos87DCqDYN0UIt+tmxBrFyJftz3CDy9nAUp3+OTzFNxmiFKmnIYPWMDkboP8RoGBAJYRxwBXYtyAKyjjkJmZUEshnHffThfeAHR2Ig1apSaQM3MRIZCmDNnYrz/vqqdpKUhBg9GZmYiGhoQ4TCEQmhlZYgtW5A5OdiDBqFt2oS2eTOJnBxkWhq43YjycoxnnsFOTUXk56O99hr9lixBsyy0TZsQ9fWYP/wh1uzZ0NmJ4/HHSfz4x9B1Ve22tuu2t+t2qGppaekxmun+bk3T/MaF0YONPaUe3ebA/0v4TnwjO1rUORwOEokEy5Yt2ysZdjcOVOpRXV1NRUUFo0eP/sqVQRQXoz33HJSUYASDsH69el0ej8rj166Fzk4V5ldUqA7FCy8gGxrQsrORkQhi3jy0tWuRkQjJv/sts9NzWVQ/gDnrbuHFpPOYPjuPESPiNJ9zDvqxx6IvW4Y1aZJ6ju7PKz9f/cPhQKuuVtOibjfaunXY/fsTv/JK9MWLsUaPRgSDxLdtw9HZiTlrFrJPHzS/H4qLEdXViJoa7CFDlG3e/Png8yktxr33Yg0ZggiH0erqEHV16J9/Dn4/dmoqrooK5XfhdiMsC5maiv7WW4imJrSyMowXX0RmZmIdd9zXVJ7bO1R1G81UVlbS3NzMqlWrvrJpvXs94f7gYE2k7in1CIVC/3NE8R9PCru1Ed0kIYSgoaGBUCjEoEGDGDBgwF6Hj9+EKLrJau3atTQ1NTF58uSvhY9y6FDkmDHg8xHq0weSkrDOOUfdKQTWgw8qBynTBMNAuN2IlSuVe5VhIL1e7B/+EOnxIFNSsEaPJmd8DtMPjZF5/rH85J6B3HZbHJmRQXjsWPB6saZP/wpJfAXRKLJvX2hpQbpcYBhYkyYhi4pInH8+Wk0NhMO4tm1Db2vD8eST6J99hgTil11G7K67kElJaOvXQ0oK5tlnIzo7sarr6GiIEBs7CevQQ0FK7Lw8pNuN9PmwcnNJBALYOTnIlBRkXh720KHqOygpgbY2RYa5uXslBdd1Hb/f33NRGDlyJF6vl7q6OpYtW8bq1avZtm0bwWBwn07+g1X32JsaRW/qcQCxMxn2xo0biUajPcWvfYGu6/uVemiaRmdnJ+vWraOgoICCgoKdk5PDAU4nor4ed1MTwuVC//BD5Nq12D/+MbS3Y0+bhub3IxYvRkYiyKFDsWfMUK5SUio/ikGDiAwbhnH33YiZMwkkEhwzqAXrmL0nOW3VKvQ338R49VW0tjZFRi4XekkJ4rHHiF90ETIzEy0YRESjCMOA9nYIhbCnTIFQCP2DDxD19WrsPBZDf+MNWlZUsiY4iNyKtbxWUsqFE5YRiNSiAaKxkXBEo63aJJI2lILzT0SLhJF9+qhuyIoV0NKCvmgR1rRp2LupJ+2I7TtbO64n7F4WVF5eTigUwu/39xRGd5eOHkyi2N1xu1/j/xL+I0SxOxl2Xl4ew4YNY9GiRft83P2NKEzTpLi4mJEjR5KSkrLbx9ojRyJ/+1sif/0rvuxs5T85bZqSbWZlYf/oR/DyyzBgAPrzz2MPGQLhcM/7lkOG0BAIUDtvHjmFhZSOGIE/LY10j4fUeLzHQXpPV06Zno6wbWTfvsiODkRnJ/aQIcg+fUjMnQtpaeq/k5PRW1ux/X5EMIhWWQnhMKKyEuPDD9FaWjCLihBSUjz2LMrecONKNuiMm2S0bmbd/DamzU5HNjdTGxjGos25LE06gsXaeMZv6ssfL9qM65mnoLUV4913FREmJaGvWIH7qquIPvbYVydSEwmQ8svCZ/f7kXKXJ9+OsxTBYJDW1lY2btxILBYjJSWlJ1VxOBxfflf/oYjiu0gUXVOpqVLK4v35+2+dKHamjdhehp2cnLzfx95XouiOYOLx+E5TjZ1iwAAlUPJ4ICkJGY+r9CIaRc6erVKPJUuUjsKy0N54A7F2LdpPf4pt25QvWoTzuecYJSVaNEruTTfReeqpVJ1yClVr12JZVs9G76/8INvbER0dyMLC7hePHQhgrF+vUh2XC9HSglizBtHZiQT0Dz9EbNuG7XSiR6OqnuH347rhBojHEaEQ2DbGsmWYM2dSFuvDWu9kGoomcVj9q6TH2ygLFzJNtGANG07zB/NJ9acg8nMwHOl8+qnBkpOKOPSoo3C8+CLWoYeiLVmiUiXDwBo3ThVhtyMK/ZNPIB7HOv74r30Xe7sqYUfr/o6ODlpaWti2bVuPH2ZaWlqPTd2Bxp6Kmd+lGoUQQkh11RkHfF8I8TJQDGyTUkb29jjfGlHsTBuxMxn2N4GmaXudw0YiEdasWUN2dnaPh8Vew7ZpOOIIMkeMQHvmGbQVK5CLF8Prr2NffTXyyCPRbr0VmZWFqK/HOucc/KtWUQKkpKZSdNRR6A88gGxvR2zZgm/VKga63ZhnnomZktJT2Fu+fHmPcCln+XJ8mzeTuPZakBLj2WcBiN53H64//lG9b68Xu7AQIhE1c5KbC4ahdBs+n9JYpKRgzZiBNXIkrt/9TpnYTJmCLCoiqaCIF5OHkO+W1PXrzynFf8SZ7EZUV2MHozRoeUS8GYxu/JiSnH4E9VQ6OoBkkElJqt6RSGCPGIG2cSNaSQnGe+8h8/Oxs7KUFmPjRrAsRFubqqcMHAjsPqLYHbZ34IYv/TCbm5tpaWkhkUhQXl7+FXeqbwrLsnb7ewmFQj3+nP9pyC9PiPcBHTWuLoHXhBALUISxxwGpb4UodmZRtysZdje6axYH44rQrR7s9qzYkxO3aUJjI6Snd0XMSUl0DhmCHDMGuWABYtUqJViKx6GlBXv4cHSHAxIJJBCNx/G/9RauYcMoGDQIEY2qXL6yUs1nLFqECIcxv/99DMPoiar69+9PYtEi+MtfiDS10xK0SH3veNweJ+TkqPbk+vVq2Y+uQ2MjIjcXx2OPkTjpJLR161RE4fEooVf//tgjR0JXqmIdcgj2wIFopaWYc+dyODZz5pjMm+fAhcFHGWfw0/uGkGibj+OJJ8jwdFDenkrxgNk0hJPRdRg61EZ6BhC/4gq00lJEQwPWGWdgPPIIsqAAxz/+QeLkk5Fnn40IhVRbVtMQ7e3I7U6m/SWKHbG9H2ZnZycVFRW43e4edyq3292j3/B6vfuls+iO+naF71JEAT1RRQR4BXhFCHEESun5V+BFIcQ9Usr1uzvGQSeKnaUa5eXl1NXV7VSG3Y3uNOJAEoVt25SVldHR0fEVz4rdpSxLl8IVVxi0tqqN4X/4g83J05sZcfPNiLvuUuPimzdDJAKBANpjj2HPmYN18cXYM2diX3ghsWeewR0IkPWPf6CdcAL2IYdgz5mD+Mc/1IxGR4cSQHV0QFoaUn5Zo/CUlbEtksX6JRq2KSnxzeSI6c30b12O0dKCU9fRhwzBlUioE7WzE3P6dOyZM0lk5VP37FK2NCdTkzKUft/7AZPn5CCampCBAPaYMeBwYIVCPe/3uusSnHGGSVubYNCgoaRtWgI1NeirVjHSKzDCFvMbQuhZgt/9LkZhIdAEjhdfRNTWIqREW7UK0daGaG1FBIPoixaBw4Hdty/aunXqu+jfH62qCtswIClpj+H8/n7fDoejx51q+y3qW7ZsIRwOk5SU1FMY3d3Jvz32ppiZlJR0oN7GN0bXtOlAYATKIWsaUA/8HXACTwohbpBSvrWrYxw0ouheU9/Q0EBWVlbP+r49ybC70d3BOFDim+1t6iZMmPCVK0kPUUj5lXZePA6XXWYQjQpyciDSaVH501uJHlmKb+tW9N/9DpmejnXttUQfeY5Qs0XD8SczdNYsrK76B9dcw4iXXqKztRVzyBDEmWeCrmOdfTb6E08gU1IQdXXQ1MTW3z7Je4sC/N15FUcEKjjFuIXktipEbS0DtFa2po7BbUgWfZLMiLnjcAebCDudmGVlxBobCU2bhn3kkaRVVICUfHTrSjrrB7AtdRBR08s9dw7mH0OjjByZ89UPZweyHjRIgrQhFsPx0EPqg4hG0TIyGJ4b5YbLopQPKGXYsGEAyNRUVrcXEXuzBMsdYJDRScaYMehr1yINQ3ViDAOrro742WerOk5FBcZLL2EdfTTW6NEHLKLYHjue0GInW9S3X01omuZXCqO7+u39l9UoNCmlDRwHnAF8Alwjpdy23WOmALt11jkoRNGtjYjFYlRWVpKdnd0jwx40aNBeGY7ub6tzZ+h+7qFDh+40d9Q0DdncjH7//Vi/+EWPyWx1NXR0CLKzISXRBL40OknG8cnHmB4PzuJi5PTprPg8xtMbziWGi6Rb6ugsh3POWUZGRgb9c3OJZvZhdWAyw6orCHQTUV4e5tSp6CtXImwby9LInfcvjnP14aP82XxU0o+AkcvhzkrseDIL049lcf9zCZiN1DcIDjspl9FF7Xgfegj7hz9Eq61FKyigfuxYSvr0QX/kETIXvEmOJkmKR1mbehhZkXI+/zyfkSP3XPB1XnVVT6qgbdiAaG9Hb2/HGj4cc9RI1ZLtwnsfuXj0iYGc024QEgar6gIcPu9yRj51A0ZTE9LvRzqd2OPGIUePRn/3XYxPPwXLwnjpJfRPPkE79lhE374H4uvuwZ4iUiEEycnJJCcn07dv354NYy0tLVRWVgL0FEa3n4j9b+p6dJEEwMtSyr93395d5Oz6/5/s6TgHnCi210YYhoFpmpSWlu61DLsbB4IopJRs2bKF5ubmXT93PE7y0qU4QyHEkiVor72GzM5GHnYYmZkCw5DEQhbnNf2Fl9Iu4iX/ufwi+Qn0xkpwu4ldfAVzzz8UZ6bA64VY1KThJZtZs4aQmprCU8X53DJvAq0Rg4Do5KK/G1x5pa1MZn78Y6zmZlyXXILW3IIfjVrdwXl1d3CPuIi4ZaB7nHSEHZR09iHoTKPRSqPDIyiqfBM5ZBKJq68GlwvLtjFCIfp++CF9HA6MTz+l0qrGGY2QE6skIg3muY8BQti2scsTSJSWolVXIxIJRGMj0ulU7V0pFYGGw6T88peqaDpmDABPPGGA38f72ZfQ6OlD8uZVNL8kGDF+PKbXi756tdJ5DBumplKPO04R29q1oOuYxx1H8nvvkTj//G/0fe+IfU1dd9ww1m3Y3NjY2GPbn5aWRjQa3e1xu1Oa7xKklDVCCA0QUkqru8i5XbFztzhgRLEzbUQ0GiUYDJKVlbXXMuxufFOVZSKRYM2aNSQnJzNx4sRdf7GahnfTJtxLl6qVfo8+ij13LnLqVPx+ePjIJ1n7/EbyYhs4PvgPLhvrx2M5WXv2zxheXU1wayOxuCA1oPZBmFYCh8PLDTek09IiaGx04nJBbm4Um2TuuEPnqKNshg8XyjT3xhvVuLdm4LBMisIbeN8/kypZyKXiQd7ocyXrvDnEa5oJ1ghSZSu/v6CWzH/dTiJxLva0acjcXERlJVpFBfrbb5O46CKskSNJWVdDvCxIhejHO/oc3AXpjB27iWXLWnC5XKSlpZGWlvaVop6IxzFefRV0XU2ldv3g7cJCtKYmtOpqtEAAV309xmOPYY8ciWkeRoO7L7Guc2Nz0uHkSxNzzhz0jz5SxjvbtiG7Q3nDgM5OrIkT0RcvRv/sM7zLl4Npos2ejT1hgnpcOIxoaEDu56Kib1r32HHfRywWo6WlhVAoxNq1a/H5fD2F0e2tAr9LqUc3tktB9gsHNKLoLlgKIaivr6esrAyXy8WAAQP2+Vj7G1F0O3HvdZpjGLSeeiqpGzYonUJ+Pvb3v99z96GXj2NUw4d0NKUwNlqMf/ZMWJaL0DSsiy8mecAgMu60qatNEEhJAD46OwWmCZmZqlsSi0Fbm05WliQUgk2bNGUc43BARgZoGpomsS1IoHNa6El8soFMVxuTtr1CnpWLefk5TJ8VZcx7D5D+4adomzfjuvlmrBkzMGfNQt+wAW3lSkRTE8577oFwmOTDR9LUbxD10SEcW9jJtJssMjJVOzISidDS0tJT1Ev2+cgUguRBg9AmTkR/+22k10vsrrvQNmzAec89yEBARRiWhdR1tMpKtMpKzp49iJvvzsayFOcJITjhBPXdWUcdBfDV1YVCYM6di8zJgXAY/f330SIRvK++ipWbqzaYpaejrVmD/vHHJH796/1yBT/QxXCXy0Vubi51dXUMHz4c0zRpbW2lrKysZyJ28+bNPf/eVwgh/g2cCDRIKUd23XZAbPqllHaXq7dXSlm/r8RxwIiiO4pIJBI9MuxJkyaxbNmy/Tre/hBFdwF106ZNjB8/fq+dj1319cQGD8ZxyCGI0lLo7ISUFKivR3zwASnBGlJXf6GuhO/ayIwM8l99Fb2xkchhh3H79C08/vpY0uqrmBc4j9xcCQgcDhWtWxbEYhqxmPpeBg7s+n40DfOcczDefBPR2YlmgJVfxJZBx3Hclo+plkWMiG0k+/QpHHWzDsJGr8xBe369EktFo4jNm1U7dM4ctPnzEXV1yJwcEpddhnXEESRHowzfupWk6mqy/vJzEr/8JTInB4/HQ35+fk9RL/zFF4jnn2ftmWdSsHw5nqIiAm1tsHYtYuNGElOmICwLUVeHbds46+pUl6ejgzkD3yTjlDz+XXoEusfBj35kMnbsLn6Dto3xr38hmptJXHIJ1owZOJ54Andbm1J0FhcjAwH0devUCHwigfOaa7COOUbNvXi9e72o6GAa9hqGgcvlwufzUVBQ0DMR+8orr7B161ZmzJjBtGnT+Nvf/rYvBflHUZ2Ix7e77dccAJv+rq7HycBEIcSFgFcIMaHr2N+ujiIYDLJ69eoeGfY38QLYV6JIJBKsXbsWKSVjxozZa5KgrY3se+/FLixEfPgh1m23gW0jFi1CLFqEfv/90NIC0Si4XLB2LfTrBw4HbYMGEX/0Uaa3t3Pk+IXEoxa3znVw43MjeXLVaHw+yMuTVFYKbFsQCmn87GcWo0erKy8og10RDKrnb28nPVbLoW3vg9VIQaaJTEsjdlEfZNdnac2aBX/8o5pWtW300lLsAQNw3Xuv0jCMG4dWUoLYvBmOPBLCYfwffEDK4sUYGzciU1OxR41SU50eDzQ343z8cVzV1Wh1dUx59VWorSUBhHw+5KOPogFOXcdIS0M3TRL9+hHSdfyrVmGPHYvxzjtMmzmTKb+xQNt1yqutXYv+0UcYb76pIgTbVtLzPn0IZ2Tga2/HGjUK67TTlAbjoYfU8mbbJtGvH44nn1Taj/Hj9+qr7T6hDzR2RkDdE7HXXXcd77zzDvPnz2f58uX79PxSyk+6nLe3x4Gy6b+j628PAXQpZaMQ4q8oR61vlyhqamoYMWLE12TY+2NKsi8mNB0dHaxdu7bH6GavYJpojzyCeOUVfIsWIVesQCQnI0pLsc88E7FlC9r8+Uo63TWrQSQCUmKedBKRzz7D9cwzZGkaenU1bN6Ma+hQ+Oh9rvz5GD7+taSmRiAlHH64zVlnVTBypIsJI/zQ0KFSDsA891yIxzFef73Hwt+oqcGUEqnrihC6JNkApKZiHX64MtNtbkZ0dkIkgjVqlPK6dLmwBg3CvOACAERbGynvvYdn0ybweHA8+yxmNPqlhDoQQObmYjz/PPh8CKeTxGWX4XrsMVxtbQgpMdPTkVu2ICsrac3PJwTUH3ssmcuXqwgmKQnze99TKVRxsZpp6d8fdqj8i7IyjHfeQdu8GalpOMrLkUOG9KQzkZNOwh2JKHl5XR1iwwbVXbFtXL/6lTLj2bgRuXIl5oknqv2pu8F/woez24Hb6/Uyffr0A/FUB8qmf5CU8iQhxBlSyo6u2ySwVzLuA/opDh48+Gsksb+uU3tjQiOlpLKyknXr1jFmzBhycnL23rxGCKiuRistxfZ4FBlEo8iJE7HPOgvrkkuUyYumIbt/bEJgzppFqd9P+SmnkDR2LHqXuYxMTwfDwJ46lcxpg/ngA5PHHkvwzDMJ3nzTZOrUCAUFFmLBAmWX14VgRGfBi608XXMk9S1O5UKVkqLCa7db+T90z3d0vYbEhRdiHnUUcuhQRNfOUn31anA4iF92mXotXTZ2csAAms87T/lGxGJqaOyKK9Sxw2H0efPQP/hAFSm3bkVbvRr97bexcnJIXHghdv/+6A4HjqQknH37EigsxOPxkLJ4MdHWVirS0mgFOkpKkDU1GK+9hvP22zGee04VaKAnfJJFRao4GoshYjHweLBTU5HZ2XSOGkX0jDNI/OQniNZW9IULIStLaTxsWzl5xePoGzeqide9iBj/E1b93TgYzlpdHYp9Ntno6nasFUJMBwJCiDQhxCFASEpp7s0xDmhEsbMPR9d1TNPc5+qzruu73dGxU5s69qJbIiW0tUEggH3NNejvvINoawNdR06apKYbPR70++5TQihAdI1wA8QXLaJ/XR0tfftibNqEPWcOsqkJYZrY55yD6FIeut1w+JSEihKEwL1pE2mPP47ucqldn7/8JfGpMzj5jjlE1l/AJYl72Zbw4TE0UiOVxJKSELaN2LwZ5113IfPySFx0kSKjCRNU4XLbNqzhwyEzE6t/f+KXXAKZmcQnTvzKW3bU1BAZPRrX1KlKNdneruZAHA60DRvQKiuxMzPVyev3Q58+JM46SwmjWlrUiVpZidR1zFNPxfHCC+QuXYp76lT61NTQPmkSwQ0bcN54I1pDA454HMeiRRjPPot50UVIhwPrlFOQuo5oacEuKFBRUno6IpFACkEsPR13ejq4XMjsbMzzz8dxxx3Iigrw+5VJsceD2LoVxo//2vTpzvCf8OE8COsBDoRNvwTuBH4GRIHfA4cDV+7tAQ66hPubdC+i0ehO7wsGg6xZs4a+ffuS3+321IU9EsWWLeh33KF8LgF71Cha587F8cUXLM86g7dKRxC5Wuea0y+hX3Mzdp8+aMuWqf2mra24NA1t2zYyN2xQ5rkLFyIvugjre98DQG53kmoPP4wcPhw5fjxGQwNGZaVqhbhc4PWyMDGR0lKN1Ix+PGtewZjGCykxhzB0WiqRQXnk1NUpqfOWLcSPPx4MA235chwPPIC2ZYsaGdc07M5OpVHY0f8hFAKXi7aTTyY+d67qAJmmMpZZvhx77FjVtnS5EF4vCIHs1w/p9aKvWoU1fTrm97//ZfGwa+N5x4UXkv7pp2jr12P37YvnpJPo++qryHPOwbjrLkR7O5bTSaK2Fnn33ZCTowizoADrsMPQP/oIUC3XxAUXIAcOJPrhh6Rud4KJpiblwxmJoG3ZotYwSgk+H+aMGYqJ94Bve0sYqG7SAW6NfmOb/q5IZKEQYikwHXAA10opd36C7QTfaaLY2d/V1NRQXl7OqFGjdtqC2uXzBYNoDz6o8t6VK2HRIjUu/otfEE1P529N5/LYY1k4nWCuhE8+7MPCURIvIJubkV2LaWlpQQYCCMvCystDTJ2KfeSRX3kq8cEHiKoqtAULkCtXIn7/e9JtWxXv1qyBvDwYO5aQJxMhVBZkYNKsZ1GQ2Iwl0mk84QRynnwSEY+rE6SrTmIPGoRMSUGrrVW7S71ezKOPxpo27Wtv2fHYY8oPo6s9bUditF7yO0KmkwFrXsc5YbSKGKJRSE0lcfjhyKFD0b/4Arlxo1JUFhYiuwlI19GKi0l57TWMjg5kv36IqiocDz+s5jb8fsjORlgWjmAQQ0pMKQnpOuHnnyeSnU1mSQkuw8Dh8ym7vlmzsPr1o3P0aPK2O6mtQw5R7lpC4Lj1Vox330Xm5anbiorUZ1lermoh3QiHFYF0HedgEMWeIoZv4sAthHgGVbjMEEJUATfxDWz6hRCpwC+BGqAdsIDGrn+PFkI0Sim37s2xDnrq0a3O3FfsWGuwLIv169djmuZuR9J3GVF4vdCnD9orr0Brq5pfcLnQH3kE/fLLeeGFAKmpX7rONdRqvBE4m75nORkwcCBZL7yA7OxEuFzIjAwSXi/WKafgWb8e/frrVbfE4YDmZvR//QuamyEUQmRkIL1eZDCI7XJhH3ss1o03QlkZh420SE+XNDdKTjCfIB4XCI+TlM5azOeeIzFnDvbw4TgeeADH888THzFC2fJPmID85BNERwd4vZgnnPCVSMZx552q/rBxI9qGDaRnZKClBvjkqSambngaHxoJGUE0NaIXFSCHDFH1iMxMnPfeqzoNnZ04H3pI1Ty2i1TsvDwwTeJ9+ij37NRUtE2blFituhrr+OMxXS6MTz6Bzk701laSpMQzbhzapk10HHMMrocfJhGNEsvLQ7z+Opbfj5Wf/+Xvp61NfZY+n3IKN03iv/61inJmzMAePBhRXo7joYeIX3cddF0wHE89hTV2bM+ypINBFAfT3UpKOXcXd+2vTb8LKAAGAIeiBsCqgTSgL/AhMHNvNBXf6Yii+4QPh8OsXr2a/Px8CgsLd8vouyQKTcOePBktI0PpAaqq1El27rnY/fphWV/V9FhofKL357cDXGQ0NmJPnYq2ciUyFsM+7zw2DxpE0erVSkuwdCny1luVBkPTECUlSovR0YEMhdAAze8nOnEirlAIcnKwc3PxJxK8/HKYa69182npqRwRuo6huXGM6jqCZ5xOqqbh+s1vEOXlEAjg+uUvMU89Fbt/fxKnn441dSqOu+/G8eabxCdORDQ2Ipqb0ZcuRUSj2JqGME1EWhprtgTwbfmEiO4jy6zFRmCHbLSUFIjHkU4ncvBgzNNOw/HAA6q7c+yxaKtWqdH0bqSnEy8owFNSApaFOWeOcvpub0cWFmIdfTSOe+8l9uc/qzpKfT1aaSmON95ADhxI4L33kIMGISwLvbWVltGj2dK3Lx0tLZSVlZGRkUH2vHloGRlYc+YgGhpI/OAHyEGDlHgrGsX5178qJ/H6ely//z3S4VDLj5YtQ2zbhly3DvPYYw9aRPFfNOdRD5wrhMgEfielvLT7PiHEHGBs90P3dKyDThTdTk37im6CqaurY/PmzXtlU9f9d7usUSQSyIEDsSdOVBb1Eyao3RjjxnHEEe28+24Gfj+EwxaaluDiY8Nkrd+iREZDh2Jeey1ywgS00lIS+fnYFRVo8+dj5+ejrVyJPXMm+j33KL+HSES5cVdVKbXq8OG4SkqQublojz+OPO88QEXRL74YRazoxHPeBmgykaZJ9nPP4czIQDQ3ozU1qYikTx+sQw5R7yMzE8fLLyOcTsSmTbh+/nNkRoZKqxwOxLZt6NEodv/+RIYNY8m22QwyllBEOZhgChdRnPjHj0empPS0MkVNDebs2YiGBvSPP0aYJnLAAOyMDOQgtRXNzMig4aqryMvKQluzBmvqVKxRo3D9+c84HnwQ0d6O45//VPLuiy9WBr/XXYdWUoLdr5/aeFZaij18OGmvv05yWxufu3ysfqgD//znGBBfT/ZAgfvTT/G4XDgLCzH79FEFTKcT83vfw3H33crrEzBPPVVpM9xu1a4tKlJ6kaamAz66vjcDYd9gS9gBxXaRwkRgdNdtupTSQqUhXXsq0br+e5f4Vroe+0MUQgja2tp6Uo3tvRB3h122RysrETU1Sifx858ra/vhw5FHHYXW2soVV1TTp08qb78eJDcH/vQnDyPffRbx2Wfg86E//zyytBTzzDOxhw9HlJQQO+ww/O+8o7QMsRhi7VpEKIS0bVU0tCxVuOzsxFlSgpmbi2hvR1u5kmhNDVWTJ+MfPVpNJg4eTOKqqzDefBO5bRtGWxvC6UQrK1MacMNA27QJmpsxPv0UbcMG7JwcZX5jGNgDBpD40Y9wX3CByt39fuJ/+QsyLQ27ooJhfVpZ5pjExtQJTG98DX+inQxHM77cXFWTKCyERALz9NMhFMJ5552ItjZkaiqOe+8lMXcuVhdRWNnZOCsrkVOn9tyGlCSuuALHI4+obkY8jnX44dDZibZqlYqwNK1nnUHirLNUXSMjA/3NN3l/3SzWlPXlrIhJSrCS+s48RrSvIpaeSrikBLFwIdEzz8Rz9NF4/X7VHUlNVemXEEivF1FZqWpH3Q7me0gT9gf/TQ7c26UTm4ANQog/AQuEEFnAbNTIOXwXIoru9ui+IBKJUFxcjBCCcePG7fMw2deIorUVx6mnIv1+REsLjrlz1QkcCsFTT2FcfTW2bTJz5iKubn6WpBEjkAPnYI37NY6jj4YNG1SLNBrF+PGPsX77W2WAG49jH3009qxZaB98oKKU/HyIxVTRKxJRKY7TiRaNYmzbhubxYDqd2C++SFZnJ+XZ2ZSWluJ2u+nrcBAYPBiRlkastha3y4V0OJQ3Z79+JE46Cdfdd6sc3jAwVq4En0+1OpuacNx9N9rGjcj0dKSmIaqrsY45hkhaGmO9bkp/dT433eRiTTybcvpxivUa59zzMnmHFmI8/TT2yJHEf/lLCARInH8+7gsvBCGwJ0xQXZ1QCK2yEu+HH2JUVKCNHq2u6unp6mTNy1O1ha6CoszLw3jlFYyXXgLbRhYUILpMeBN+P45//Qtt+XJMl5czVi5jrtsAzSBFhHAHN9MhBpPpV1fn0LHH0jpmDNVlZZhNTaTNmoV3xAgyV6zA9dprEI1iDxigvlddx7ahrU3jQG+k+G8aMe+GlHKzEOJm4GpUcbMNeFRK+UbX/XsUOn0rRBGLxfb68Y2NjWzatIkhQ4awZcuW/VJ09ugvTBPtrbegUo2Ei44OJYX2+ZADBiBME+uQQ2j1+zHffJOxQNKbb8Jrr2F/8QXWxRcrT8f8fFiyRP0YTz8dOWQI2qZNmH37oj32mHLfvvRStPvvR27ZoqKJRAJb15Wy0OnEdLuxdB0aGjDdbrxjxvDBkTfyt1/5CQYFxxwT4bzD2mk2DPIefZSE2008GsUtBHZqKubUqaqIes45OO64AxGLYR15JInLLgMhEOvXYyxYgD1okDpRBg3C7BrI6hYI5eSo6P2zwGnoOtyTGIerxeKKti8wysuJ/fnPasNZczPa8uWISATz+OMRtbXK57K2Fsd99+Hdtg3L4cB5660kLrhAzWCgfDPjV16JPXgwxvPP47rhBqVFMQy0rVuV6Ku1lfjVVyuhWDyujhmNkW6l4YrZSAnV3iJSwg2Qkomdnwq6jsu2KejTh4I+fbC7fCPko48iHn2UzowMvG1tGKYJI0eybZvg2k9SWNQ+gfR0B3/7W4wZMw7Mqsk91T2+i0TRlYJUAT/f32McULrdVddjb1IPKSWbNm2ioqKCSZMmkZaWtt87Onr+Ttdh61b0Z59V9YLqauTo0apqmUggo1Hijz9O45o15G3dSvIf/qDs3Orr0Z99FuOyy7BOPhlqa5XkOiNDXTGFIPD666RdcAGirAzt8ccxzj4bfD7sOXPUSbVhg7J90zTkkCHYLhehlBTs5GQcEybQ3hDnFz9JsH4d1NQIHnzQx6a/rmbE88/jT04mads2tC1blGRaSqJr1hAeOlT5YgaDWP36oX/6qSrkZWVhz5ihpi6FUJ2CbdvUpvPtvpu2NqFasUoDhkeLMTGxiIQ/gJAS5wMPYPz73ziefx7HSy9h9+uHsXgxAnDcdhs0N2OPG6cGu5qaMLsHtVpaYPNmtUl940blx3nMMVhDh/aQJtEo1oAB0NaG66ab0D/7DP2TT1RHxeMmXW/DmQiRnqijX/saXCJOtqMVkUgQv/xytVaxC45XXiH7978nu7UVT1ISqS0tOIJBwpmZ1HeEeeJVP6WxPNLSYlgWXH21m6amff4p7RT/jVvCuiMGIYQuhNC6lJr7hO9E6hGLxVizZg2BQOArNnX7sxLuK10PIbAvugjt/fehpkYt8L3zTux33kH/05+IGAaaaTLhqadodrmwhw1TdvO2MpbB6cT42c8Q4TAyEKAqeSjLXrEIdmqMP/pYkuvqcK1dq6zzTzkF+7TT0F5/XflFds2F2AMHEjr3XOIPPojTttGHDQPL4sXsn5G7tIxz3At51H81hiH5edU1zJqxCa28nER2NsaJJ5Ly9tvYtk3d6afTsXAh7lWryGttRaxejd7cjOPee5FDh2KeeioyPx/zlFOUY9TGjTheegl9+XJchx+Oy7aZcWgqhuEkFIK+RjXNYQ/P51/J1Ma/Yk6apLw0+/fHnDoVUV2t2p6JBNbAgTgfeAD9888RTU0ER4/Gs349YsMGAJy33or++eeqNmFZiPJy9PXrScyapVzA3W6swkIc8+cjXS60khKcVVVIIVSnJhjEq9kYThciLvDpcfx5As0hiP/4x5CdjQTVEn3ySUR9vVpduG6dYrxAAHJy8ElJwpFGleiPkeohFouh6yHa2lx88UU7xx7r3eta166wN0SRvYcZlG8bQogMICGlbN/fY/zH26MtLS2sX7+eIUOGkNE1KPVNoGkaMhZTOgmnU+3YWL1a5c+6juPoo7Ftm7CUeOvqED4fVk0NTRdeSPazz6oCWUsLMpFAW7bsSx/NYIikpx/mM3cRj7xuMGzYMN4ZHlGmKk1NPZGGfcQRaH//uxJk2DaR/HxW9OnDgPPPx3/nnQivF+vYY0n/rIJT4msYYW+kUc9hgz2IqqRhYJpE584l/uab+CoqiP/0p4jGRjJjMdIPOwzH559j+/3omzcTzszEev99Qikp6NEovqOOUuYyJSXI5mYlQIrHsXWdlIceIvVCwcP3H8XPf+3n0tpbyU4KMuHiKWgP1yFbW9WKxC7TGNHZqboLDz6I66abwDQxqqoASKmuxk5ORl+6FMeQIYhgUBVxu7xItBUrICUFqWlYo0Yhk5PRPvkEaVlq3sTnA4dDDQtGIth9+2LW1+MJBhEOkLYJkU7sLVt65kREXR3ahg1qp2lGhpKDNzRgDRsGBQUkZs9G5uYSCblo+EEEKZ1oWgKHw4euS4YuepTadTFWDD6BN94YQCzm5aST4IwzvkxJREODUoDuJrXYU4E0HA5/Z1KP7boe5wHrgHf291j/sa7HXtnU7Qd0XSf1xRfR+vRBDh+OaGyElBTlbZCSQmjoUIKtrWQvXapWAgwejFZTg23bWJdcgrZkCdqLL6oiZJdkGcvCxKDEGMN7WT8kBcm6dR7enDaX0347UQm4uuswycnIESMgNZVIUxP1hYVMLCrCfvpppK5jzZ2LKC3lxA1PsNF20xDL4tjEs6xxX88PrnIQ+9GtxB0OtgwcyKixYxUBbf+59emD0dKCVl2NNyMDKxCgefZsGisqeizY+judJAN6aSnaunUULlyIEY/j+PnPOamggO8NdKGFVqu1AX9+QRUufD5EczPGCy9gzZpF7MYblTdE374q9WprA8vCzs7GdjqJDRiAr6wMa+hQjOJiRUqapiZeNQ2rK0JpW7aZto+KyQ+XYZNAT/KiOzUIh9GiUUQiQcKGpngKQkshO7YN3aFhDxlC7JJLsLsk+vq772K8/z52bi56aSnS5SLxwx+SuPRS9M8/xz70UHC7CQDTr3Fw772CeNzBALGVX8xYw4hPXiIRk9zRPJ618RwajGTmzxesXVvJRRclSEtJIfXeezHnzsUePnyXv689ja5/F1MPIBkYDLyzv05X/xEdRbcbt9/v371N3T5CLF+Of948/K++itY1XyBqa5UbU1MTcduG4mKym5sR8TjS7VbyZcui6P774de/RnTtpsDtVl2RrjSkycogovsIa361h1PABs8Y9bjc3K+8jsRpp7HOsvCYJgPicRw33ECiooJEWhquBx5A5ufjcsGw1FqyI23Mz/0Bp/98LGcfU4P0ZaCXl2Nr2tdIAsAuKsI8+WQcjzyCefTRiKYmcrxesgcPRkpJR0cHnYEAVjhMRmUlZmoq7pIShJQInw+7Xz81wt3lgymdTrUyQAjsAQMw3n9fiZsOPxxr+nREVRX6p5+qAnA8rmZfSktxNDQgwmH0zZtVG7VL2iw17Ut5dVMLxW1JjInWoGFho9EZcpAyoBCjrQnCYaRlYW/aQqMYSiE1xKSTGEmkbtiAXl2NrK9HpqRgnnMO2tat6Nu2YQ8eTOK00zA+/VQpZI84Audf/6qKpHV1XPLjvkyd6ubtt7dw/ranKfroSURbG2ZC5/r4tbyRdg6PZPyStqibN9/syzV5dxNfvZr2LVuw6+pwFBaiXXwxxk7c0fa00+O71B7dDi3AOUKIPGCNECKKqk/Ol1LuVfXmgBPFjnszd6xRtLW1sW7dur12494XyKQk9PXr0aurEcGgatmNG4d4912igQCN11xDwSOPqPkJj0ddUdevh0AAf2kp2v33Yx1zDGLFCpV+pKfTVjiSrTlTuHvVEVR3JDMpNJ/VjEGIFMaPjwBJUFGhdBmzZxOJRFil6xQWFVGg6+h/+APWlVciLrtMzUeMGgWhEDIpCSMcJv2wkZwyWsM8pgb3WWeROPtsHF98QdLUqdDtHbkdzB/9CIDYuHHU1qpApk8eXeQlSHE48D78MKK+HjQNR1ckEEtORtM0zHAYV0uLUpB2Dd1Z48ahb9mCCIdJHHus0j+AekxzM3ZBAfaoUdh9+2KPGkXo7bfxVlRg9emDVlaGPWQIts+H0TUkRjSqKqatbehmlJjmIclqI657KDcG4jv9CgYvehK9oQHTk8SWcB4OQ1DhHEb/SAnxuCDmDaAFgziefZb4lVcqEVkkQvzqqzFeeUVFipEIzj/8AaRE/+gjHFKir1lD/Je/ZPSIEcjR6+m7eKl6L4kEeiJOBA/9E5sYGl3JEu1Q+kY2ERg3DkdpKXLgQMyWFur79qWyogK2bSMQCJCent6zZey/qT26XeTQCHwAuIGZqKGwQqAUaNpu7eAu8a3VKKSUVFRUUFdXx7hx4/ZKvbav28L0p59WJ3k4/KXZTG0tSIkzFKLgkUewzjwT4/bbVXEsEFCEUVenroR1dWhLl2KffDLaggU0bYvyUskYflvxJ4xElCxfB79ouZBX/Wcz7KqxjBhkIza1Id56C+3zz2nNyGBDUxPDxo0j7d13leHtypWIv/wFWVuLnZSkohSPB0wTmZ6O1tqK3LoV93nnoRUX47r+enA4KNywAdeaNcSvuUbpJLaDacJFF7n46CP19Q0YYPPccxGyrDolnsrLU1GDbSMdDmL5+YjUVGR6OpGsLFqzs0ldtQrN7SYxYwbOtDSso45CZmdT/UUNb0qDoYNNDtcXqbQkIwNr+nSkx4Px/vtEhwzBU1+virhDh6oR/KQkLCmVeU19vWoDe71MalpIQnPxWeBE4sLNGms4P13yOtqaNarQqRnEhIeFviM4Mvwhlq1R4+hDZv06xDPPID0e3OXlJM46i9iNN4LbjbZli0pDioqUQC2RQAsGcf7jH8isLJz33gsdHQyOx5FZWWjhMELTwG2QHmmmIhbl+/V/51jrCfqPcKKt6a+iICFwWhbZhxxC5tChJBIJWltbqa2tZePGjXg8HhKJxG5Ti++iAzfwVtf/oqii5ldC/L1x4j7oRNHNwqtWrcLlcu1x8c/26JZj7+3jrWuvVa7P0SiuUAjT5UILBsHnQ7Msle+mpiIL1CCUDAaRgKbrWA0N6M3NiNpa7ClT2Hz+TZxw02HMSFpEajKc3/x3jmh5i4njTI417iWy0EdL/3PQX34ZUV9PFHBceSUTf/IT9KwsaG9He/99ZFoa2sKFmMnJmIEArnAYu18/tVS4oQFiMYyGBrTycqUzCIWQDgd6NKp2c+4k6rr/fgcffGAQCKgUqKxM45qrHDx9wVocf/4zWkODmt/w+5EuF61z5sD48STNmIF3yRJS7ruP+KWXEgoGafd6qZg0Ca/XyyOPDubZV1LhNQ0z7uRvWcs43fsmacOzsf9yJ1HTQObmkbp2LbplgceDddhh2JMnY82cieNPf8IeOFDpHm6+GSMeJ+rxcJnvcRZ5jwHb5genR3CeXYp9Y6si6eYWHgjeSvb6j1jumkKuXU5/RwX2xEkYJeuQBQWYRx7ZY9KLpqlWd20tIi0Nu29f9HXrVCG1a0KXSIToz39O8OWXCTQ2YmdmYs2cqfQmC9fj2OYiO1TN8Jxmivr4EQu2QTBI/PLLcT7yCNTVwZAhOBwOsrKyyMrK6tkyVlJSQk1NDZWVlaSkpPS4cHfXLQ5UjUIIcRxwN2pf6MNSylv24xjdkcLlqCGwCCCFEB5AANdLKffK3+Kgpx6dnZ2EQiH69+9P7g5Xxj1hn7aFRSKITz9VcmaXCysWI9K3L0kbN6oOiG1jnXoq9mFTqRhxHDI9g8LWYrR4FO2mm3radJSWYvzxjyQNO5wr4gt5M+VHADwduIzcaDmjIytwJuu0X3QRodGjMfPySPziF2Ca+E46CXn++ar7MXcu+ltvQSiEnZODdLvRolGsc87BvvhiKCtDu/JKFd7bNnZLy5epQGEhtsOhCGUnYe7KlRq6/uVdXi/INetwPPooApRuweUice65mKeeSrOmkbXgE565cTPr341xWqcTp9bIqHNHklxcTHa/fpQ0JfH00wGcTpNwWBCLafx829UU6ktJrw3TGh7Oen0ER9e/TX9HFUwbjWvVKnC70T/6CJmbS+Kmm9QLam2Fu+7CnDYN78KFXHN0FZ8XJejb1+KoowSyM1uRWFYWmhD87qf1PHFPKlmV6/HlZ1PYVozYFiXsTGGZYwaJeR30O1aj4J9/QKuvR1+wQLmRud0IwPb5FPHG42qAze3G9npxBIOYRx6Jnp6OdcIJWBMnEvjNb5g+PQmtBqyiIjX2LwQyPx/H669DJILrd7/DHjOG2F/+0jNO3L1lzOPxUFRUhMfj+dqyoC+++IJ4PL73fq27gBBCB+5DpQlVwFIhxDwpZcm+HGe7SOFzoARFOi7geCAJ2GvJ9EFdKVhdXc22bdvweDz7TBKwd3Z4AASDiKeewrj5ZsyxYzGFIH7UUfgGDUK2takzqakJ65NFzH3kRBasVyv1xo07jJdeMvE+9RSdZ51FWklJz8ma7LE4If4ajhaLtf5Dedc8mnStBePQiciyErRolEQiweaFC8kbNAjf+PGIsjIsIfjnPzVevz3Ese1HMWwYHN/6APETT6Q5M5P88nL1+RiGKia6XCpNEILED36AtmkT8enT2ZqTw+CuRTQ7YsAAmw8+6FoHoqmSQOeY0STOPRfXtdciMzKwRoxQi4ySk/EtWkT7vz+kotrBGfINOkkiecH71DeVUJDUjqOgADs8GLc4Cs1wEY8LNA2y7QY2aEP4qGM6Vxn3cZz1Bj4RwhEL4lrwKbgcSlth29hPPYXV0IA1YwYEAkReeAFZUABtbQw1DIYmbedW5nKRuPxy7DFj0NavxxcKca7/JTLyuvaVRkJsyxvPkvWp/EueR86WSrJmvc3vXe+itzUqB3KPB/2zzzBnzMAA7OxsrORkrAkTsMaNw8zJofacc0g94gjM7t2qTieJ887DHjECUVOD8dRT2KNH95gb6x98oPbAVldjDx2qOkAnnPCVZcrdNYodt6gnEgk2bdpEXV0dU6dOZfDgwTz33HP7W6ifDJRJKbcACCGeRZns7hNRdENK+fEONz3Ztcl8r1/cQfEJM02T4uJiWltbv2JTt6/Yq4Gy2lqME0/EuPVW5X/w2Wc4OztJrqlB++QTVa+orESEw4Rfeo9ffHEGRf5GUlIkK1YIrrtOV+1T0+zRQiRw4FiykDRvmOmxD5nS9i5ujyBw929xjBkGffrQMWgQdZs2kTZzJp5//Qv76quRkyYx/7aV3HSTQTQiGR1dRsaSdyg3BuIoKcFTXq5mEbqcmqxDD1WGsdEo9qBBGMuXqyvzj35E5/DhSj6+E/zsZwmGDrVpa1MX79RUyW23xRCtrVjTpmGecgqyf38SF1+M89//Juvhh6lvdPA9ex5uESNZhPDKCInyWmRKCsbTTzO8/F3cTptIl9WqlFBLDk8nXUI29aDp2Ag022SxdiiWbiCiUdU98vlwPPccjrvuQja38sc/OhjzvSGcMaaKz/+8qMcvogduN/bYsSryGj4cIhHaR41SRsLt7dhDh1JbGqXeV4RV2BdvThJH1z5Nhd5PMWMiocRso0cjfD41XyME5skng8OB8dlnWE4nVndu5ver/wmhFjMbBrJPH8xzzyX+y18Su+EGzBNOUJLy+noV/dXUKMn/DtHBroqZDoeDuXPnkpyczMqVK7ntttu+STcvH9i23X9Xdd22XxBCnCaEOFEIMUMIMV4IMRnIQNUs9goHPKIIhUKsWrWKwsJCCgoKem7fXyfuPRKFYfTYztuahm6aSMNADhuGde65iGuuUa06l4tou4HUDYQmcIsYDoeL1asFOJ2U/+hHeI89jtWHXomnpYYiuZlYyCQtNcGx10/l9EM24Lj9b4iGBuLhMKnXXENadjapAwdiZWWpwuUbb2BuKuEwO06dfwRPOK7iioYbiTYFociP1t6O9umncN11iM8/V3Mnfr/ygQyHkXl5xH/zG2XWW1Gxy7fs98Pbb0f45BONaFRw2GEWqalgpR2DeeKJKvevrQWHg9h112HPnYtbxGgUaZR6RvOR93v0bV3FT/XHEM3N4Pej//IKbj9GcNllqt46Qq7latd9JHW2M5AN5Cdq8BBFkwl8hJBOB5WzZ1Hw5psQiyGzsojdcgt//Fch/77XZJi2lkPNd+l4uJjPCgs4/IzMrxVlCQbVSPqjj5LS2Uni3HMxXnoJraUFaftZlHo8YT2J1cmHM8jxEQNDC9We1uOOQ7rd2Pn5ajfq5s1Ih0ONmvt8IARJ115L4MgjYezYXX6OsttGsStCl337YndpO6SmqbrIDkX33Qmuuh24hRD0PcB7VL8hzkGZ1jgAP5AJ/F5KGdzbAxxwomhubmbkyJFfqfzu72byvUk9zECAkskzGbxgCQlpoAl476LbmeMuV7Mdw4cry/2mJlLtGBmWl4fqT2aeby53W5czvG8nxhU/I3TGGXy0NpuWtkzcjhSK4mVYGBhtLaQ+eT/MeBB70iTMf/8braWF1IwMEtEoWn09YulSdWImEozorOXKUBl3pvyVJKudVpFGWcokBte9qZbcZGQg1q3DPv549L//XU1fJicTv/JKjEWLVFtze9dtUD/kjg61lKgLhgFHHfVV3cz2ITJSqmJpOIyVnEzwnBPp+NdnPGz/mOpQAWX+Pvwx8CD20NHK2q+2lhPGWBy/1M26v7xN8XNlTO78nEUps8j1lNDZkIxlCaIincYjZ9J/eh6ZI0dib9xI59ixOJcupfSTT3j66Qnk6zVcZd5BjqwhKD2k3flHtCE/xtqBKIzXX8d45RVkIoG7uRnHU09BMEj0jjsou7eB8BKTsBfiMcixa/EOLyR+yBHYEydijR6N49FH0efPx+rfH339evV+MzORTifRSZPonDJlr35n+vLlOB5+GGpr1Sh/SoqKTuLxrz12b7auHwBz3WpU+7IbBV237ReklKcIIZyAb3+2jMFBIIrurdDbY3+JYk9W/yp6WcPLT/TnSI7nTdcpnBP/N5fcdyqTip3kpESwTzkFqqrQFi3CcdtdaFski+UUHrIu4Lykl7l50GbEq8vJ9XiIEeI65238hr9gYRCghTA+rEgc56WX0mFZ+NvaMAAzFkOTUgkZ0tKwhw9Hf/99cjIM7pWX8kXnCLZaqXxPPkr2jT8m7ByJdscdiGBQkcWqVcrDoroaOz8f8/vfx/zBD1Rxc4eCsFZSguPuu4k98MBOi5v6/PlQV4d17LHQtbrP8a9/IdPSSFx2GVXXXUdRdjbmrFOY8FISF9a+yTnBB/E6kqC8HBoasBobcd5zD/GrrmK8ZwOTiuaj1dYzzP08dmYm6dl+ZG0EnQhJyQ1EZl+Ia8AArPnzcbjdyEiE/rqO62GNMtmfhx0/4frozfhkiBVZ32Poscey4+ljnnmmWoj81lt4tm1DFBVh5+XhvPNOTjl2NutHnY58u4LvRZ9i6qQImdF6rGA2xjPPYI0eTeLHP0b/+GP0DRvosShra8MeMwbvq6/imDFjr35n9qBBSMBYvVpJzL1e9CVLkP37qxRpB+yKCPaksdgHLAUGCSH6oQjiB8BZ+3swIcQw4CTAB9zYtWQoQ0q512v8Dnp7FL65y9XO0NDQQGlpKenpY3i0ZRrPp54Gus478nSCQY133pGcX7gQ0dysXKVeeQUKcsgfm8/3ahso/JnBse8twPnvl5GDBpE3bx6px7qYJg1Gx5fiRkmyfYTQ4yEqh4+n8O230TIzkcnJyrnKtlVhraoKy9aIejPwdDRz0+gXOFJvJdC0kbGhLbg/+wuJaJSaU06h4OST0e+4A+2zz5B+P1pbGyIex3XDDcSvvVYttekmx5YWnP/8J6KyEn39epw33ACGQeKHP1R2ck1NaGVlOG6/XTlGzZ+POX06RtdgGkKgL16M9+STITubKUe5mXJUAqwjcDxUCi+/rPJ2txvjlVfQtmzB+fe/I1avRqupASnROjq6F4oi3QYyNQPPpk24b70VeccdaiALwONBA665xuLea2vIjVWyTE6gwlHEjwpXsGTJEpKTk0lPTycQCKjhrK55jdhxx5H4+GNSgkFEIoE1dizyrDO5LlSDvMqP418Gxkf1yHhc2d1Foxhvv40+fz6SrkiqpQXhcGANH47wepFA3sMP41i8mMSll+52fkP6/aoi7HYrgg6HlfHN5Mn79HsNh8MHxN1KSmkKIS4H3kV1Kv4tpVy3P8fqMtj9A9CE2gp2I5CKWl04ZW/EVnCQ2qM74kA6cUspqfjsM5rcbiZNmkQw6MQWOhbqE41LB9l2Ff3LitHf+gdi82ZkVhaRzbW82DCdvtGNXJ98D9dVV2FkZ6iWaFMTeiRCSp6PuXdPJHaZh3JZRKZoxpPhJOZ0ULBiBZrHg2hsRHZ2Yg4bhtXYiGXa1DZ7SUnU0xaS+BDcvuI4Nhij+IvrNVyjchEbNpA4/3waJ04kf8wYzH/+E2PWLMSGDcqrMikJa/jwntRB2LbKdVtbkbaNUVKCTEtDX7oU6fXicDpJnH022rJluH77W0Rzs5rafPFF5eA1YIBy1xYCa+pUwmPGkPTVD1at8hs4UI3b5+SgrV+vWswlJZinnILzySehrQ2ZSKg5GacTLRxGBoNYhYXEDzkE107agOee3sHxj/+C5k0thF0BTjgpjdy/3EZ/h4OOhgYSb7zBmjFjAEhLSyPzJz+B7Gzak5LwL16MHDUKUV2N/sUX6O+8Q/yWW5Rt//vvK31IOIzs0wfnrbeq19e3L3ZqqvIUDIexDjsM4/XXifXrh7uyEvuHP9wtSQDgdmNedhlaXR1aRQUyJQU7L+/rNZU9IBgMHrA5Dyllt0jqmyILSJdSni6E+Lzrtia+dLUS2/17l/hWIor9cbnq/rvtiSIej7N2yRJG3XgjRXffDU4naWlwzDE277+vIYRK5yembuOIz/+MaGmCbdvQSkqIygBzeBYXcc4P3UfhZYuxB8aV9Lm8HN2y0ObN44QB62BOMlSlEG+TVM6ZQ5/MTOWs3T0R+ZOfYLa2Up+VheuWx0kkJDY6TuJ4CfKr4I186jiaunYdsS7GwD5OrMMOU5JKgGAQe/Zstdhm61bVXuyqxmsrVmDMmwezZ6scfM0aNXVZVaWW5wwciP7RR+jLlxO76irsMWPQ339fXfW9XuyiImRODjIYVKIrh0O5ZO2AxKmnqola01THmz9faUlcLjXUNXgwwjTRVqxQnY2uFYfS68VdUYH7kUcwR4xQtnPdLth33onx1lsUbdxAvy7rO/vNRVgNSzG//33SfD4cb71F1tSpxNPTabYsKpubaV+7lhRdJ+zxIE86Cd999+F47DFEYyOuyy5DW7+e2M03I/v1w33hhYimJjW0l5KCKCtThdQLLlA7SQwD4733lMuY2421vTHwrn5nn36KlJLE3LnIvn3VMbst/rbDni683yX59naQQI0QYjZfEsKhqPmPvca3RhT7G1HEuwpKHR0dBH/+c8Y0NuKpr8e+4QZkQQHW9dfzUv97uOXaP/LZEjf9+klOPNHCLj0N/S9/UWo9KQnQggQSuDjLepLNYiDBuJPULjFUNBLBq+vI/v2xRo2iJC0NbyRCUSCgrlbPPKNUgRkZ2JdfTiQaxfmnP7HIdwwb2pKZLJYyw3wfgcRGMNpczlp9DGcb/2ThJe8p2u76obXp6byWcS19c3IZdMtMcqpWKXfpq69GmCb6559zyLPPYjgciKYm8PmIX3wx+tKlaumPEMSvvhr7iCOQ//43QkpVuxBCzSscdxx2UREikVAzETuB7Nr1AfT4SFhDhqA1NuJ47TWif/oTxgcfKBOeykpkIKBauS0tmOnpOBIJnH/5CzIjg9hvf4scPBhr1iyMF15Q8vnuPSbNzapl+coraheJpuH6+c8xJk7EuPlmcgyDxNtvE123DmPzZhrvv59wYyPJdXU4u+z+hWFgLFqE3LgRe/RozGOPxXXBBcov0+PBmjgR+7DDkDk5akv62WdTP3Qojk8+IW13v7tgENHRgePRRzGPOw7re99TStiZM3f+me2hc/ddIwqhXmwd8Dbw067b/ooy2+1Sx+3disIDrqP4Ji5XO6K761FdXc26detIP/ts3M3N2NnZiIoKSE9He/tt9Jde5Nd5j/P6rz/h7rtM1RyoqFAnTzwOQsPCQAc0bNpEgEf0C5AFBdizZqm5C6cTqeskAgEW9+tH8ogRFM2ZAzNmgGliXXghieeewz7hBIhG0TSNulNPZekZt1AmBpEnq7Ew0LBJohMfYZboh3Jx+A51ZR8wAGnbVFeYTJ7s4JpfuDntlQs47IQCSvxjsXQdx+uvo8+frwxtOztVJwVA19G/+ELlzqYJ0SiiqgrnTTehVVWBrmONHo01dizWkCHKhSoQUD96XcdRX//1z3blSozHHwfAnjYNa/x49K1be/w3tNparMmTiTzxBOHXXoOUFKUUdTox2tvVSR+LYRcV4XjmGXWc/v1VKrBd+C3T05H9+xO/8caeaViZk0P82mvVA1pa8D39NP4NG3Dl51NQU0PqjBnoDgcJ08SsraUlIwPz44+J5uUR+81vlMu5aSqD3eRksKyehcWyW4Xp8RCeObOnuLszGC+8gPuqq6C9HcdTTynrvi6V5c6wN8a63xUHblDKTCllp5TySZQN3j+BZcBJUspP97Y+Ad/x1EMIQX19PV6vl0mTJmFYFjgcNFSbNFc5Kb9zI5ONZ8iM1aDffDP2ySdjHXqoWkd4882IGTMwLrxQKe9sB81mMp8zjfFyBdb0I/A/dzaW34/93HOUpaSQlZZGw7JlDB06tEdxB8CAAcq4FbAvv1y9tlAI2+Xihpsk31t0Gm9/UczZNJJKKyYGhozx09jfSdNCGDd6cdXVkdncwvuvfUx9/W9ITbZA0wgGBVt/dAdjMz7B9vmU0KehgVhKCnp6uroi2zYyORl93Trl+O12o7/5JqKxEX3rVqTfj75uHeZhhynrPlBdgM5OHPffT2pKCvGLL1Yk0NqKvno1xltvKYdvn0+tGFy7Vuk62pUJkvMf/8AaM0bNSLjd2P36oS9bBkJgdHaq51y9Gq22FrtvX9w//jGJk08mccYZuIqLlRO5YSDicbT161W9JSUFa9Ik9KVLlThu3jz0FSswqqvVFSseV6mUlFg334zr3nvRSktJMk1ifj9rMzIY+OMfk75kieo2ORxqEtjhwHjqKcxzzun5yvZqRsjhwPb70VpaQNeJ/+Qnyn9jF/hvmhwVQoxCGdZsAzpRkcUGIAj0FULU7+2IOXyHU49oNEpZWRmGYTBmzBgVqcTjLB1xLo99ITCEydWJv5KeUAI20dSE9sYbWD//ubLDk1L5JIwahYzFcNbU0DpmDivG3obuW8ffLi7q2V8pf/AD2hcupN2yeLfhUv49yollwUnHx7jv+m3o/bf78TQ3K+csXUdKidMJb38g6PxJBH3bJKx4iIbKOCkdlWRGa9HcXmhtxXnf/URbsxgWT+aneLmg8d/c67uOF43vc4vnd5ziO1ENNzkchIYOxVFTg52bS+LkkzGKi5W+onsNQDwOhkH0/vvxzpnT460R/ec/e9qnxosv4rr+euycHJIBbfly+O1vsXNzcV17rTpxAwGc99zTkxLJwkK0zZuxnU7welX78dNPsY47jsQVV6BddplaXmRZiji2uxjZBQVKvp2SQvjoo1UtIRhEer1EH3gAbJvYLbcg8/Iwa2rA78f5wANoGzeq30gsht3RoXaqrl+PNnasIjKHA9GvH66BAxnrduPIy+shABkK0dGvH8TjeN56C8Pnwx42DHvo0N0azIhNm9DXrsX48EO04mJVZ4nHVSqzG+yNu9V3aHLUCwwBilCbwZK7bnOgdBkPA1cIIYy92Wj+rXU99sWJu9ser7CwkI6Oji+P2dnJ06WTuci6gHWOsdRruRTZFSQwcNimMrbt2xetvR3btrHPOgs5bpy6SsTj9PvTn/jtuDewjz++x5HKtm3Wr19PIpFg5YpDcN9+Gx7vpXRoAZqfn8+mzx5g2Ibne9aI6bfdhszORrv44h6Nh6ZB6jU/Us/T1kb/K65Ajjsb/cEHe9bjWU3tJFsGflr5BbcRoJUrQ3/hUO1Dxnu2oVcuU0QQDuMtLoa+fZGJBHLsWGKzZkFDA96bblLRhc+nVInxuNoadtFFOB56CG3rVuzsbIynnkIrLQXLQquqwuF0EhsxAqOuTom6WlsR7e2qSzBmjJqwlVKF8GlpWKecgli7FuP559E3biQ6cCCislKJkITAvv9+tORkpSg1TezsbEW6XYIw2dpOTbufjf1PY3z9u7hbWtAXLECEQiQuvVQVUYHoww/jnTFDSdh1XbWaa2shMxPj9dex8/LQamtV3eHyy9XsSkEBwrKUI5cQ+NvbaV5TQWNUR6/4N9HrLsaXmYkZDOLZXoC2A4x589SFJC1NRRO/+c2XSs1dYG+2hH1XUg8p5RfA9/bicXsV6n9rOopQ92DObtDtWVFfX8+ECRNIJBK0tbX13K8/+ii/XPEMQWxOSzzTVTgEHRXm2ocdprQD2wm15LBhiKVLqZhXTPAfX1B5fxWNvk+ZM7kK50sPs3r1arKysnCVlvLREx9ytvUCDhOmJD7FbYXx1zRhnHkmdI2Oi9JSMAw8S5fiP+ooGDxYzQcMH472xhuIjz7C/Mc/ICMDGY+jv/gi2DbN9RCyPGTQQAodxHAxmI1kGa0kz5iOfMeNHY+jWRbC4aQzpLF+4vcZurUe/yuvkDjpJGWNn5oK9fXIPn2IT5xI/MMPlSHNdmG3DAQw5s9XWmxNA7cb1/LlaM3NikBCIaXcTCTQi4uVe3hOjioGtrUpr9BIBL28XPlBXHYZ5hlnkPjJT9AXLKD9kEPI/uADZFKSGvnu8ih13HMPsYsv5axfDGDt+ofo3JjCFHMov//1M4wxl6suSlkZ1uDBmBdeiPbFF2rmIhJBr6tD5uWp4zU2Ir1etLo6sG30igo8Z5yBOWeO8uAcNEhtLsvM5InWExn1wb1I4Jnms3GuOJa5Qyrw/OMfdPbvT+SUU0hPT8frcqGXlSn/jMGDMWfNwvHoowCYc+aobfB7wN7UKJKTk/d4nG8DXYVMHdX+HAcMRG0DM1EzHquklHut9vzOpB6WZbF27VoMw2DSpEk9btrdf7dtG0ROupb8pRvR3vwYISXNpOMmSvuY6RSeOVkZ3fJ16XeoLUHH7f/GZ3cwlc1YHZ/T/lES1k8uZ/gx0/FPnkz7H/7AZRVLacLH3OhjRIQHbIuI09ezwRyv98sx7qwsQv37o82bh/bcc8gxYxDFxYiyMqirQx5zDPZJJ6mVd8cfT8eP/sidVXOpcfXjkcgP8NMJQhD9zY+pSEtj9Pvv4JQSKTQWWoewtmEIJzx7D+VGJoMGSdz//CfW3LnYF14IgLRtdMvq+Ywsy0JUV9OyroG6J0oYW1aNx5YgJFowqOofDQ3KHdzvVy3aQEAVBIuKVGpTX680Fq2tapius1O1g2fMIHH++RAOY8ybR/KqVVhpaegNDQghMIuKsIcOxfGvf7G4eTAtC4ciAsNJ1aE6NIB1HzczZmynEnB9+qmy2wsEcLz2GpG77iLx3HO0HnIIhc8+C4kEQtOQaWmYU6divP461NcjnE6Mt96C1lZil1+OPX06da8uZdkfLIrTLifkTKVPeCOLH1pHoZiPY/16tMZGIh0dVE2cSKK9nUFPPkn7ffeRmp+PEQoR/9WveuZN9gZ7U6PI30NU8i1CdAm3ZgHfR02ftgFxVEryY+CR7VYM7hbfCcFV9xLiHQfJVMpicdxxBp9/rpEnq1ltvUl6koEIQrpoo33YFPpmhTGvukoNQLCdZX9XOP2JNZU1zOZsnsBJnA6SaLOTcb5WQuLUcwGovfpqCjf8nM6VTQSll9u0X/Ir8Wf6pgcRdW0qTB00CCIR5frk8TD4d79Dj0ahtlb5Gtg2wrbR330XS9eV98TYsQghyF79OmuOc7J5VZga8njffzIXD51PoK6OpsxMYqefTsOUKSz7/WIeqTiRT32zWGFN4dLondSUmxRdOA3zvPMgGsW45x7Ma64hmnBw4YUOFi/SyPG2c9vgeQQ/WsmD4hL+nniSTldfRqVWEy7qg7ulRZnjDhmiBFnt7di5uTieew7KyxHt7cQvuwznG29AIoE1eDDGF19gTp+OXlyM8a9/YV54oVoqtGBBT/hvjRqFtnIl+qpVSL+foc//hXPjh3O7dhs2Oh3eHFZ3jOLs8jfQWpp7LPg8l1yC1HXclZXEp00jMmUKcvFitOJilQIEgxiff96j3kTXEbqO4513EJZFbPZsSoaczMseD2lpXbUS/3Ek15dhr1wLgKO5GWdrK6mvvgoNDejFxWiXXMqGpGF8OPVyDvEZDJ+Ugt/v/5q8fGf4b3Lghp639APgOZQL9xYp5StCiD+gipsAe2W0e1DGzHfE7tqjjY2NrFy5kuHDh3+FJACMrVtZ9PstfP65htMJze58Lhb/oDqeiT6wCMfUSaS++SjmvHk9JAHbOWO99BL6H/9IaqrELaP8ynEHj3AeDkx8hFgRHcFhvz4K2wZHJILXa5N885WIoj4cMS2O/fub8I3oq4pchoG2dCnW6adjPvIIcto0OoYMga58XzqdqkPR3AzRKPobb+AaPx7jrbeUxZoTPvggzmsfOWh8/wsuqPg11U8+RMlxxzHwlFNw3nknmd//Pnfm38eHrhPRDB1DxmgRaSyXY4hUVWEVF6tOwWuvob/+Or+ZvZ533tYZ3rmEuytOI/DeyxSY5fzBvp64cNMST2abnYfl8RCcNQtrzBjic+YQu+su4pdfrmoisZiKMoJBXPfdp8a3k5LUTg+nE23TJvR163A+9BD666/jvPVWHO3txA85BGvCBKJ33UXsT39Si44TCZx5afzR+2fCMR1pS6y2TsZ4SqFPoVri0939siz1mdbW4lm8GM+GDcT++EclCTdNNe5/wgnK06K7A6Vp2AMHEr/hBvD7Gedch98Ro1MFK7S3Q0PKQNxTRql1jrGYWlDkdGKsW4ewLKIrq/hifir33j2Uc88dwEsvtbJkyRJKSkqor6//csvcTrA3NYrvoAN3d/rhB8Z03TYENUEK7BVHHpzUY08Gu6DqEZs3b6a1tZVJkybhdDq/vNM0oboaxyOPcPSS5TwsD2em+SFNIoshYiOhhBM5vL/SGaSm9hQau+GuqMD75JNqLqCxkUO9fp4echwvb5pBEAcbGMYyMZkz9ZeorhZs3gwiNZXGhx4iq6iIzJ/NZbCmgWFgzeqHOPdcpRmYNg37xhvRb70Va/x40j//XK3M03W0xkZkfr6asegyz7W+/32l0+iCpsHYsRIpbTZt2kQ8HmfCa68ha2uxurabT5woWbYMQOMz17HMs09m2GQ343/wNkl//jPJ69djJSfj/P3vmVI2gxd997NKP4QnxYVcGv4r2TTwkn4Wa11jedE6hQvz3ufMuc0UzZlD0LJUETeRwFlejr5okZJtdxEhnZ1I08QePhzjs88Qzc043nlHXc2bmvCce66KCAwD44MPsEePRuvoULWFjAzs/v1JKivjD7Or+c0DA0lt3sydXM3Efk1gS2Vy070CwTQR0ShS13FUVeFbuRI9HEb6fJizZ2M8+STGwoU9wi1SU7H69YPUVLUAaOtWcn9/E49dciPn/msmzc2CQEBy331RHKVplF57Lf0//hjHxx8r16tnnyXiCWB0drI2ZyqBFI3OTvj734eydGkhnZ2dNDc3U9W1uyQtLa3HVLc7Sv5vao9ul068A9SgzHUvFUI8huqAlHY/dG+O9x+pUSQSCdasWUNSUhITJ078WroiFi/GuPpqCIXok4iy1BxD3HRRK/JBWvwz7wb+du+halPV9gTTDY8Hz0cf9agCxSsvccHl6VS9NYm3356NYcCt/IqnjXORprIciMV0rG4b9q5jam++iXjnHexDDkHOnIn24INozz6L9tpriPXrqZ00Cb9t9xjemEcdpRbyatqXr6tLZCS2bkUWFmICxcXFFC5aRN6iRYiNG2HdOvT580lceSU3Xz+SisUdvLO6gDIKKepv8+/Ho2Qkz4Tp03GedBJmMEjY4yGZdm6JXMEdnusZZy5BouEiyjTzIx5x/ZSg6SF6+HiG/CC9Jx3bWu3gmqNbuH7LY0y2N+B0CHRQHQ+3G2vUKKzx43E8/7yqxXTZ76PryKQkYrYDOxShxs7j8+yfccrAwWixCPErr8R1441Eb7mFMwalcdrVITo6cklf+VNcf/gDRGOYxxyjVg4aBqK6WrUkw2HMQICUefPg9NOJ/v3vSlyWmYk1bBj6Z59h9+lD/Le/xTrmGGhowPm3v6lILRxmSvy3bBj1IM03/hXvwFw0DcSydtI//RRHfT16R4faBysEESOJNiHY6FUXVr8fWloEUgqSk5NJTk6mX79+JBIJWlpaqK6upqOjA7/fT1paGrFYbLddje+oVf9HQLOUMiGEqAEOBz7sLmR+pwRX26cenZ2dFBcXM2DAgF2uXpPTpmFddhn6TTeRYTWjYWKikS6bAbjV/gXaG7/GPv/8nf69nZeH1t4OHR3YHg/VEycy4Pun8/Q5Dn40dBG+xgpmW/NwmBHqh04n3z+D8sR2qwgrKtCWL0d75hloacG+7DLk8OFY116Lcf31qhaxZAkBhwMCAazjjkN7912lblywAOuoo7AnT/5SvGOaOK+8kuCVV7IiOZm+ffuSefLJsHhxT85uFRQgBw/GM/89Xsh7htJ/P0EsLhg4EIyPP0J/+23MCy+ErCy0KVPwv/oqJxjv0hF3MapzJf3YSgQfEc3HUHsDNwR/hVmYz/HnXYimdUeZGr+ZuZ4bWn5DMh2Y6GgJC83hRKamqO6HppE46iiMKVPQKypgyxa11SsjA7OxjfqwHwdOwgkHn77awYY+8IeKS9V2MJcL989+hiwqIvqPf5Ca2qWMjUZVkTIaRQ4fTuKoo3DefrvyzFyzBr2jg0QggH3aabh/8hM1hJZIYLz2GuasWdiTJvWYy2gVFUp4FgpBIoFWVoY5ezb+QTnQ2fF/7Z13eBRV28Z/Z2ZLGukNCC10Qq+KoiCCCkgRC6JgryhiVxTFir3iq4BiAcVCb4pUQZQOoXcCgYT0nmybOd8fZ3cJSDc0P+7rypXsZnfm7OzMM0+9b0RWFpZZswiQEuFyIQoKFHFxjRpYnVb2F8Rhuk2wKnawhATzHzNjVquVuLg44uLikFJSXFxMbm4uB72UhSUlJURFRRHqlUDw4XzqoyjXdTkAsAohVgLrpZTfnc72zkro4aPdT0tLIyUlhaZNm57Q8oq9e1Xsb0jvQg/piYoWjTDq1Tvq+/S33yZh7lylGREcTFlYGJWtVv/g0jePr8Hx2keUGHb6W6YTWnUbhqOdkiKUUknnDR6sqgBFRap9+q238Lz3HvLaazH//BNt8mQA9g4YQL3bb8eMiUF3u7G//77qXPztN+Ty5bg++QTLO++gLVuG3LUL88UXaVe7NuL995FVq6oZC4tFEcVGRWHzsnGJrCzqvnQHZtOmYBjoU6aoiywqCs+AAYjdu1Uo4HYQgCSGbIrsUcS79yKlxLTodAn/C1upiWMs6B06IDt2ZPuBSswpbE+4dRDPet5ASFjIVSTVLCP24d54rr8e1qzBiI5WWqQFBdC8OWabNrjvuouRD+5gWnIdSgNDecj5GS3NdXzzY2deev9GAn7/XeUpAgNVm7WuK/3TH35ABgUpkSGPB3fnzhhXX405bZoSUa5UCU9oKGZoKAQH477zTmzvv6/K3ZdeqioT5fohzDZtcN9/P/ZBg1QfSbVqmB06gBDY3n1XeSNA0L59WMrKMGvV8vdKBANre37Gzp9qYJZBdLTkiy+O398jhKBSpUpUqlQJj8fjD0UOHjzI9u3bCQwMJDIykoCAgArJUQghbgKGAw2BtuU5I4QQz6OqFQYwWEo551jbKecpLEN1aF4JbBBC/A5slFKmncq6zkoyU0qJw+EgIyODtm3bnpR75r73fj6KG4FHaopzwPcPu11xYR6DKs7s3l019tjtmEIQXK8eernpyYDH7iP6upbUrOwgPMaC+cpwiItDCEHg77+j/+9/avw7NlaJDTscmP36IS+7TG0gNxdj+HDMfv2w5eZiREdjmiaeF17AuOwydfcUAvdzzyGbNMHo3h13RgalViuV3G70q646RMEvJe7hw5VmRo0aapYiNxcZGIgoLFRyh3//rXofCgrQp0wB00TbuVOpnEmJADS7ldD4IMxKlZC6jm4YBJcU4QyPxfh5FpkffMHmdesoK1OJ7liZwXatPj/r/cgkjsxmXTBvvx2tcmW07t0JCAhAXnstWK04nn8eR//+uGrVYmXV60mU23mlbCitjWW0M/5ibFYv7E8/rYbHSkvRUlJUlQKlama0bo2WkqLo8qKjMS6/HJGaqpquSkqQISEUt25NxldfqXkNux1sNmStWqrysWTJ4V9waSn6nDnIGjWQkZFKwyQtDS05GU+3bv5mLsNqpeyTT3B+8AGyUiVcw4ZhXHYZ91+fysqVJcydW8LSpaU0bHjy6nqGYWCz2YiJiaFBgwa0adOGxMRETNPk8ccfZ9u2bbz++uvMmzfvuIRLJ8BG4AZgcfknhRCNUBWMJOBa4H9etu7jQkq5REp5r5TyGmAXat5jrRDilNS3znjo4XQ6SU5ORghBc2+p8GgQGzYg1q7FHKjKlb/8WZUVB6pwC1EE4iCYYgoIIyo6EPOSS9RJVVKiZhXKoTQxEUpLCc3NRdhsyE2bVKjwyCOY112nxruLizFeew0xezZi82Zkq1ZomoZ12zZFcON0oi1cqHg377wT8eef6I88gvH55xj/+59izwbS/vqL0m3biImJISIiApGWhtG9O9rWraoJS0r22GzU3bMHW3Q0QtfxJCUp1u3UVLTff0ds24a2bx9mnTrIsDDFReHTrjh4ULU4m6Zyx3Ud2aABZmoqFqdT9XY4HGosPDBQlQDtdtUJWljCwZ0unCKEu4s+5tqltbjlln20aJHLD6tvYYy8i4Zs4Zaw2bTY9D3uZc2Q1asj69TBMnw4+sqViMxMgt59FzMuDuf77/Ncp53kzfyOjWYjqskUJOBseymmZRN6bi6yalVcgwb5WaH0P/5AS05W8ylSKrnG7Gxs77+Pvn49REeDENhTUgjYvBmiozHr1cPhFXm2TJ6M7a23kCEhGK1bH6p+WK2q1Fu3rhqN37wZ69KlKqeSl4fnyisp++MPAqtWRbZsiWPKFACMyy8HFGtL+VGek8WRyUwhBMHBwQQHB/Pdd99x+eWX06VLFxYsWEDnzp1PfQeAlHKLb9tHoBfwo5TSCewRQuxEsXX/fbztCSFqoKocESiq/sVAdZTGx0njjIUeAHl5eWzevJkGDRqwbdu2oxuJsjLEhg1o336LtmIFskEDZEIC+/YlMF30pp1lOZPst/Gw4wOCjQIue/4Wwn/9Ccuzz2IMG6YufK/HkJeVhbV3b8KyszFCQ7GUlChi3WrVlJcwaJBKOnpPHH3rVkRyMgwYgKZppFVrTljed1gdqotUhoUpA2azIRYvRn70EbJ2bbTvv8f59tu0qVuXsiVL2A9s376d8AceIKxhQ6KDgrCYJtnDh1N1xQosXk4IGRkJhYVoU6di/fxzldDbtw+sVmwvvojZrBmuV17BbN0a/ddfMe64A/2339C87EtGhw7I+vUxS0uRiYnKqwDSPvqIlJwc2nz/PfqqVbhLnWTmB/G8/X06OOcR5djPa681oaioLgsWeHjrLY3kRdm8lPIyTUqWI/e50B5/HNm9O8abb2LcfjuWmTMVA3VxMebAgdhfeYXmqakURe8msfgAIe589JgIItJ/U2S4oaGI9HS0OXMQl1yi1hcZie4l0vGVPM3atXE98wwBQ4YorZV27djbrx91hg1TAsgNG0JxMQH33qvG2vfvJ+CRR/BcdhnOUaMgKAjXU08ReOedfjU427ffYlar5q9+mW3bsrV1a5rXr1+h5/WJqh5CCK677jq6detWofv1oioqjPDhZJm570MJFAcCvwPPSinTT3XnZ8RQSCnZt28faWlptGzZ0i+IcrR5frF5M5YHH1T5CKsVy4ABGI8+SocOj/C6ZuM53sam6dypj6NR+D5WLX8JsXmzSnY99xzyzTdxT5xIKnDgwAFavvsuok8f3BER6FaroqtzuzEN4xCD1MKF6F98oSoOpom46SbmmLfywe8dmO0Ox0Yw8bZcNNNUd/9NmyA4GP2jjzCvvBJtzRqsH3+MKC0laO1aQmbORNaqRYnbTVZWFusOHEDbtImI6tWpvHw5hIWh7dmDu1s3zI4dsY4fD173HCnVnVDXMRs0QJ80CbNbNwxfotZqxfP442hr1mB27Kies9txP/88RocOFH71FXudTppeeSWWr78GqxWXABMPgc58xnM7q2gDwEcfWWnQwGToUBPt2hQsrxroS8pUyTQzk+2BgRTNmUOs00mN/fshLk5R29eujaOkBJYsIahaNGFuN+5hHyEbNsT86ivE3LlIXceTmIi7XTusw4dTNnYsZsuWeNq2VY1TbrdKLpaVoaWlYSQlYbRti+2jj6ixdi16QQHWJ59EVq6MY+RIjNat0RcvVt9PcTFaWprSd23WDJGRgad5c/SNG1Wbd1AQ2u7dEByM85lnMK6+GtfKlf+UCfiXON5Eqi8lcDLEuldffTUHDx70P960adNG758vSCmn/euFHo6pwCYppd+DOB1F8zNiKHbv3k1xcTFt2rTxW+BjEezKVq0wXnoJy5NPquz/9ddjDhrEJQJeecXDyy9rOBwQGW6wKL4/xtUPYtm1Cw4cUEQ0L7/MpsJCDI+HdlKi//UXWkmJIrD1ePA8/LAaMnr+efR331WDYklJKmTJzYXAQHILLYz4+woyLfF8pz3AQOdoDJcB0THIx4dgufNOFWNHRqItXaro6EaPhsBAZEwMAZ07Y3Ttinj7bQSQmZZGy1mzcFWpgti0CaOwGOExOPjxJPhmPgly32H9BFgsSkZwyhRFxLJihUp2VquGa+xYtVaPRzUpAbJRIzwNG7Jjxw6c111H80aNsKxcidmiBfrcuQQEBOEmhCd4n2d497Dj/cwTGv2vSIWGDREpKaoqoevopaXU+/NPnEKgT5qEs1IlTKcTLBayDx4kw2ajRVAQms0GoaGIffsw27bFbNcOfcECCA3FunAhltRUNdh28824r7sOIzQUERODnpKCyM0l4K67VFXk00/BZsNs2RIeewwzIgK9tBTnAw+oY9C5M/Lbb5XXUFaG6667FAsYqJ6Npk1Vn4XHA2VlSIsFo3VrRFraP/pqKgoVRZ47b968I586MQ3XaTJzH41A91SNBJwhQ1GrVq1/0Ib5SqRHG/0Ve/ZgNm6MrFdP3eW9X/SQISaXX76GBhMmEb50Llp6OvLDDxG7d6s4OC2NHbt2EdyoETWqVsV6221oy5djxsRgKSjArFdPjRSPHq2qB19+ibZ4Me4PP1QU+1lZyLAwDjrCyRYxWCySK0rnYxEm2TKauKXLsGy6F+P66/Fcdx3699+jb9um2rljYvxj6mZiIu7nnyc3N5eiDz7g8t9+Q3e7CVq3DsMQZHsiKSWACCMPmVuIKYrQdBTPQ7NmaLt2qQvC6VQs1Pffr5KgI0YcysFYLP7uU8Mw2LRpE4GBgTRu3Bhhmli+/loR9sbGoqemUtXu4GfnTczjcLamyxwLMB78FH32z3huv11xT0qpeCOffx5xxRXoBw6gL1uGtFjY99xzbImMJNzlYseddxLQvDmVJ0/GPmIEYvt2peFauTKeBx7Adv/9qj3SYkGLjISePfHExmL8+ivBDzyAUbs2mCZlgwcjLRY0wKxeHSElZlQU0jdTA6rVvFUrVereulV1j5Y/n6ZNU/kZr/E027TB+eWXqnfmDOF4hsLj8Zwyy/wpYjrwgxDiA6AKUBdYcSZ3WB5n5JMdrRPzePMexr33wqBBKteQeziVn10Y2KuEo23erDLcWVkYPXqQN2IEu+bOpUbTpkR6h8E8X32F9bLLoLgYKQSe6dNVKXPaNHXnlBLS07E++KCaAvXqftbZ/iuNzE1sNpvwSNBYxhT3J1YcRAs18bz1Fi5vd6VMSkJ7+mncd9+N5b331Fh306aIgwc5UFRE2sGDNH36aSguhp9+QpSWsiqxH6EFqyjUIgk3C9ExMKRANzy4bDbW33MPifPno3fsSOjQoarK0qgR7tdeO+qxcrvdJCcnEx8ff6jlXddxffAB9q5dlZZJRATi3Xdp/tpyknZtZBv1qcoBXuVlasq9BO87gOjfHxkfj1mliroI7XZV3hQCfdEijGbN8Bw8SOnOnVzaowd2u52SrCxCrrsOa0oK0uPBMmaM6toUQqmoS6lCAB8bdnw89i++wPrRRyrkyMlRhL8hIUjDwPB4EJrGwbvvJiY+Xt0gIiLQf/sNo317nK+/ruY+SkvR1q5V2iahochatRButzrO0dG4BgzwM1zZ3nxTsWmdARxP06OiRsyFEH2AT1Et1rOEEOuklNdIKTcJIX5GyQp6gEEnM8xVUTgrDVdwApar8rFkeQ6BnBwa3XUX9tJSlTXfv1+5wt27s3XXLpr27q3q1l73VBw8CCEhGDVrYlm8GGP1aszrrkO+9JJq0HE4FOvS7t1q+6YJhYXYbrmOepb6JP+ikSaiCaSUoHpVEGYaht2OEELFntHRuL7+GgB3nTqKkSkhgbSpU8nJy6Nly5ZYdu5EnzhRZfqBFrunsoOa9A76ndtdY3nRNQw3VmxBNmxuN02XLKGwXj2yHA7MWrUobd+e6OXLMVwu9CPuUGVlZSQnJ1O7dm1iYmIQW7YgGzRQvSWpqYj8fMwGDdB270ZarXRY9jpfV+vFc85XWMplbBWNuCpkFVpYCGRmqnJstWpKbqBzZ/QJExDTpinmpzVrwO2mevv26EJARgbhI0bgGT0arVcvlVMCPAEBOCMiCDp48FBHatWqaH/8gbVPH7S8vEMyfQcO4Ln5ZuyxsZg2G9qYMXisVjKqVKH2c8+R2vM+1m2pydU/voft2UfwePsjCArC9skneG65RZEB//UX2o4dyJgYjIQERF4e+tq1iOJi9GXLsD3zDDFNmkCzZqrcehZQUV2ZUsopwJRj/O8N4I1/vZPTwBmtepTHaRHsRkWR9uyz1Bw2DIKDkVWqkNarF7mlpYoaz2JRdfXPP4e//8YcNEjV3jMzcYWHY7v/fsxbb0VecQXS5VKzDLVro8+YoQhSQIn3XHYZH/Yr4dpr9yBkHWLKhlH523dwDXgCGRmp5jeOEAyWlStjGAZ7x4/HFhtLkyZNEEIo2nubTeUfpMQmXLwR8Cr5riBWytZ8Le6hVc0srsicjLRasc6ZQ+gnnxDcpQvmrbdSZhjs2L6drPXrsdvtxMTEEB0djdPpZPPmzTRq1IiwsDDIysL2wAO4Ro9WE6U//aSqDl6uCfvAgVhr1aJlvIfvXM+QpcdzsMutVFlQhvRoyOBgts5OIWrvHlzB4VRduBjuuB1t/Hjk/v3YnE6VYH38cUVcm5CA/scfqhLiFdsRhoEFFVbKwEBc0dHYUlIwsrLQ3W5kfr7ioJRSGWpdR5SWYn35ZRVyTZsG27dzuduNzCsk4f0XiMdCKtUJefwd4hp/hadNG6xLliBKShQbl9WqmrGqVUOUlSHDwzHr1sU6aZIKl+x2rNOnE5ubi+jX75Qp908X59nkaIXjrHkUp02wq+tIqxWjXTtcW7dS2LMn9bz9GGLyZKwPPaQ6HPfvR9u7F/Pqq9GmT1f6kZdfjvH886rCEB+v8hRDhqjeXW8t3l+e7d+fevVKaPH7u4gVKxC7dmEdP15l2K+7Ds9bbx22Lkd+PluXLqXZTz9hr1kTd7Nm6g7XuzfaH39gGTtW7SM6mifea8C+jw1yCtqSdl1rHk74H7w0VQ1j2Wxo8+ZhVquG1qIFEUBEu3bURp18vulaR14eLebNw9ahA9aff0bLyUEcPIht0CAVlzscqgMyK0vdhYODVU4nIIDK0Xain7mB+vVqIHdUw2jRgi8WNKTOjunEU0yxy8ZsRwsuvf1BgiZMINgnpWcYqpdj7VpV2YiKwvrdd2pwLD5eiQRpGu4HH1RGqnZtxCuvYC0owFOpktIzEQLdbkdzu9X3tHMnRpcuaN9+i/PgQQILCxGlpRhSYMXERCOEInJzosi69WVqXl0dbe9elacwDFwPPIDljz/QvRUrANvnnyOrVkVbt051BVuthKSkYB0zpkLDkOONRVSkpsf5iPMj9DgO3ImJHPj4Y/aEhNAwK4vaTZoo9qURIxBbtvgp1wHEli1oe/Yg4+MpSEyk0v4sFv4ZQFJSNeILslUH38KFqilq8WKVjIyMxHz0Uf/QlKdVK2zjxyM1DW3VKmRAAJZZs9A3bcI9ZAhm584UZmSg33orbTIylFu+dy/2v//G/cYbGN26ITIz8dx1lzJEmkbjTlHMu76cjuXUGHXReL0akZXl7yg89MHdBAUFoQlB+L591MvLI2D2bFzz5lEQFkZwVhZaWBjWjAxc77yD9dNPERs2+AfUpM2mxH0SEhCFhWjLl2P98ENwudB/+pk7MkpwYccQFvJEFNLhYuRH+3khL++wuWNRWIinRw8sEyciHA6KajWGzCwqHdylLlSrFctvv+F8/32so0bhmjAB6xNPoO/di3C5MC69lKKrriJ45EicQUGYus6+du0oWLqbpJ1T0ENjsDn2IwxlJHRM8vVoCs1QJn1u8OVTiXxXZlIlpgYtq6QjVq+G3bsp+uYbrNu2KW2UtDTFARoaqpKhhYW4oqORzz57yufbsXCi2amLhqKCcLraHsVBQaSUltKqWbNDAzfehJK2bJniafQlQD0eNY04YAAfr2nLzOlV2Hi9asZa2+QZmmT/AZqGvnAh5OUhg4KUjFxiIprHQ3FxMZkNGpBQqZJK8GmaUko3DGTVqpgtW5K/aBEFCxdSLy0N2bQpLF8Odjuehx7CuO46KC7G9e23qkIhpX/ysjy0HTtUctVb8hQ7d6qY35uQE2vXYn3/fTa99BKOwkJa/fSTmmEoKcEiJUE2G9LjwalpmJmZ7Ny9m1oOB9x7LwHz5iEyM5FxcYiiIjx33IHl22/R1q/HrF4dbetWTHsQqURiw40pLCy1XMmr8gUGB5Vizp2r2LpcLmVw4uIwW7TA3LWLEbtvofGyr6krc4gjjGhyEAUFeHyiREuWYHTsqLg0K1VSdHbbtlEpMBAaNeLg9YP49vV0fmsteYY9fC5epQb7eML2CYVmEHEynTwRxW2Bk8gtC8K5KQDTBqOsj7A3szJvx31L9wU/I7Kzsc6ejadpU8zKlbHEx+N+/HHs//ufOv633oqYN69Cy6QnYvU+n0bMzwTOWo7iVEMPKSV79uwhLy+P6tWrHz6Vp2kYDz2E7lW/PgymieX1N7jW3Yb3mA9CXauXJX9BerOuBKcoL4TgYMX1uH8/4q230O+/nwYNGpCVloYnKYn8YcNo+OabBGzfrrL4iYnszcwk/uWXiU9NVVqbCxYgQ0LUlGhmpsoN9O2Le/Bgpf8hxFFFhY0bbsAydqwyDIaBbNhQzTZkZ2P57jvE+vUYf/1F3OefE96+Pa7Rowno2lUla72xvpmYiKVdO8TkqeSP3cT3ATfhiupAq8ebEA2ERUUR/dhjWEeM8E9aSptNhSQxMcToORgGFMpwdrqrYwYHcWfvQtW6revI4GAEYNaujdm1K+Pzr+W9+03qBibymeNeosytSpbA5VI9JZqGjIrC/sADqsVd05ReitWK2aQJ+vQZbBk6gVhXVe5lI1U5yA5Zh1W2S5jq6cPIeq/y3N6baeNZRrSZSXbcJRTmCOwW+JsrudYzmS7JH6LpbqTVStDw4Xg6d0akplK8aBGmlDhbtUIzTcpsNg60bUuDo1EQnCZORFrzX89RnJWhMDg1j8IwDNavX4/D4SAxMfGohkfk56ve/dBQ5W6XqxBIUzKfq3ALm1/vtzIHyE/eh7P9ler1PjUrIbBMmIC+cyeRQNLffxP/2WdUa9mS4hYt8Hg87L3qKrYD+Q6H4mkIClIXeOXKOFavxjllCgQEYB08GLF2LbbHHsPqy40cBTIxUXkTHo9qLrr5ZrUmux3WrcNcuBBCQoj9/XeElKrkGRmJGRen2radTrSUFLRx49meF03itt+xJG/mmaHNWJV/I9YOHdgbHc327t1xaZpqSPJO0Brt2yOrVSM6UuIODGW/Xo2EyGJmznRRbf54rG+8oXpEIiPVUFe3bmAYbFiv0dX8lfecg+kVNJcsYjBRYkHSm/8hNxcKClTJNTtbaYJUq4Zl2jRKDAstXMsZwDg6M59KFPEV93KVMZ/dlvpsHTyWtza1p+YP9/LEzybx8fkYhkRKSQNjE7r0kGuNVZ2aTqcSeD5wAH3rVoIffpigUaOwRUSgRUSQk5ODqFoVl8uF2+3+NwNah52TFyC7VYXhrBqKk8lRlJWVsXLlSqKiomjUqBEWi+WoX7Rs1Ajju+/wDB+uwg+fERICzfSwnHaEynwArLj4hZuJIJe9yQUYPXqo90ipqN9q1YKoKCy//ILlgw/Q16whqlcvYsaMwVpSQrUJE2jwwQeI3Fw2//47ZYGBFN5xhxrcKixUDCiahmXCBNWmnJGB/uOP6LNm/WPd2uzZ2Pr393s1smpVRWoLlFksJHfpgm6zYfV4kLVrY9x8MzIpCefkycjGjdVYupSK6s3lIpFdCOB1y3Cc2Bk2LIDY2FiapqSQWFCA1Uft5nTiKSsjs107DLsdMzSE6KhSLusexNMPFdKmpRvPww8rujpQreNDh2IMHoz1yScZ+ktrXjRepbqZwvTSqwmhiD+0q5EISD+IRFVBkFJpgzRpgvvTT3H+/jslTZsiSvIJoRgQmGgEUMocuvKVUGTBrVubxMeH0KMFXJ2xnQ8/tGK3K4rSwLJsnjTfJUbP9RPoiNxctI0bQdexTJmCvnEjuq6TlpZGUVER9erVw2q1IoTAMAzcbjdutxvDS0h8qjgZBu7zhYviTOCMGIrTLY/m5eWxZs0a6tev728mOpJR+x/7Sk9H1qyJbNTIK7ARjnnNNXRpuYtp9OItniGDOJqygSAc1E37A33KFMzwcDwdOiDDwtD/+ouAyy7D8uqrYJrYr70WbetWZXxME93lwlJcTMtly0iqWZOc8ePJSEjgz1deYUNRERkZGTjuv1/J2/lIfd1ujK5d/7FemZQE2dmqE9PLMWH06EFhYSHr1q0jMSwMs39/XGPHYlaurGYk9u9HpKWp5+rUUR4N4BR2xnAfU+lDvExH06BhySrEhg1YX35ZiflaLMiYGERICDRtiqdqVQ6Eh+MqKcHi8WAKgeXnn9HmzkUcOIBIT8fo2hVZsybaX39hGTkS/e+/CQ92UcOWjiE1SswgvtXvYVDiLG7TfsCDBROBKVGlYe+kqHXIENLS03GkpxNsuAjSXIRSSDX2k0ME1dmHpgteeMFN44YGYts29J9/xvLpp7QJ2MKy6ft44AGD+ve2J+Tu7ohgO66gILY++SQHXn9dfd/eGR736NHs2bOHgoICmjZtisViwWKxYLfbsdlsWK1WP5eqz3B4PJ6TNhonIta9mKOoqB2dIEeRmprKgQMHaNWqFQHe1mg4sYExBg5U+YrPPlOcFeHh6GPGcI85CkMcxCMtSMBEQ/OS3xiXXorzgw8IeOghREkJ0mpVnoHdruL/6tWRBQXo3ulEABkainXMGBCC2Nq1sb39NglLl1KIIgjee/AgLaKjCSktRSspQRQWYpk4UXkFvnyF243tnnvUndA0EZmZaGvXkpudTcru3TTr3JlAXcfTsycA5iWXqGP36aeIvDxcI0ao5xs2RGzZQqk1lrLsEJ7X30YI0Aw3v2rXEnBFMTI8HH3jRqXWFRODDA7G+PJLrH/+iSs4GPd336E/+yy2RYsoCwrC8sgjGPXrU/rxx1hq11bdkEuWYB0+XGmdFhYSRgG2GhHEedJoYRxgWsoiWmrJ7DTrEioLiCcNaZgIXQe3m6ykJA4ePEjchAnI66/HlpODoWlI3c7ejvdSZXBvdjYvIzISxO692B55RDVn2e3YBw6kXt++vPPOC4jUVKyDlqIBeng4iZs2URoUREn16mRcdhkJv//OxlWrMO12Gjdu/I8L2vdY13WsVqvfWEgp/VIHUkp0b5fp0QzCiTyKizmK08SRXsWxQg/TNNm8ebOfZLe8kfC977ieSFyc6sZ89lnMZ5/FvP12zNatCUxLo1LlYOrqeygkFB8rudB1CAlBJCXhfuWVQ+Syuq7agsPCMJxOXEKou2NAgPqfYWDUrYtlyhTsjzyCSE8n8JJLiBk8mDp16tD28suxXXaZ8hS81Q7rsGGYY8ceIt2xWnF9+inSbkfGxyPj4si+5RbMDz+kzYwZhKxahe3OOw999mnTCGjRAv3XX9GWLSPgmmvw3HYbrlGjMLp2JcLMwbi5L7oOb3meYrelHqGWEsVFmZWFyMzEaNEC15dfYnTsSPa8eQR/9BHVLRbsERGY336LHhlJgN2OFh7O3tdeY01uLqvXrGFvdjZFHTqoPIPT6dc/tYcHEuLMQUr43HMfXYzfkELHKQLIJxJheMA0cYeHs7d9e5o3b44eFYXZqZP6TJgExobQc+oAWl9Vya8hLBMTcQ8fro6104nZvDmeZ58Flwtt9mzFtVlQAE4n1pUrCbrpJrS1a4n99FPW/fILhW43JSUlrF+/nv379+NwOI55ymiahtVqxWaznbS3cYEycFcYzml51OVysW7dOmJiYqhZs2bFdHQGB2P26wdTp2IxXCS0qoGn01WIsV/huusuZEgIonp1kBJ9+nSMyy5DX7dOsS3Vrs2m77/Hs2ULDVNSKOvRA+snnyC2b8fo3h3Ll18qw1FaqjoTc3IwLr1UrXPyZLTCQoTNplrFpcQIDGR3797I114jMCICa79+RFksShm8bl3k6tUEzZhBtNcDYeZMJGAdOhSzWTOMG25AmzsX3cuEbXTqhIyMxN6li+oW9Xh4duoVPN2uHa4PP8R+6wzELm9Owssi7nnqKYxLLyVn1ixiRoxQcfu0aYhx4zCaN0ekp+N56CH0BQuoFRZGzdq1cTgcZGdns2PHDhL27VNUb5mZ6DleXY7SUoKjKrFRq8ZA/Xs+Nh+hgbkZCaymOZ/rQxgR/QVNvHd3sXkz+owZyEqVICBAeVuvv47nxRcPfW+mieWDD5CxsRjt26tysHe6Vl+2TBlgIRDZ2YqPNDYWKQS7du5Et9u51NuEV1JSQnZ2Nps2bcLj8RAVFUV0dDRhYWFHPb/KextqGaY/j+HzNkDN2FwMPc4CjrzgCwsL2bBhA/Xq1SMmJuaY7/OL+ZwKDIPU226j8h13YB88GLE/Valq79qFbNAAT9euiPXr0WfNwv3442h5ebj69sX85htEQQH1brgB03tSuT/7DADboEGKSGbePHXCeU8a47rrAFVGtGzdWn7haEFB1J81S81kFBezOyqKVZGRRD77LDl161Jl82Zq/fknLF6sOClME+Li0KdNU7R6Viva33+rLH/16qrEeemlqokq2ytE7XZjtGqlpAlSU/0ktEiJceWVeJo1Y8vmzVj69ye2sBAxZYoqlxqGous3TfS5czGbNkVWU1PMAQEBJCQkkJCQgDF2LK633ybw3XcxPR5ETg5mSAhm16tovGgt3bPmE1BYyj4SMNGIpADDaXKz7Xdm6zraokWIjAzcjz2GdeRIta6WLfHcd59/ndry5YhNm9BWrcIzeDBmq1Z47r5bhWt2OzI4WHllYWGqymWzYR02jPWvvw5C0LBhQ78R8DFO1ahRA4/HQ05ODgcOHGDLli2EhIQQHR1NdHQ01nL0iEeebz6DYJomUko8Hg+5ubmEhobicrmOGqJcNBSniSMJdi0Wiz/0SE9PZ8+ePTRv3vyE7trpNGrJzp05GBZGdL16WK66Csv//ocMDcUybx6eiAjsPXqoATOPB+vbb2NGRbHikkuo0r07id4hK//+Z85EmzULbf58tEqV1GcKCVFCwc2agTfpKpspKjm2b1eZ+eho5VnM/BWQaALqPPkktZKS+PO117BZraQnJWFbvpwqUqKHhSnmcLcb2aQJIieHgDZtVGNYQIBKfNasqRq/kpIU6zWoassPP2C2bYunTx8sM2eqPEt8PK7bbyc5LY2IiAhq1Kihyqx16ihWL9MErwq6KCnBGDjwqNIHemYmtuhoNI9HGSEhKKlXj01XXUVoQgLvjXuV5y0vUDd3JbXZg47Bi7yBa82H6N8/ij5zJiI3F6NDB9VXUbWq6l/x8YYC+ldfof/2G6K4GMvIkZjNmyt90Zo1FVfG77+rxq+2bdGnT0foOm6nk/p33onlttswGjQ46nlgsVgOY9MuKioiOzubdevWAfiNRkhIyDG9DR8Jk8ViISEhQYlfe39856Wu6xcNRUXB5xls376d4uJi2rZte1Lz+6fb0alpGh6PB9eQIVjGjVN3Zbsd99ChiMJC7D16qB4AYOOAATT580/szz33j+2Y1atjWbtWXVj5+YjISIwWLXAPG4aWmnpYQ5UMClJ3vLIyKC0lpyQAK8FUophiGUSJJ4q9Dz9Mrdq1ifVeKEZmJun9+uFetIjglSspuuMOqv72G/TujbZ0qSKF0TSMq67C88gjaj+NGuEaOhTr2LFqSjU8HNc336CPH49cu1b1TBQVsToqijrJyUQ5nXgeeAD3E09ge/HFQ4Q5Pk/N5fKrux8J66efov/0k0r0ekf17fXr0+bDDyE7G9Pl4smS11hLEltoSAO2IoGlCTfS4OOPVRnYa8zcXq/M8umnh3aQlaX4OEpKVII3Jwfy8tBnz0b3hldUrowoKEBkZqpmtm+/RWga9nr1cPXvf1LngxCHtDsSExNxuVxkZ2ezZ88eSkpKCAsLIyYmhsjISH8Y4hOpcrvdfq+lfIji+/FN9Z4Mu9WFirPWR+F2uykrK0MIQYsWLU6a5OO0PAopCQ8PZ926dexZtYqyNm0o+/lnNYeRkaGam6TEWa8eHqeT+snJhH35JdrSpWra0QePB9m0KWa7dopuvrgY02pFW70afdEiFXOXS9C6x47Fff/9SKsVp2lju1mbbTSghCDKCKK0VBBXo4HfSADo3bsTc+WVVHn5ZUKmTcPesSNbnnySZZs2kVdYiCc4WCU/AwP9RDmewYOR112HrFoV97BhyivIzMRs1AjPHXdgxMbiLi2l2ddfE/fii1g++ADtzz/Rtm3D/c47qm09IgJZsyaeRx+FgAAso0YpL8U7N0N2ttI2Wb1azU9oGoSE4HnwQWSnTrg++ki533Y7IVWtfBT9MmEUsJ4muPUAWvW3kzVwoDo+Lhee/v3BZkOkpGCZPBmxa5fyUGJjcb3wgurs9O5H27RJjc3n5SGKihQTF+AcMYJUU1VVrFWqqPJ1dPQpnRs+2Gw2qlSpQtOmTWnXrh3x8fHk5eWxcuVK1qxZw759+9i6dStOp/Ow0MYHTdP85/ADDzzAI488QpUj53X+QxAnGHY5KRWho8Hj8fgv8JKSEpKTk3G73Vx55ZWnvK2//vqL9u3bn/B1Ukq/lfeFPnl5eWRlZZGXl0dISAixsbFEBQSQt2gRmR4PrZ57To0r22yKOq9fP9xeLQ7r8OE4f/0Vy2uvIevVw/LWW2pOw2JRNG7NmuGcOdN/AQNY770XWaMGK+cVkrTqex7nQzaJxuyV1ajNbsaurkf1BicmOJFS4pg1i4zoaPIzMgjJy8PeuTMxMTGqMuTxKC8gOFjpjwQHI3bswDJwIHL/fizFxQifEdM05UVYrSon8/ffmNddh8XLKI6Ufo/CM2gQMjhYVRdGj1Z3+aws9ZlNE6N7d1xjx6ItX47loYfIqVqVqORk5NVd2Nx2AI7IKjRsYcVlupD/+x/utDSkrhOemkrQli0qJDMMCAlRCmBTp6ItXoz1pZcw27f35zSEV1QZTcNo1w4ZF8fOTp2wVqtG1Ro1kFWqqM9RTrKxolBWVsaWLVsoLi7GZrMRGRlJdHQ04eHhh+Ul3G43d999N+3atePpp5/+Nx7Fee+KnHFDkZWVxfbt22nSpAkbN248qQv+SJyMoTjSSBz5pfli1IyMDNLS0hBCUKtWLaps2kTwAw+o8l/z5ji//BLLmDFYpk9HbNuGZ9AglRP4+28sEyaovIMXrk8+wbjnHqwvvIDnkUf83AfWhx/GmLuYorQiygggj0j6MIWc0FocOFD2D2Wqk0FpaSnZ2dlkZWVhGAZRUVHExsYeFl/n5+WRM2oUjT7/HM07Qo/LpUIMi0WxgFutyPh4nHPnAmB5/30so0apfpJKlRRPhHe+xdOli7r7FxaqNu3iYmTlymwrrUbfPR/Q2ljGQPtPXBm1AYtNV0ZLShwrVqg8j8OhxI87dsQsLYXiYvSSEqTNhlGtGuagQZgPPKC8mNJSiI9H++037P37HxYKySpVWDZhAhExMdTwqa+dQezevZvS0lKSkpIwTZPc3Fyys7PJz88nKCjIH8a8+uqrNG7cmBdeeOHfhh3nvaE4Y6GHb6grJSWFNm3aEBoa6n/+TOzreEYCVIwaFBREUVER1atXp1WrVpimSfqyZZRERJB73XXI1FTEzp1YvvlGjbAbBpbPP0dbsgTj+usPH/Cy21XpbupULN9/j2X0aLQ//gCPB89TT2GNCiGgkoYFg095lJKYGiyasBs9ZfexP4jLhUhPVzMj3oSbD0FBQVSvXp3WMTG0djgIDg4mJSWFZcuWsXXrVnbt2kXhe+9Rb8kSzFtuUa6+06nWWamSunC9MzGu0aP9zE/a0qUquWgYiKws9Llzldu/ezfW8eMVx0br1pCfjwwPx7E/lw929maHmchs7Xr2O2PJzjAQ6ekqRMjLw37VVVg+/FAppR88iCgtRS8owFJWhkBdFSIjA/Odd9g0bx4HcnJw+rgyr7kG59ix6lh7PbetDz9MZGzsWTESvpxFUlKSPycRExNDw4YNueSSS6hduzbbtm2jT58+LF26FI/Hw4EDJ+S4veBxxpKZ+/bto6ysjFZecR04NhP3v4Gvu84nBXAsy15WVsb69eupUaMG8fHxgCql8eSTuIYMIb+0lD1bt+IoKqJlTIyidgPF8XjPPZitWyMtFtWwZRiqdDltGpb165E2mzIUs2fjnDYNo2pVXIWF6JXDiQ8qYORnEXxynRPr0x8gDhzA9cMPR12j9dVX0WfPhrw8VYno3FmVXyMiVHhQUIBl9GhsS5cSP2MG8dHRsGkTzmef5WDNmlSZPx89IwNXYSE2l0v1lNSvr3ID+/Zhtmrl7woFsLz7LmaDBhh9+6op08JCP2GtDAuDypVxffEFskYNAi6/HGGxUOLQSKYpmkUnWJZRz9yGxxDISoFq1sNmg6AgjBtvxPbAA4pMxuM5zBMTLhcWjwfdYqHl4MEUNWnC+qefxjRNoqKiSCgsxK5pmElJmLt2EdS0KbHVq1fYOXMspKSkUFxc7DcSR8J3s1myZAm9e/fmmWeeYd68eTiPkQj+L+GMGYrq1av/o//BVyI9HUNxNE0QX40bOG4zTH5+Plu2bDlEI1celSphA6qEh1OlShUMw8AzcyZyyxZMiwUzOJiMqlWJLCpSd2UfzX5xMfrmzSrJ6B39dn35Je6oKDYkJ1PrkUeIuPtuXGvWIDZuJKB1a8WsJSUBrVqpCsDdd4NhoP3+O5bRo9FXr1YTmFYr+tSpiO3bMTt1QgLatGnY77oLGR4OFgsBzZsjw8JwhIQQsn079VeuVE1JHg/2bdswAUdYGNaUFMoeegjr1VdjtmmDWLcOsW8f1k8+QfP2Ucjly5EBAYohKzcX4XYjPB7MgABks2Zo06dDfj6l117LuPXNcPwdyDXGbNrK5dRnO6P1h3j6pgyl5B4SosKbatVwjRyJvVcvlecID0e63Yrnw2ZD2u1KrisuDtsnn9A6Lg53aSmuL76gbNMmggMD2Vu/PvGaRlSjRixcqPHmmxYcDsFtt3l48MGK5ZVNSUmhsLDwqC3gPpimydNPP01ISAgjRoxA0zRuueWWCl3H+YozZiiO1ih1uqVOX2LSZyhOJtTw4eDBg+zdu5fmzZv7hYiOB13XsbVvj7tlS8ykJDw//UReURFBAwdiDQrCnp/vn1T1lfSkzYYMCsKzfTtrSkupWbMmEa1bg2litm8PzZujJSej//qragWvVw+jTx91nObOxfbiixht2ihX20fRFxiI+513kJqG9YEHVEJS01Q51DQx69dHbN1KoGGoRKb3eYRQ+QmbHZumYVos7GjUiHzDIGrHDmJq1iQ8PFxpt/oo8HUd1zffIBs2VEpfFgtG27ZYxo7FfuWViC1bEA4HgWPH8nCzliyrVIuHi94jiU0UEsrgwNGI7MtwTpqEmZiI7s1/oGkIpxPjqqvQf/9dzaiAqqikp2M0bapYu739B9aAACqNGQP5+ThCQqg1axZIyaw3pvLc9z3ZTW2EgKFDbRQXu3nqqVNnTDsa9u7dS0FBAU2aNDmukfDlIj744IPj3pj+izijDVdH4nQNhe99vgaYkzESvhxJQUEBrVq1OiUvxihXm9fbtaMeIIYNw3bbbUgvxT+AdDoxa9RA370bU0qMN98k6YsvCImLg6Ii7D164Jw8WTGLR0YeoqgLDEQUF2MbOFBNhmZkoC9dqjQxpFTt3fXrK03NadPUndpiUZWZ4mIl37d5M2ZQEHpRkWo/j45GlJZS6tQpc1j42DGY6YH3Meeu8TSsVg2Sk8no3l11KRYWUr9RIypv3Ijw9mjIVq0AML0GDMDs1AltwQI0r0HRPB7sqSmM/t7C6Bmf0+z7q4kPdGOvWQ3nd98d6la99Va1gbAwnN98g2zcGE9KClLXoXJlyMnB+tJLyObN8QweDIGB6N9+i/brr4oAuayMQC8hkUxI4PIJH/Chey79QmZgSPB4BJ99BvfdV0BoaOi/SiTu27eP/Pz8ExqJV155hZKSEkaPHv3/zkjAWWy4gtMn2C2f2zgZI+EbNLNYLDRr1qxCvljZuLG628fGQlYW2GwYVisWL/W/VlRE6N69OE0TfdQoxNataNu2YX3lFSV23KED0mJBnz8fo29fZHw8RuvWWNev94cv7uefx+jbF33KFIwuXbDfcINq1ZZSTXBarciYGFZ8+SUNRo0ibOFC0DQ8/fujrVzJ7ug2jNncge7M4BMGU5gRxtVj+rO61iysb75JXOvWxCYkIBs1wv333+x79VUKysoI27sX9/79REdH+4fytFWr0ObPR5bvK5ESo2tX7J3b85ich3V7HTy9e8O4capycaTyr6ap4wZIr/aK9uefaPPno69cidy4EbKy/Lqs+uLFyLIyZbzatkVfuxbcbkosYQw0JoBmQQcMQyXEU1NTKSoqIjQ01N8sdSo3hNTUVHJzc2natOlxpQJHjBhBRkYGX3/99f9LIwFn2VCcLsGu730Wi+WESUuXy8X69euJi4ujWrVqR33NacFiwf3881i/+ELd+a1WLCUlh73E1DRWFBSQtGQJkb/9Bh4PlgkT1OBZXh4iLQ1RVobljTcQW7ZgXn45fPWVyn2Eh+N54gl14T/xBPq4cSrn4COeARx33knhzp1UCQwkJCAA96BBWP/3P9A0nKtX88JNLt7c3Ir7GUUhYcSQycSczhhP5mINEtivvx6zdWtcEydie+IJ4oA4DpVeN23aBMXFVMnJocrEiYptq5xClwwNRdu1S33Wq67C7XZjGTsW56JF/6D8E7t2YR02DNf335ORKfj6awuGAQ+0DSHh11+hpETpcCxY4PcoZGkpmvfzyqpVkYWFeK6/nrAfphObns1OR7iXgkIwcKCkcePGSCkpKCggKyuLPXv2YLVa/RIHxws1U1NTyc7OPu6NRErJ+++/z+7duxk3blyFyAleqDhjfRRSSlw+2ncvdu3aRXBwsL/qcLJYv349VapUISws7LgWvbi4mI0bN1KnTh2iT7Nj70QQqakEXH45eDy4TYGlMB+p6WjSwLjpJhwffojnvfeo9NlnaC4Xpt1O/uOPUykrC+v06UjTRFavjss7gCY2bmTtBisHV6Wz79YnufcB745ME9vNN/snR2WlSuzr0oXwxERsL7yA7YYbVOtzdrZqYiosJMMZhr0ohwLCySCW3kylJilME32IjTKQsbE45szBP9t9FJh//IH9/vsxi4uRmoatoECFWlYrMiJC0f6Fh2P55BO05GS0nTvxXH89Ztu2GAMGqCTv5Mloq1djmT6dtNuGMOSzRkwxFMeG1Qrb+71A1ZljEID7uecQP/1Evq4TtWqVqpAIgeu++zAGD4ZatSAjg2l/xjDi3UAcDrj5ZoPnnvMctR+lrKzM32/idruJjIwkJibmsOnR/fv3k5WVdUIj8emnn7Jq1SomTJhwzCGyCsL/3z6Ko+F0chSGYRAbG8uOHTtYu3YtqampR+UayMnJYcOGDTRu3PiMGQnvjpAWC1sadCKv0Eo+YSwwO5JLFCU9+qLZbFRatQrNMJCVKik9i9272R0aisfhwNA0TCGQdepgNm3K6J8iqf75MB5YeR+PP2GjXTuvspWmqcnJ+vWRAQE4rFYS/v6b0IkTsb74oqLzKytTY/NZWbjvv59oPR83VoIoYRQPkEEcoRTiIBCzTh3Vnn6Cu6K44goyBgzAWlKCrbT00KCY240sKMAYPhxjwwal97FrFzIgAH3hwkNyA1KiT5qEZdIkpN1O0Kcf0Mi1zpeLxeWCWTPA/dFHGG3bon3+OXL7dqJXrDjUSSoltjFjsPsU3ePi6NVXY9kyJ+vWORk69OhGAiAwMJBq1arRsmVLWrVqRVhYGAcOHGDZsmVs3LiRLVu2cPDgwROGG6NGjeLvv//mhx9+ONNG4oLAWTUUp5Kj8PVHmKZJdHQ0bdu2JSkpCSklmzZtYsWKFf7mmP3797N7925atmx5xif43ImJrP74Yy7d/DMdWcgt/ExX5tBFzuHF2R0gKAjXp5+qSkRJCTI+nqCvvqJm587k/O9r1t72PHLHTtZPn45WvyG3/vEwATjZRGNm0Z2NGzV++UVRvBldu1LcrRumaRLgcqEXFCByctBnzlRlUtNU7eMlJegbNmApzCMAJ1Y87KMaIMghku2Ne6reiIAALCNHos2de2ggrPwxd7lI//JLwn77DQHIJk2UYQkJUZoZcXHY1q+n7JNPSAsKwnA61VRr7dqYnTurjVSqhPvdd1XS1uNhn1aT18Uw/z6EgJf11zH69MEdFgZpaap0GhFx+IBdXBzOCRP+1XdlsViIjY0lKSmJSy65hMDAQHJycjAMg3Xr1rFv3z5Ky7GYgTrvxo4dy7x58/j555+xVSCT94WMs56jODIcORqOVdkICAigevXqVK9eHZfL5VfRcrvdVK1aFafTic1mO2NTfA6Hg/Vbt1KjTRtKS3W20pDtWkM0YK3ZgsB9BuDC+swzSF1HWK2IggJsvXszptH7JH36KAnsx4VB7cdfpyC+DnrGZkwgh0juYwxCwM6dXqr7sWMJ2rQJLThYNUN5y6bSbscyYwZmo0boGzaAxYI+cyYAlUIk+WUWQowSdB06XWPnqgOLETv3KiLab77B1aYN1iFDMDt18pdpTdNka3IyDb77juBdu5BRUUrfMyJCXfS5ueiZmWihoURv2YKZkkL+jTdysFEjwufNI3v7dmJiY1V4uG8fZocOGDffjPbo5wRnllAmQ7zfLdxZcyGWHm9gbNmC7vHAwYMqtLFaEV4eTEpLDym5VwDS09PJz8/n0ksvRdd1PznPtm3bcDqdhIeHs3fvXtLS0pgxYwbTpk3DfpZ0Sy8EnHfl0ZPttNQ0jaysLCpXrkz16tXJzc1l7969FBcXExERQWxsLBERERVmNIqKiti4cSMNGjTwbl+Slib8N2Yh4JJLVErHuPtu9NWrkXY7wuUiq357Bn/akKe5hqd5j1ICcR/MwzawP2byVnZQhxrsI48IpIS6dXexdU8ZZcOGcenddyOkVLMXN92E5ddf0fbsgcxMZGCgKov6Ep66jrBZCR75LhM3LsX9UmfsXR/AuPYarJ9/rkqvTZuibdyIPnu2mtLcswd3z55sKCkhNDoa/ccfkZdfjpASGROD6623MJs1QzgcWB97TLGBAZ6PPiKwWzfq33svRr16uMPDSdu9my0OB6GVKxPz7rtERUVRbWt36nex46PPaNTI5NEx1ckb5CbaMNRkbOPGeLp0UX0kgYEYN9yA/tdfFWYo0tPTSU9PV7R8Xq/lMHIew2Dv3r189tlnrF69mq5du/LHH39w7bXXVsj+/ws4ox7FkeQ1JzIUJ9tp6XA4WL9+PdWqVaOydxDLR1DiG+I5ePAg27ZtIzQ0lNjY2MN4Bk4Vubm5bN++naZNm/qJdqZNc9CxYyA+z7VlS5NXXlEXrNGunTJ0Xu2QDUU1CaOQv7gMeBcDCx501lbvg/2tTlz/Yhs6eX7HQSAvv+ykYcNisjNzaDRqFI6QEEoHDCDixx/xDBqEcDhUpcA0MS+/HG3DBnXxL1uG2bSpop0bOxZ91Sq0FSvQvPkEs04dPHfeqSQJRo5UHaFbt0JREevr1iWyeXOqVauGWLwYWaMG7jvuwDpyJGaTJlC5MhIQHg/uZ55BW7VKsWV/+CFi1y40XafaqlVU83hwP/44uY0akZWVxe7du7Hb7Xz/fQxBQdHYbAEIUcL69fu43ONBKypCRkYi69XDePhh9J9/xvrxxxg336xyMBVQZUhPTyctLe0wI3EkdF33e6b79u1jx44d5PrU5y4COINVD1ClyvLbLygoIDU1lcbe2np5+PIRJ+q0LCwsZNOmTf47+/HgK51lZmaSk5NDcHAwsbGxREdHn3S9PS0tjQMHDtC0adN/uKIeDyQnC8LDJbVrH3pe/+EHbI88ogav3G4MdB4te4e/uJSWrGEavXiAUfRf+RC1G6lt5mxIJ7xRPDt2bMOSlkY9hwP7ffdR+NJLpDdoQIauowcE0OTDDwlZsQIhJUa3bhi3347ZsiX6118j0tKwvvOOny8Tl0uVGQIDMa68kn2vjWHc1Aj6TL+XxrtmgDTZ+thj5Ha9izffrEZ6uuCmK9MZMiwQAgOx3XILxvXXY9x++6EP53YrCYH8fDXLsXEj0uGA6GhEXh5mnTqY7dphXHstsnZtSqKjycrKIjs7G5fLRejSpTSeORP7jh1qvD8iAvOSS9DWr1et8EKo+ZouXXB//vlJfUfHwsGDB9m/fz/Nmzc/7vc9ffp0Ro4cyaxZs/7Z4n+auPvuu5k5cyaxsbFs3LgRUDecW265hZSUFGrWrMnPP//sO4fP+6rHWTUUxcXF7Nq1i2bNmh3awSm0Y2dkZLBnzx6aNm1KUNCJOR3KQ0qptEUzM8nOzsZmsxETE0NsbOxRE1a+zs7CwkKaNGlyyt6I5d13sb77LkiJ5667uGHvR8yadWgbt93mYdQob8iQk0NA27as//BDtAYNSLrrLrSdO9XFbnjLmsuWUSYEpZMnkxYRgXS7iSsuJrhXL4KDg7E9/DCWH39UF7KUSMBAx2MPIcAuWff6ZNo8fhWmCRPkzfxm7cVz3X8lqHpN6o563T/VvYPaZMQ1pd2lAn3WLFWdad0a96OPIpOSsLz9Ntq+fbg++wzbQw+h/fabmt9AMXwJjwezSRNF3xcfj8vLOVpUVMSGDRtICAoifsgQQtavR3c6kTYbrldeQRMCy8cfq/fXrYvzl1/+2cB1CsjIyGDfvn0nJEn69ddfee+995g1axaRxykbnyoWL15MSEgIAwcO9BuKZ555hsjISJ577jneeust8vLyePvtt+H/u6E4Us7NRwjSsmVLtXGvkfC1Zx+vHTslJYW8vDyaNGlSIeWq0tJSMjMzycrKQgjhNxqBgYEqsbd1K0IIGjRocFp5Duv996vmJK+KmHPKFH6bDVVGPEHBM8PpcG0g6Lp63fbtsGED7tq1sdSrh+uttwjo2NEvlOyYMwfru+/i+vJL5SEAbpcL7fbb2XnXXeSGh5O4YgU1X3rJz7hVQCg2XNzG9/SI/pt9jlheK34CO07+4lLu4FsC2zagRQudUaMsvMxwejKD5qzDhQ275iX7DQrCrF0b90svYZk4UQlDOxyYV16JjIzEc/fdiNJSrEOGoPnmR0JDD504wcEUPPMMa+rWpVmzZgTn5xPQqtUhJi3AtFjI7taNyDVroH599LQ0xWlxml2QmZmZ7N2794RGYt68ebzxxhvMmjXrjJTUU1JS6NGjh99Q1K9fn0WLFlG5cmXS09Pp2LEj27ZtgwvAUJyzFu7yScvjGQnTNNmyZQtCCJo3b15hLbRBQUHUrFmTmjVr4nQ6ycrKYsuWLX5Nh+joaOrWrXvayVD366+r8XBNg8xMRHIy3XM3YNs2HjlkGgCONWtwXXop9mnTEMHB2Pftw33zzWp6U0o8vXqhT5mC5d130WfOxPr880pMyDAI3LkT6+LFNI6Px9O+Pdl9+mC8+SY4nOAxGU9/JnEzNpwkZ1flBUYQwX5CKKY+21lMR77c/BhbEp8AQmlGMs1IRgJ2nD4ZFFV9CA9Xcobvv6/CA0DbtAnn2LHIpCQlsNS4Me6XXkJbtgx94UK03buRmkbZJZeQXKOGfyhPBgXhHjIEq29bmobZty/as8+y5+BB0ux2wjdvxp6aSkxMzCl7jj4jcaJw448//uDVV19l9uzZZ7bvphwyMjL8ObX4+HgyvFKSFwLOSQv3yVY23G4369evJzo6murVq5+xsqfdbichIYGYmBjWrVtHZGQkDoeDFStWEBUV9Y/OvpNCOV5M4uOx3XYb2urVauTae7HZrr6a/Y0bU81qRTNNpd1x443IatVwLFiArFJFJR8nTlQEtaNGoa1ejdmwIZZfflFl0h9+QFuxgqguXaBDBwoOlLBqvQ0rHn7mZnQ8hFCCieBeRhGEEwOdQBzcXjaGz3/UgJe4kYnkEE0oBWrNmgaVKiGtVjz9+yOrV8fo0QPr22+D242nZ081x2Gaiq6ub1+sH32kSId37kRmZmK6XOQ4HDRt1+4wYSezaVP/KLooKkI7cIDg+vUJrl+fBMDZogVZWVn+0uXJfgdZWVmkpKTQokWL43qdf/75Jy+++KI/h3AucKIw+3zDWTUUvtFzj8dzTOk2H0pKStiwYQOJiYln5cv0tX/Xr1/fnyQ1DIOcnBz279/Pli1bCA8P95ddT8mzEQLnjBkEVqt2GBmvvmULsUlJmDfcgKdZM0X8601A6j/+iPXjjw+JL3tDOG3bNjz33INctgxx4AAYBq6vvkJLTsZs1YqIZf/jMhy052+/gdC8gYCOhgB0DCSgG27WofJFgZSi4WGLrRmN3OuRoaG4H38c64QJStHc+zlcL76I7Y03FG9GSQn2vn2RUVGItDS0LVuw9+2LmZTEwYkT2btjB0lBQViOUH8z69bF+f33mFdeidi8GXkE3b7PcPtKl+W1OXwDYFFRUYfljXyzHicyEsuXL+fZZ59lxowZ/rv72UJcXBzp6en+0ONcGanTwRnNUZQn2PXlI9atW4fb7SYuLo7Y2Nh/SAiCyg5v27aNxo0bnxWFaF/5s3Hjxsfs7DRNk/z8fDIzM8nLy6NSpUqKqPeIE/ZYEHv2ENCpk6Kv9yX/QkJwLlmC5fPP0WfOxLlggepQDAmBgwcJTEo6jBkKwDNwIO4XXyTgiiv89HXu555DJiRge+klcLsxSx1guHEQQBBHl9aTwF5qksguQFCTPSykEzUq5ak8iNuNcf31uMaM8b/Hft11qjohpTJ4mqb4OAIDFRmub/w+OBhXUBCuH37AchSuU8trr6H//TfO2bNPeNwOW3O5AbCcnBzsdjsxMTHouk5qauoJjcTq1at59NFHmTZt2lmh1TsyR/H0008TFRXlT2bm5ubyzjvvwAWQozgrhuLIyobL5SIzM5PMzEz/LEdsbCxBQUGkpaWxf/9+mjZtelQjUtFIT08nNTWVZs2anXQnnpSSwsJCf9k1MDCQmJgYYmJijn2iGgZi61b0AQNwSElQYCA4nej796v/e7U2PP374/7oIwDsnTqhrVzpF96RiYkYrVujr1iBSE8/ZERsNjx33YUoLESfPl1xZXo8fl5P00dmI6X/4v4t8UGKd2fRnx/woNZ8pb6EhSFegeTERDUVWi7OF2lp2Lt0UfomTqdaU0CA6hfxkfgC7kqVkNdfjzFihJ9OX1u9GrKzsQ0dCjk5CNNUydA778QzZMjJf2HlUFpayt69e0lPTyc4ONj/HRxN0Cc5OZkHH3yQyZMnU7t8LfsM4dZbb2XRokVkZ2cTFxfHK6+8Qu/evbn55pvZt28fNWrU4Oeff/ZVWi4aivLG4mhxma8VOyMjg6KiIqxWK40bN/aT8Z4p+CopPtKSf8PjWb7squs6sbGxh2j1yyE1NZXMzEyaNWvm359l9GisL70ELhdm27Y4p0710//rn36K7Z13MBo3Rl+zBvdjjyFSU7H88MNhIQyA0agR+oEDh5TZDQMjLAzT48FaWqqeLz8yHhDIEmdbOsoF+M7TrzqN5JYd71DYvj0xixdTunEjFu+otv7zzxiXX07A5ZcrJqyNGzEjItAyM6G4WLFXbdqkukh1HXQd9/DhSjpQCAJatMA9YgTa4sXoU6aoMmjTpji//loJTZ8GcnJy2LlzJy1atEAI4Z8aLSkpISIiwm80du7cyT333MMvv/xC/fr1T2tfZxj/vw1FsZelCI6fvDEMg40bNxIQEEClSpXIysqirKyM6OhoYmNjqVSpUoUmfnzlT4AGDRpUKBlJWVkZWVlZZGZmIqX03+XS09MpLS39Byej5a23sIwZg6xZE5Gbi2Pt2kMbKylBZGWp/+3YgeXdd7H88ou6yx8xzITFAkJgtm2rEp5SIlwuJZrscqn/Vaum1M0sFmRUFKnz1zP09TDy8wU33+zhpm5FSNOkSErytmzhIGCTkspSUvPGG3F/+CEyIgKRk4OMilJq7VdeieXzz5GmqYxEeYSFgdOp3lNcrPRCTBPhcilpgAYNcE2delrHOTc3lx07dtCiRYt/9MGYpkleXh67du3i7rvvxul08thjj3HfffedsEnvHOH/t6EYMGAAqamp9OzZk169ehEfH/+PC97pdJKcnEzVqlWpWrWq/3nDMMjOziYjI4OSkhK/jsUpVx+OgMfjYcOGDYSHhx9TQb2i4Aux9uzZg2EYJCQk/MPwib17FdFsdDRiwwZkixbHWzwBdesiHA4l+nO0704IpBC4IyOxFRQoz8MbumCxqBxGixZou3fj+PtvZI0aaAsXqu3pOmb37odtztq5s+q+9AoFyYAANF3HGDgQfc4ctN27VWhzBIkPNhuEhOAePBjLN9+ocMU08fTvj+f225Hx8ehLlmDcfPMpH1efkWjevPlxw8UdO3YwYMAAhg0bxrZt2/B4PAwfPvyU93cW8P/bUEgp2bt3L5MnT2bKlClIKbn++uvp3bs3CQkJpKSkcPDgQerXr3/crjjDMMjNzfWHJ6c79OUzSuVnRM4kfJ5SpUqVqFatGjk5OWRmZlJSUkJkZCSxsbGK6PYkP4M4cADbzTcr3ZDnnlP0eEVFh8RydB3TbmfXK69QXdOwe0Mayg2NycBApcNaqxaOBQsgK4vADh0wK1dWI+IffohZt67yBgCxf7/KS+TlIRwOpMWCYbUqan6LRRkhw0D35UWEUAalYUOVaO3fX+mkSAmlpTgnTsTs2vW0j2leXh7btm2jRYsWxzUSKSkp3HrrrXz99df+Br/zGP+/DcVhG5KS9PR0Jk2axOTJk8nOzqakpIRx48bRvHnzk75YfG5lRkYGBQUFhIWF+Ye+Tob9ql69ehXaqnssuN1ukpOTiY+PJ8GreO6Db3AtMzPT/xl8Jb+TDoPy8kDXCaxdW5VQnU6clSsjDANLWJhiz8rPh4AAzKpVkdWroy9apJKZDgeO1auxDRp0aMYC1P+CgnC9955iqwLIzyewWTPM+vXRNm1CxscjvOHL/jvuIGb8eDI6diRh9mwcl12Gfs01WL/5BueMGegTJ2L96ivEjh0QGKgMSGgonkceUbR/p4j8/Hy2bt1K8+bNj5voTk1N5ZZbbmH06NG0bdv2lPdzsvjwww/58ssvEULQpEkTvv7669NNwF80FEfDF198wffff0/v3r2ZM2cOeXl5dOvWjd69e1OvXr2TNho+bdETlSzz8vLYunUrTZo0OSvS9A6Hg+TkZGrVqnXCWrmU0l92zc3NPeHgmrZ6NWbNmorZG9B/+QX3Ndew848/CMvOpvqnn4LbjZaVpeZEoqJw/fAD0ukk4JprVEjgcKhhrFat0NesUWGHt3/D8+ijuF977dAOPR60JUswO3ZErF+PvV8/ZGIi5ubN7OvXj7hHH0VUrkzRrl1kOBzkFBdT7Y8/iCgtJXLcONVc5nQqr8Zux2zfHuc335yyuPDJGom0tDRuuukmRo4cyWWXXXZK+zgVHDhwgMsvv5zNmzcTGBjIzTffTLdu3bjzzjtPZ3MXDcXRsGnTJurWretPQuXk5DB16lQmT57MwYMHueaaa+jTpw8NGzY86Tusr2SZkZHhnxSNi4vzS76drXKrr1GsfOPWycKnj+oru9psNn8FxWazKfGgZs3w3HwznhdfBFR4s379eup/8w1RP/ygKg4ul7o4AwKQtWuruQmPB8s772D95BPV+xAWhvOrrwjo18//ejMpCVmrFq7jMEtpa9awOzyc0t27aVivHqK8gld6OtrGjVieeQa3rpPVpAlVpk9H8zbYyehozMaNTzmBWVBQwJYtW05oJA4ePMhNN93E+++/T8eOHU9pH6eKAwcOcMkll5CcnExoaCi9e/dm8ODBdD29sOqioThV5OfnM336dCZPnszevXu5+uqr6dOnz3E5Do+E74LbsWMHBQUFREREEB8fT3R09BnlPywoKGDz5s0V1ihWUlJCVlYWWVlZ1B45kvi5c9G9FQyCgykdO5Y1YWHEx8dTNTwcW79+6EuWKK6KOnVwTZyI5bvvcHsTePr06djuvlu1Zus6jlWr0GfOxLziCrQ1azCbNlXSAZUrI7ZsQdu5U2mu+lBUhKdfP7a88gpJLVv+4/vQf/wR25Ahykh5G+08tWtTWrs2+vbtJL/1Fgl79xJw++1H7XU41jHdsmULzZo1Oy6rdmZmJn379uXtt9/m6quvPuVjfTr4+OOPeeGFFwgMDKRr1658//33p7upi4bi36CoqIhZs2YxadIktm3bRufOnendu/dheqZHg5SSrVu3IqWkQYMG/knR7OxsLBYLcXFxh+7SFYTs7Gx27tx5whP6dOHcvZvAvn2x7dmDabWS16sXG++8k5p16xLn7UOwt2uH2L1bNUCFhOB+8kn0adNwLlmiVLvWrUPbvx/jiiuwfPcdnoce+ic5jGEgDh7EOmwY2ooVOOfMQYaFoS1aROH8+UR9+y2eZ55BNmuGec01hxhzbTbEhg1q9NxX4rVYMLp0UaPmkZF4yvU6lGciCw8PP+r3WVhYyObNm094THNycujbty+vvPIK1113XYUd8+MhLy+Pvn378tNPPxEeHs5NN93EjTfeyO3luTtOHkIIYZVSuk/80nOD89pQlEdpaSm//vorkyZNYv369XTs2JHevXvTrl27w/IRhmGwYcMGQkNDqVWr1j/uWuXHyzVN83eF/ht+xPT0dPbv30+zZs3OKBlrQJs2iMxMKCpix623knbHHX5h3yqZmUSMGIG+aNGhcqiPBOb22zEuv/wwBbRjQZ89G5uP/VrTwO3Gfc89uBcuJHDbNoSXjMds0wbnb7+hT5+O5Z13MPr3R1apgm3gwMPLtl5yXuePP2JecYX/aV9SOjMzk/z8fCpVquRP6FoslpM2Er4LdujQofTs2fM0j+yp45dffuG3337jq6++AuC7775j2bJl/O9//zvlbQkhwoEVwCgp5QcVutAKwgVjKMrD4XAwd+5cfvnlF9asWcNll11G7969qVmzJnPmzKFHjx5U8dHHn2A7vlZyKaXfaJyKR7B3715ycnJo2rRphaq0Hw36+PGUdOrE7t9/p0aVKgRfc41/aKpkwQLqDRmCpbj48AvVbgev/qdrxoyT2o+fdMftxujUiY2vvgolJTS7/nq/Bqpj7lwsI0eiL1yI2L8fAgPxDByIWL5cKXz5F63jHjECz6BBx9yfL7/km+HQNI2ysjKaNm1K+HHIawoLC+nbty9PPPEEffv2PanPVlFYvnw5d999NytXriQwMJA777yT1q1b8+ijj57ytoQQdwHdgXrAt+ejsbggDUV5uFwuFixYwJdffsmCBQvo2rUr/fv354orrjilu7uPkyIzMxOPx+Mnsgk+BsGrlJKdO3ficDhISko6K1JzxcXFbNiwgaSkpH+2uBsGlocfxjp+PACusDDVcOVDWBgyNhbnzJnII8q1R8L6/PPoP/+MjI/H4XCw7fvvaVhYiP2uu/A8/DCWTz/FOWoU9kGDEHv2HHqjzYZZu7Yi4jFNv8Eyrr4az4MPYp5EWFBUVMT69euJjY2loKDgsO7W8t9FcXExN910Ew899BD9+vU74XbPBF5++WV++uknLBYLLVq04Msvvzxdz1QACCHqA9OBsVLKtytyrf8WF7yhAHVyderUiTFjxpCbm8vEiRNZsmQJLVu2pFevXlx11VWn9AW63W7//InL5SI6Opq4uDiCg4MRQvi1Ta1W6ymVc/8NfInSY5Z4c3IIbNBADYppXrr/wEAkoJWVIW028h59FMsLL2A9wbEQu3ZhhoayNS2NkD17SOjVS53JviYrjwd0HX3aNBVqGAYIgWfgQIx+/aCgANuTTyIOHvTzhnoGDMD96afH3a/PEJYnMfbNAmVlZeFwOMjPz0dKyciRI7nrrrsYOHDg6R3Q8wD5+fm+hjsN0KWUHiFEPWAqMEFK+drxt3D28J8wFKA8gvLGwDAMli5dysSJE1m4cCFJSUn07t2bq6+++pRYkzwej9/TKCsrIzIykvz8fGJiYqhVq9aZ+Cj/gK8b8UTxuti2jYB27dTFHBRE2YYNyngIAaWl7P3kE1IaNPAL48TExBzVgEop2bx5M3a7ndq1ax/VEGp//YVYvlwNqAEiPx+ZkIDzhx/QFy3CTEpSY/UWi+L8XL9ereMYOJqROBKGYTBv3jxee+01MjMz6d69O0OGDKFhw4YnOILnH3r16kWzZs245557qFGjhs+jsHiNRSLKs5gkpXz53K5U4T8jzXzkCa/rOldccQWffPIJycnJDBkyhJUrV9K5c2cGDBjA5MmTDxtaOxYsFguVK1emWbNmNGvWjKysLAC/HIDvDnemkJWVxfbt22nRosUJcyfazp2qunD//apEWVCA+6mnKNu2DdfnnxPXvDlt27alYcOGWDZvZuOaNaxcuZKUlBS/YpZpmmzcuJFAq5WG3313SOavPKTEdv/9aHl5OBctwrlsGY7t23F+9RWW0aNV5WPpUswGDVTzltt9qPvzKPD1njRp0uSYRgKU0R49ejT33Xcfe/bsoX///hekktcTTzzB5s2bMQyDn376CSFETQCvkbBIKXejcha9hRBvntPFevGf8ShOFqZpsnbtWn755RfmzJlD9erV6dmzJ926dTsuVbuv2zIxMZGYmBhM0/TPbhQWFhIeHk5cXNwxS32ng4MHD5Kamkrz5s1Prv/DN28RHKxavMPD1V08N5eALl1wLFqkdD7278f25JO43n6bshtvJGv/fjILCnC5XBiGQbzDQZ3sbOz334/riy8wL7kEWbMmANYnnsAybpzan3ek3PnVV1gmTED/9VcVhng8qjTaoQMur4LZsVBSUsL69etP2DXrcrkYOHAgnTt3ZvDgwWcs3MvPz+fee+9l48aNCCEYO3Ysl156aYVtX0rJqlWrqFy5Mjt27GDatGl8/PHHQ4GfpZS7AIQQupTS8P6dDrwjpfywwhZxGvh/ZyjKw3f3nDhxIrNmzSIuLo6ePXvSo0ePw+ZBfG5xw4YNj5qFP7LUFxoaSlxc3AnnT46H/fv3k5GRcRh3xSnD7cby1Vdo69ahf/89Ro8e6LNm+XkuCQxExscjK1XCPXgwq+rUwSYEzfr0wZqbq3ovTBMZE4Nj82aVb8jKwt67N9qmTSp52bQpRteuWN98E2mz+flAAWRCAo4NGw4JHR+BkzUSbrebu+++m0suuYSnnnrqjOaE7rjjDjp06MC9996Ly+WitLT0uJWX04HL5fJ7QgsWLKBz584fAPnAJ0AZYJFSlgohLMAmoL2UMqdCF3GK+H9tKMrD16Q1ceJEZsyYQXh4OD179iQiIoLt27czaNCgk5oTOXJ241Qp84DDCHVOV90MAMNQ9HV//eVb3D9eYtavj7ZzJ474eJyXXor9xRchKIiApk3VrAjw9zffYK9Xzz98F9S2rWKpKihQXoxPcMjjOUz8uGzHDjhGmbq0tJTk5OQTdrF6PB7uu+8+mjRpwgsvvHBGjURBQQHNmzdn9+7dZ5X4VgjRGbgSsAMPAYOllN96/xcgpTw6n+FZxEVDcRT4Sp9vvPEGM2fOpEWLFnTr1o1evXoRFxd3SkNr5SnzgoKCjjvwJaVk165dlJWVVVzJNT+fwBo11AV8FAVzrFakz8NITMQ5axZkZRHQqRPGtdeiz5lD2eTJuOfOZfftt5Obk8OlDzxAQGqqGjXX9UNj7Ha7YuTu0wd9yhQcc+celV/jZI2EYRg8/PDD1KpVi1deeeWMX7zr1q3j/vvvp1GjRiQnJ9OqVSs+/vjj4+ZN/g18rG+ozsxuwATgfSnlq2dkh/8C/5lkZkVCCEFERIQ/YTlmzBhM0+SOO+7g2muvZeTIkezfv/+ESUwhBGFhYdStW5d27dpRq1YtSkpKWL16NevWrSMtLQ239yKTUrJt2zbcbvc/WLBOB6YJ999v5eYWqeyx1uPgm18c/v8GDSgbPZrSqlURgDAMRdJbuTKybl0cy5fj+v57nJMmYVm/ntCPPyZp4kSufOklAnfvVsLIUvqNhKdjR7BYcE6ahGvMGBzr1iGPUo0oKytj/fr1JCUlHddImKbJkCFDqFKlCsOHDz8rd3iPx8OaNWt46KGHWLt2LcHBwbz11lv/ertHnie+x0d8pgHAeJ+REOcZl/9Fj+I4KGfx/Y/T0tKYNGkSU6ZMwel00qNHD3r16nXKbFklJSX+VnKLxYLH4yE0NJT69etXyEXRvr2d5GQN1csjqaxnst+WiOfRR7CMH4/zscdYeckltB46FP3RR9Hmz0fWro22Zg2uzz9XvJ25uQQ2aqRo97zt3P84RnY7wuNh00svUdykCeF16xJbpcpRpzzLyspITk6mUaNGx+VENU2Tp556isDAQN5///2z0swGKnl8ySWXkJKSAsCSJUt46623mDVr1mltr7S09LBSfEpKCgkJCX5vctu2bbhcLpo0aSKEENFSymxQRkKeyVLaaeCMfQO//fYb9evXp06dOhVilc8FjrxghRBUrVqVwYMHs2DBAqZMmUJERARDhgyhU6dOvPPOO2zfvv2kyqXBwcHUqlWL1q1bA6oMW1RUxJo1a9i3bx8Ox+mHpaWllDMSAIJ0I5Zn7snA8/LLFK1fz4rWralWrRr8/rsSIr71VjBN9F9+wfLFF0o6MCICx6+/qk34wpawsMP6IVzff49z7lxq33QT9a68EmG1smnTJlasWMGePXso8SY3fUaiYcOGJzQSQ4cORdf1s2okQKl3VatWzSfzx/z582nUqNFpbeuxxx7j119/9Z8LK1eu5Mcff/RLbDocDubNm8dXX33lm/XwJyvPNyMBZ8ijMAyDevXqMXfuXBISEmjTpg0TJkw47YN+ISA7O5tp06YxadIkMjMzD+PUOB6pcHJyMjExMeqi5dD8SVZWFqZpEhMTQ1xc3CnNn+TnQ9WqgRw+vSx58EEPb71Vytq1a6lZs+YhUh23m4AmTRRzlU+ro2pVHBs3os2di/1IXktdR1apgtmoEcaAARh9+vxjDS6Xi+zsbH+jmsvlok6dOlSpUuW48pHDhw+noKCAUaNGnVUj4cO6dev8FY/ExES+/vrrU+YVWbBgAVdffTV79uzx64eYpklJSclh4dbmzZt9LFkxPm/ifMUZMRR///03w4cPZ86cOQCMGDECgOeff/50NnfBwcepMWnSJPbt20eXLl3o06cPTZo08Z/8Pqq8qlWrHpO/s7z+ycnMn5RH9eqB5OSAL/QA+PvvIhyONSQmJv5TbzM7m8DERL+hKNu5U8ki5uejT5qE7bHH1Ot0Hedvv2HWqoVlzBgoK8Ps1AmzS5ejrsPhcLB27Vri4uIoKSk55ni5lJI33niDAwcOMHbs2H9X7TkP8NRTT7FkyRLGjx9P3bp1//H/VatW0bp1ayZMmED//v0jpZR552CZJ40zYigmTpzIb7/9xpdffgnAuHHjWL58OSNHjjydzV3QKCws9HNq7Nixg86dO9OhQwcmT57Ma6+9dtKycr75k8zMTBwOh99oHIsAJjsbrr7azp49GkFBMHp0MbGxq6hTpw5RXhq98tBWr8betSuegQOxjBuH89dfMVu3RluzBv2rr7B++y1mdDQiOxvH9OlKE9U7gCbj4nDMnAm1ax/WM+F0Olm7du1hbF9H9pxYLBZ27tzJnj172L17N999990Zn8I9W3jttdeYPHkyP//8M3Xr1vXnvKZNm0Z+fj533HGH76XnVeLyaLhoKM4iSktL+e677xg2bBh16tShdevW9OrV6x+cGieCx+Pxu/WlpaV+KYPQ0NCjGg2Hw8G6deuOTyzsdkNBgeKyzM6GsDBERgYBzZr5dUGEYWBWq6ZClKOt64kn/HybRzMSR0JKye7du3n66adZtWoVHTt25O6776abT+v0AsUnn3xClSpVuPHGG3nppZeYOnUqP/300/FmUs57Q3FGgsCqVauSWu5k2r9//2GaHf9fERQUxIoVK5gxYwYLFy6ka9eufPfdd1x66aU88cQTLF68GM/RZiuOgMViIT4+nqZNm9KmTRvCwsJITU1l2bJlbNu2jby8PH8SraysjHXr1tGgQYPjs49brYcIb6OjVX9FQgLOmTP9jVoyKgrH6tVKj/QIw2Z26oTby+PpdDr9hulE8f3vv/+O3W7nwIEDvPTSSxekN2Ee0Z+SlZXF4sWLAXj11Ve58cYbuemmm1izZg2AX4/3QsIZ8Sg8Hg/16tVj/vz5VK1alTZt2vDDDz+QlJR0eqv8D+HIkisc4tSYOHEiy5Yto127dvTu3ZsrrrjilDg+fTIAGRkZFBYWEhISQkFBAY0bNz7tNmR9wgRsgwer5qspUyjbvx/Ljz9ifeaZQ5wTQmA2a4Zz6VJcLhdr166lbt26xzVMUkq++uor5syZw+TJk/8Vw9jJwDAMWrduTdWqVZl5gvmT08WECRP8FZ0///zTn5sD+Pzzz/nss88YNWqUP2Fa7jOf9x7FGTHfFouFkSNHco2Xgenuu+/+10YiNTWVgQMHkpGRgRCC+++/n8d8CbYLCEcLDWw2G9deey3XXnstbrebxYsX88svv/D888/TsmVLevfuTadOnU54MWmaRnR0NNHR0ZSUlLBmzRpCQ0PZsmULoaGh/lbyU6kmGN27U9a5M8TGInbvhrAwjB49MFq0gLIyREEBslo1RGmp30jUqVPnhNop48aNY+bMmUybNu2MGwlQRLgNGzaksLDwjGw/MzOT2bNnY7Vayc7OZubMmbhcLtLS0mjVqhVDhgzB4XDQvXt3fvjhh7PymSsSF0zDVXp6Ounp6bRs2ZKioiJatWrF1KlT/9MlV8Mw+PPPP5k4cSKLFi2icePGfk6N45VLfcNWvhZpKSUFBQVkZGSQm5tLSEiIv5W8oqoLLpeLdevWUbt27aMmS8vjhx9+YMKECcyYMeOUuEFOF/v37+eOO+7ghRde4IMPPqhwj+JIL3Hz5s3ccccdfPLJJ6xcuRK73c4DDzwAKINylAT2/0+P4kygcuXK/jJipUqVaNiwIQcOHPhPGwpd17nyyiu58sorMU2TZcuWMXHiRN544w3q1atHnz596NKly2HDar5J1/ITmUIIwsPDCQ8PP2z+ZM+ePQQGBvpJbE43P+B2u1m3bh2JiYknNBITJ05k3LhxzJo166wYCYAhQ4bwzjvvUFRUVCHbK28YfH+Xb8tu1KgRrVq1wjRNBg8efNj7TrbKdb7hgjEU5ZGSksLatWtp167duV7KWYOmabRv35727dtjmiZr1qxh4sSJvPvuu9SsWZOePXsSExPDmjVrePjhh4/Za+GbPwkLC6NOnTqUlJSQkZHB6tWrsdlsfimDk82NuN1u1q5dS61atf7Zm3EEpk2bxpgxY5g5c+ZZUWwDmDlzJrGxsbRq1YpFixb96+2ZpnnU0O1Iw1FUVMTatWsPUys7z8Y3TgkXTOjhQ3FxMVdeeSUvvPACN9xww7lezjmHj1Pj448/ZsqUKVx66aV+To1T7Sg8cv7keHR5cMhIHNbleQzMnj2b999/n9mzZ5/yuv4Nnn/+ecaNG4fFYsHhcFBYWMgNN9zAeG8PyKmgvCfxxhtvcPDgQaKiorjqqqu4opwUAcC+ffuoWrXqyYZ2570FuaAMhdvtpkePHlxzzTU8cRoit/9VlJSUcPXVV/PDDz9QVlbmJ+LxcWr06NGDmJiYU9pmWVmZvytUCOGXMvANe/nCjRo1apzQSMydO5c333yTWbNmndDrOJNYtGgR77333r/OUbz66qskJyfz1FNP8cgjj3DHHXf8I8TwGZRjeSBH4KKhqChIKbnjjjuIjIzko48+OtfLOe/g8XgOyzH4ODV8RDwBAQH07NmTnj17nhKnBqi+CJ/R8AkOZWZmUqtWLb9K2bGwaNEiXnrpJWbPnn3O4/PTNRTbtm0jMjLST4H48ssvM3z4cF5//XW2bNnCjz/+SGFhIaWlpcTHx5/O0i4aiorCn3/+SYcOHQ6bl3jzzTf/dRff2aivn2tIKdm7d69/PF7TNK6//np69+593CGto6G0VA2V6bqOEOKwVvIjsWTJEoYOHcrMmTOPOc9yPkNKicPhoG/fvjRs2JBnnnmGuLg4Bg8ezLRp07jsssv4wctC/uqrr1K/fn1uueWW09nVRUNxvuODDz5g1apVFBYW/mcNRXmU59SYPHkyLpeL66+/nl69elGjRo3jGg2Px8O6detISEggPj4et9tNdnY2GRkZOBwOfw9HaGgoK1as4Mknn2TGjBkknEBw6HyFL2woKyvjxhtvpHnz5gwdOpQ9e/bw4osv0rZtW4YOHcq7777rlxg8Uf/IMXDRUJzPONP19fMdUkoyMjKYMmUKkydPprCwkG7dutG7d2/q1KlzmNEwDIN169ZRpUqVo3oHHo+HnJwcFi1axOuvv47L5eLTTz+lZ8+e52RcvCLx448/MmHCBP744w/69OnDsGHDSElJ4cMPP0QIQUlJCd9//z3x8fEnm5M4EhcNxfmMG2+8keeff56ioqIKSXJd6MjOzmbq1KlMmjSJ7Oxsrr32Wnr16kVCQgJTp06lS5cuJwwh1q1bx6BBg3jwwQf566+/SExM5OWXzwsNm9PCggULePTRR1mxYgW5ubk88sgj1KxZk+HDhxMREUFpaSmaphEQEHC6RgIuAEOBlPJ4P/9ZzJgxQz700ENSSikXLlwou3fvfo5XdH4hNzdXfvPNN7J79+6ycuXK8pZbbpF///23LCoqkiUlJUf9Wb58uWzSpInctm3bGVvXvn37ZMeOHWXDhg1lo0aN5EcffXTG9iWllEuXLpU33nijdDqdUkop8/LyZO3ateX1118v9+/f73+daZr/Zjcnug7P+c+F7RP+CyxdupTp06dTs2ZN+vXrx4IFC7j99tvP9bLOG0RERDBw4ECklLzwwgv07NmT9957j8svv5xhw4axevXqw6Ymt2zZwr333suPP/5IvXr1zti6LBYL77//Pps3b2bZsmV89tlnbN68+YztLywsDKvVytq1aykuLiY8PJx77rkHh8NxWGfphdxMdTL4fx16+FBR9fX/Inbt2kXt2rX9j0tKSvj111+ZOHEimzdvpmPHjrRu3Zr33nuP8ePH07Rp07O6vl69evHII4/Q5RgMW6eDsrKyw2Zp3nvvPVasWOEfbJw/fz7jxo2jRo0aR50GPg2c/1bmBC7HGce/dNkqBBUdeuTl5cm+ffvK+vXrywYNGsi//vqrwrZ9PqGsrExOmzZNtmzZUs6aNeus73/Pnj2yWrVqsqCgoMK2OX36dPniiy9Kp9MpPR6P//mpU6fKkSNHyoceekhu2LBBSimlYRgVtdtzHlqc6OecG4r/IgYOHCjHjBkjpZTS6XTKvLy8c7ug/yCKiopky5Yt5aRJkypsm1u2bJFdu3aVO3bs8D93pDHw3dgq0EhIeR4YghP9nNOhsNTUVJxOJ3Xq1DmXy6hQFBQUsHjxYr755htAcU1ciIrb5zPcbjd9+/bltttuq7B5n5ycHIYOHUppaelh39exqhgXesn3VHFOP21ycjIff/wxubm5AP7f5WEYxj+oxs5n7Nmzh5iYGO666y5atGjBvffe69e2uIh/Dykl99xzDw0bNqyweZ9du3Zht9sZPHgwkZGRzJs3j6ysrKO+9r+etDwWzqmhSEhIYN26df5utmeeeYYRI0bgcrn466+/kFKi6zqapvm5JOfOnXsYJ+T5hjMlS3cRCkuXLmXcuHEsWLCA5s2b07x5c2bPnn3a2yspKeHLL79kyJAhtGrViscee4z58+cze/ZsDh48WIErv8BxgtjkjOLLL7+U99xzj//vq666SpaUlMjc3FzZr18/2aJFC3n77bfL/Px8/3uEEHLZsmVSygqPEysE6enpskaNGv7Hixcvlt26dTt3C7qIf+DI82bZsmXyhRdekA8//LDMz8+Xf/zxh+zdu7ccNWqUv3/iDOOc5yBO9HNOPYrq1atTu3Ztxo0bx7Jlyxg0aBBBQUGUlpby/vvvs2bNGurVq+cXElq7di0JCQm0a9dOLd4bJ5qmed54GBUpS3cRZwaaprFhwwbeeecdANq1a0ffvn2JjIxk2LBhNG/enCeeeIK2bdtezC/5cAJLckaxY8cO2bx5c9muXTt/eW3ZsmVywIABsk2bNrJz584yJiZGfvjhh1JKKe+//3551113SSmlzMrKkkuXLpWFhYX/2G75sta5wNq1a2WrVq1kkyZNZK9evWRubm6FbPeDDz6QjRo1kklJSbJfv36yrKysQrb7/wXlS/Hbt2+XNptNvvTSS/7npk+fLlu0aCHvuusu6XK5zubSzrnHcKKfc2oo/vrrLxkaGirvv/9+KaVqG37qqafk0KFDpZTqy4yPj5ebNm2SUkpZuXJluXr1apmVlSVfe+01OWjQINmgQQP5xBNPHBaelMf50KdREdi/f7+sWbOmLC0tlVJKedNNN8mvv/763C7qAoLv5pGRkSH37t0rpVRhYrVq1eTzzz8vpZRy27ZtcuDAgXLNmjVne3nn3BCc6OechR5SSi699FIyMjL8+gcRERFUqlSJrKwsDMNgypQpREVF0ahRIzZs2ABAy5Yteeutt/jpp5+455572LJlC7m5uaSlpQHw5JNPsnv3bv9+jpyAvJDh8XgoKyvD4/FQWlpKlSpVzvWSLghIqZLiW7du5eabb2bEiBHceeedFBUVsXz5csaPH8+AAQPo0qUL1157LS1atDjXSz7vcM4MhRAC0zQJCAg4bIb/uuuuIycnh3vuuYe3337b35r79ddf06tXL3Jzc8nOzqZbt24888wzNGvWjAULFnDgwAG2b9/OxIkT/ROO06dPZ8mSJf5tX8jCt1WrVuWpp56ievXqVK5cmbCwMLp27Xqul1Vh+O2336hfvz516tSp8CqRj+x20KBBvP3223Tq1ImVK1diGAaVK1dmw4YNDBgwgPHjx3PrrbdW6L7/MziBy3HOYJqmXLx4sdyzZ4+UUsqgoCA5Z84c6XK55DXXXCP37dsnpVQu+ezZs2VKSoocPXq0vPHGG6WUUmZmZsqnn35avv7669Lj8cj77rtP/vHHH4dN/B1rv+cjcnNzZadOnWRmZqZ0uVyyV69ecty4ced6WRUCj8cjExMT5a5du6TT6ZRNmzb1h5v/Bq+//rp0u91SSikPHDgghwwZIpcsWSLbtWsn58yZI6WUctWqVRXaAn6aOOehxYl+zrv2MiklpmkihKBDhw7UrFkTULTrXbt2xWq1kpSUxJgxY8jIyKBq1apcd9111KhRgxkzZtCrVy9A8Rw6HA66dOnCmjVrmD9/Pt999x233XYbkydPPuq+DcNACMGKFSvO1sc9acybN49atWr5qfRvuOEG/vrrr3O9rArBihUrqFOnDomJidhsNvr168e0adP+9XanT59O//798Xg8VKlShbKyMm644QaGDh1K165d2bNnD4MGDWLnzp0V8Cn+2zjvDIUQ4qjtsZ06dfLnGAYNGsSBAwe45ppruOGGG0hPT8flcrFkyRL69+8PqLFnTdNo1qwZEydO5JprrmHEiBEsWrSIzp07A8oogWrf3blzJ7quU1BQwNVXX01xcfFZ+sQnh+rVq7Ns2TJKS0uRUjJ//vzjqWNfUDhw4ADVqlXzP05ISODAgQOnvT1fJ+/y5ctxOp307duXsrIy+vXrR+/evVm4cCFz587llltu4ZZbbqFly5b/+jP813GiMfPzHkKI2lLKXUKIKGAMsApYCbwJfAv8D5gHvACskFIa3vfpUkpDCNEVuAHoDCxGjdYHSClvF0II6T1AQggdMOU5PGBCiFeAWwAPsBa4V0rpPFfrqSgIIW4ErpVS3ut9PABoJ6V85DS25fteLVJKj/e5yahR7juAWkA/1Pe8V0o5qqI+x38Z551HcTIQChqAlHKX93cOMAyoCtwKpAOrgcuAQmCXz0h4X+/7+0VgmZSyLjARuBHwxSZhQohE3+vPpZHwruFlKWUDKWVjKeWA0zUSQoixQohMIcTGcs9FCiHmCiF2eH+fPZUeOABUK/c4wfvcKaGckQgC+nkNEFLKGwAHMA7YLaV8HnjBZyTE/9cBjlPABWkovAmgf0yKSSk3SSkHSSnvBh5EeRaXAVuAPN/rfEbG6024pZTfeP+VAtiA+UKIOOAJ4D0hxFohxMO+95WH12hdaCfaN8C1Rzz3HDDfazDnex+fLawE6gohagkhbKg7/vRT3YjXSNiBuUAN4BUhxBghRJyU8lagCFgihLCXN/rn+gZwQeBcZ1Mr8gflXoqjPB90jNffB3xW7vFgYAoQBHwIrPI+Xwv4HAg+if3r5/o4nOSxqglsLPd4G1DZ+3dlYNtZXk83YDuwC3W3P93tjAGe8v69GvgTGA/EeJ+74Vwf+wvx54LPUfwbeL2Gr4CPgM3AMuBZ1An7MBAB+LqanMDLUspFvtyFEKIRcJ+U8vGjbPsbYCPwqTwP8whCiJrATCllY+/jfClluPdvAeT5Hl9IEELUQHmP44AJUsofhRAHUPmnQVLKXO/r/PmnizgxLkg18wpENvAb8LT37wSU2xoKNJRStgcQQnQE6gC+lk+BSoaVAXW8idR4VEJ0LOqOPBD4BAgHMs7Gh6koeI3gBXkRSSn3CiHCAR3Y4H16CfCnz0h4X3dBfr5zhf/XhkKqhOZIYKQQIhYYL6XM9l4kqUKIblLK2VLKRcCicu8zhRCalHKPEGI3KolaCSiUUhYLIW4FvpFSDhFCWOCCuINlCCEqSynThRCVgcxzvaB/gQKUd/iW93tdIqX87Byv6YLGBZnMrEiUq55kSil/9f6dgwpJnhFCbBFCvCqEqFr+ffJQMrUy8BAwtlwIcgfwi++l3tcf1UgIIQK8F+a5xnTUuvH+/vcdT+cI3mM9EhVSfielfAouVjf+Df5f5yhOBt47UhVU4s9T7vkmQB/gemC/lLKP9/mawBopZWS51w4CfpFSZnof+3IctYC7gJ6ocOZxKeWCs/CZJgAdgWhUWPQyMBX4GagO7AVuLu+qX+i4ADy68xr/r0OP48HraUjvxZ15xP9CgFGofotrgA+EEL2klNOAe/CGKUIIK8qjOAAE+N5f7oR9EUgD2qHu4pcCC4QQMajy5ToppS/OrjBIVSo8GjpX9L7OF1w0Ev8O/+9Dj2NBSnnMLkwpZTHQVUr5nveuewDw9QHfjApbQHVyeqSUU6WU+8BvPBBCXIZKkH7krYrMAW70GqhioCGw3OuhXMRFnFNc9ChOA143ttjXCQi8ClTzegJxUspZcFj3px9SSrf3zxuBv7z5EICrUCVJEygTQvwIdJJSppzpz3MRF3EiXPQoTgM+T8NnCKSUTinlTuB+4A/f64QQiUKI14QQlYQQViHELUIIn+dRH1Wa9eF6VAu5D/egav8XcRHnHBcNRcWiFOgqhGjpLZ/uBiZLKYuA1qgEYnXvgNlOIAxACBEItAcmeR+HAJdwqHJyERdxTnHRUFQgpJQfAiHAJl/5VEq51vvv24G/gTleT2Q30EcIURc12bpESulrzGqNqkitOqsf4CIu4hi4mKOoYHiNwNHIOR+XUrrKPZ4BNPL+HomaUfChG2pG4SIu4rzAxT6K8wxCiErA78ATUsq/z/V6LuIi4GLocc5QnlPjCFQBrBeNxEWcT7hoKM4RpIKfU0MIESSEeAtYyMVqx0WcZ7gYepxnEEJUAZzl+isu4iLOOS4aiou4iIs4IS6GHhdxERdxQlw0FBdxERdxQlw0FBdxERdxQlw0FBdxERdxQvwfX3823JABDygAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig=plt.figure()\n", + "ax = fig.add_subplot(111, projection='3d')\n", + "ax.scatter(x[:,0], x[:,1],y,c='b', marker='o');\n", + "ax.scatter(x[:,0], x[:,1],y,c='b', marker='o');\n", + "ax.set_xlabel('valeur de x[:,0]')\n", + "ax.set_ylabel('aleur de x[:,1]')\n", + "ax.set_zlabel('valeur de y ')\n", + "ax.scatter(xnew[:,0], xnew[:,1],ynew,c='r', marker='*');\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "d5f87251", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "5473.375\n", + "65.44444444444444\n", + "5178883.696428572\n", + "115.77777777777777\n" + ] + } + ], + "source": [ + "import statistics\n", + "\n", + "PIB=[8802,5872,4775,5680,7964,5680,3072,1942]\n", + "scolarisation=[83,69,63,63,62,81,62,56,50]\n", + "\n", + "moyPIB=statistics.mean(PIB)\n", + "moyScolar=statistics.mean(scolarisation)\n", + "print(moyPIB)\n", + "print(moyScolar)\n", + "print(statistics.variance(PIB))\n", + "print(statistics.variance(scolarisation))" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "152d59f6", + "metadata": {}, + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "positional argument follows keyword argument (148137705.py, line 1)", + "output_type": "error", + "traceback": [ + "\u001b[0;36m Input \u001b[0;32mIn [1]\u001b[0;36m\u001b[0m\n\u001b[0;31m cov1=np.stack((PIB,scolarisation), axis=0,\"k*\")\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m positional argument follows keyword argument\n" + ] + } + ], + "source": [ + "cov1=np.stack((PIB,scolarisation), axis=0,)\n", + "print(np.cov(cov1))" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "be2e880b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "(150, 4)\n", + "[0 1 2]\n", + "(150, 2)\n", + "[0 1]\n", + "(4,)\n", + "la taille : (414, 4)\n", + "Avec : 414 lignes\n", + "Avec : 4 colonnes\n", + "****************************************\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agedistance métromagasins prochesprix au m2
count414.000000414.000000414.000000414.000000
mean17.7125601083.8856894.09420337.980193
std11.3924851262.1095952.94556213.606488
min0.00000023.3828400.0000007.600000
25%9.025000289.3248001.00000027.700000
50%16.100000492.2313004.00000038.450000
75%28.1500001454.2790006.00000046.600000
max43.8000006488.02100010.000000117.500000
\n", + "
" + ], + "text/plain": [ + " age distance métro magasins proches prix au m2\n", + "count 414.000000 414.000000 414.000000 414.000000\n", + "mean 17.712560 1083.885689 4.094203 37.980193\n", + "std 11.392485 1262.109595 2.945562 13.606488\n", + "min 0.000000 23.382840 0.000000 7.600000\n", + "25% 9.025000 289.324800 1.000000 27.700000\n", + "50% 16.100000 492.231300 4.000000 38.450000\n", + "75% 28.150000 1454.279000 6.000000 46.600000\n", + "max 43.800000 6488.021000 10.000000 117.500000" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAFnCAYAAACCQszOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAng0lEQVR4nO3df5Ac5X3n8c9XszrLmzjGhs2FY61dXHLFCLErWwsClGAbCeJgF6riR8x5Ayhl15KVcxCTc5ycUilHRqGoonzBl0j2AnVAtBcLKQmnGF+Ikey7lKuisGtLRIpyMb9WiHCHWIINt8bWj+/90bPa3dHM7kz3TPc83e9X1dRsP9M9z9NP97S+6nnm+Zq7CwAAAPEsyroBAAAAISOYAgAASIBgCgAAIAGCKQAAgAQIpgAAABIgmAIAAEig7mDKzEpm9j0z+3qV1zaY2TEz219+fLq5zQQAAGhPHQ2se4ekw5J+psbrO9z9N5I3CQAAIBx1BVNm1i3pY5K2SLqzGRWfc8453tvb24y3AgAAaKnx8fFX3b2r2mv13pn6I0m/Lekd86xzvZldIemfJX3W3V+c7w17e3s1NjZWZ/UAAADZMbOJWq8tOGbKzD4u6RV3H59ntb+S1OvufZK+KenhGu81ZGZjZjZ27NixhaoGAABoe/UMQF8j6Voze0HS1yRdaWbbZ6/g7pPu/uPy4gOSVlV7I3cfcfcBdx/o6qp6pwwAACAoCwZT7v677t7t7r2SbpK0191/dfY6ZnburMVrFQ1UBwAAyL1Gfs03h5ltljTm7rsl3W5m10o6Iek1SRua0zwAAJDU8ePHdfToUb311ltZN6XtLVmyRN3d3Vq8eHHd25i7t7BJtQ0MDDgD0AEAaL3nn39e73jHO3T22WfLzLJuTttyd01OTuqNN97Q+eefP+c1Mxt394Fq2zEDOgAAOffWW28RSNXBzHT22Wc3fAePYAoAgAIgkKpPnH4imAIAAJn4whe+oHvvvTfVOp9//nmtXr1ay5Yt0yc+8Qn95Cc/SfyeBFMAAKAwPv/5z+uzn/2snnnmGb3rXe/Sgw8+mPg9CaaAghgdlXp7pUWLoufR0axbBKBdteJ68cgjj6ivr0/9/f26+eabz3j9/vvv18UXX6z+/n5df/31mpqakiTt3LlTK1asUH9/v6644gpJ0qFDh3TJJZdo5cqV6uvr0/e//31J0vbt20+X33bbbTp58uScOtxde/fu1Q033CBJuvXWW/XYY48l3jeCKaAARkeloSFpYkJyj56HhgioAJypFdeLQ4cO6a677tLevXt14MAB3XfffWesc9111+mpp57SgQMHdMEFF5y+Y7R582Y98cQTOnDggHbv3i1J+spXvqI77rhD+/fv19jYmLq7u3X48GHt2LFD3/nOd7R//36VSiWNVjR6cnJSZ511ljo6opmhuru79dJLL8XfsTKCKaAANm2Syv/JO21qKioHgNlacb3Yu3evbrzxRp1zzjmSpHe/+91nrHPw4EH94i/+oi666CKNjo7q0KFDkqQ1a9Zow4YNuv/++0/fabrsssv0h3/4h7rnnns0MTGht7/97dqzZ4/Gx8d18cUXa+XKldqzZ4+ee+65+I1uQOxJOwGE48iRxsoBFFdW14sNGzboscceU39/vx566CF9+9vflhTdhdq3b58ef/xxrVq1SuPj4/rkJz+p1atX6/HHH9c111yjr371q3J33Xrrrbr77rtr1nH22Wfr9ddf14kTJ9TR0aGjR4/qvPPOS9x27kwBBbB0aWPlAIqrFdeLK6+8Ujt37tTk5KQk6bXXXjtjnTfeeEPnnnuujh8/PufruWeffVarV6/W5s2b1dXVpRdffFHPPfec3vve9+r222/X+vXr9fTTT2vt2rXatWuXXnnlldN1TExMzKnDzPSRj3xEu3btkiQ9/PDDWr9+ffwdKyOYAgpgyxaps3NuWWdnVA4As7XienHhhRdq06ZN+tCHPqT+/n7deeedZ6zzxS9+UatXr9aaNWv0/ve//3T55z73OV100UVasWKFLr/8cvX39+vRRx/VihUrtHLlSh08eFC33HKLli9frrvuuktXX321+vr6dNVVV+nll18+o5577rlHX/rSl7Rs2TJNTk7qU5/6VPwdKyOdDFAQo6PRmIcjR6L/YW7ZIg0OZt0qAGk4fPiwLrjggrrXL/r1olp/zZdOhjFTQEEMDhbrYgggPq4XjeFrPgAAgAQIpgAAABIgmAIAAEiAYAoAACABgikAAIAECKYAAEAmvvCFL+jee+9Ntc4//uM/1rJly2RmevXVV5vyngRTAACgMNasWaMnn3xSPT09TXtPgikAADDX6KjU2ystWhQ9z0rvEtcjjzyivr4+9ff36+abbz7j9fvvv18XX3yx+vv7df3112uqnG15586dWrFihfr7+3XFFVdIkg4dOqRLLrlEK1euVF9fn77//e9LkrZv3366/LbbbjudGHm2D3zgA+rt7U28P7MRTAEAgBmjo9LQkDQxIblHz0NDiQKqQ4cO6a677tLevXt14MAB3XfffWesc9111+mpp57SgQMHdMEFF+jBBx+UJG3evFlPPPGEDhw4oN27d0uKkh/fcccd2r9/v8bGxtTd3a3Dhw9rx44d+s53vqP9+/erVCrNyfHXSsyADgAAZmzaJJXvCp02NRWVx5wWfe/evbrxxht1zjnnSJLe/e53n7HOwYMH9Xu/93t6/fXX9eabb+qXfumXJEVfy23YsEG/8iu/ouuuu06SdNlll2nLli06evSorrvuOr3vfe/Tnj17ND4+rosvvliS9KMf/Ug/+7M/G6u9jSKYAgAAM44caay8STZs2KDHHntM/f39euihh/Ttb39bUnQXat++fXr88ce1atUqjY+P65Of/KRWr16txx9/XNdcc42++tWvyt1166236u67725pO6vhaz4AADBj6dLGyutw5ZVXaufOnZqcnJQkvfbaa2es88Ybb+jcc8/V8ePH53w99+yzz2r16tXavHmzurq69OKLL+q5557Te9/7Xt1+++1av369nn76aa1du1a7du3SK6+8crqOiYmJ2G1uBMEUAACYsWWL1Nk5t6yzMyqP6cILL9SmTZv0oQ99SP39/brzzjvPWOeLX/yiVq9erTVr1uj973//6fLPfe5zuuiii7RixQpdfvnl6u/v16OPPqoVK1Zo5cqVOnjwoG655RYtX75cd911l66++mr19fXpqquu0ssvv3xGPV/+8pfV3d2to0ePqq+vT5/+9Kdj79c0c/fEbxLHwMCAj42NZVI3AABFcvjwYV1wwQX1bzA6Go2ROnIkuiO1ZUvs8VIhqtZfZjbu7gPV1mfMFAAAmGtwsFDBU1J8zQcAAJAAwRQAAEACBFNARlowwTAA1JTVGOnQxOkngikgAy2YYBgAalqyZIkmJycJqBbg7pqcnNSSJUsa2o5f8wEZ6O2NAqhKPT3SCy+k3RoAeXf8+HEdPXpUb731VtZNaXtLlixRd3e3Fi9ePKecX/MBbSajCYYBFNTixYt1/vnnZ92M3OJrPiADLZhgGACQEYIpIAMtmGAYAJARgikgA4OD0shINEbKLHoeGWGOPAAIEWOmgIwwwTAA5AN3pgAAABIgmAIAAEiAYAoAACABgikAAIAECKYAAAASIJhCrpA8GACQNqZGQG5MJw+emoqWp5MHS0xBAABoHe5MITc2bZoJpKZNTUXlAAC0CsEUcoPkwQCALBBMITdIHgwAyALBFHKD5MEAgCwQTCE3SB4MAMgCv+ZDrpA8GACQNu5MAQAAJEAwBQAAkADBFAAAQAJ1B1NmVjKz75nZ16u89jYz22Fmz5jZPjPrbWorAQAA2lQjd6bukHS4xmufkvSv7r5M0n+WdE/ShgFoD+Q7BID51RVMmVm3pI9JeqDGKuslPVz+e5ektWZmyZsHIEvT+Q4nJiT3mXyHBFQAMKPeO1N/JOm3JZ2q8fp5kl6UJHc/IekHks5O2jgA2SLfIQAsbMFgysw+LukVdx9PWpmZDZnZmJmNHTt2LOnbAWgx8h0CwMLquTO1RtK1ZvaCpK9JutLMtles85Kk90iSmXVIeqekyco3cvcRdx9w94Gurq5EDQfQeuQ7BICFLRhMufvvunu3u/dKuknSXnf/1YrVdku6tfz3DeV1vKktBZA68h0CwMJizzNlZpvN7Nry4oOSzjazZyTdKel3mtE4ANki3yEALMyyuoE0MDDgY2NjmdQNAADQCDMbd/eBaq8xAzoAAEACBFMAAAAJEEwBAAAkQDAFAACQAMEUkNDGjVJHR/Rrt46OaBkAUBwdWTcACNnGjdK2bTPLJ0/OLG/dmk2bAADp4s4UkMDISGPlAID8IZgCEjh5srFyAED+EEwBCZRKjZUDAPKHYApIYGiosXIAQP4wAB1IYHqQ+chI9NVeqRQFUgw+B4DiIJgCEtq6leAJAIqMr/kAAAASIJgCAABIgGAKAAAgAYIpAACABAimAAAAEiCYQltaty5KHDz9WLcu6xaFb3RU6u2VFi2KnkdHs24RgNxJ+0LTJhc2gim0nXXrpD175pbt2UNAlcToaDT/1cSE5B49Dw0RUAFoorQvNG10YTN3T71SSRoYGPCxsbFM6kZ7M6v9Wkana/B6e6PrTKWeHumFF9JuDYBcSvtCk3J9Zjbu7gPVXuPOFFAAR440Vg4ADUv7QtNGFzaCKaAAli5trBwAGpb2haaNLmwEU2g7a9c2Vo6FbdkidXbOLevsjMoBoCnSvtC00YWNYApt58knzwyc1q6NyhHP4GCUjLmnJxqT1tMTLQ8OZt0yALmR9oWmjS5sDEAHAABYAAPQAQAAWoRgCgAAIAGCKQAAgAQIpgAAABIgmEJbCim9U5ukhgIAZKQj6wYAlabTLU1NRcvT6Zak1vziNUl9abcVANB+mBoBbSek9E7kvAOAYmBqBAQlpPRObZQaCgCQEYIptJ2Q0ju1UWooAEBGCKbQdkJK79RGqaEAABkhmELbCSm9UxulhgIAZIQB6AAAAAtgADoAAECLEEwBAAAkQDAFAACQAMEUAABAAgRTGQslr1vcdoayfwBQNy5sqEBuvgyFktctbjtD2T8AqBsXNlTB1AgZCiWvW9x2hrJ/AFA3LmyFNd/UCARTGVq0SKrW/WbSqVPpt6eWuO0MZf8AoG5c2AqLeabaVCh53eK2M5T9A4C6cWFDFQRTGQolr1vcdoayfwBQNy5sqIJgKkOh5HWL285Q9g8A6saFDVUwZgoAAGABjJkCAABoEYIpAACABAimAAAAEiCYAgAASGDBYMrMlpjZ35vZATM7ZGZ/UGWdDWZ2zMz2lx+fbk1zAQAA2ks9d6Z+LOlKd++XtFLSR83s0irr7XD3leXHA81sJMK1caPU0RH9grijI1pu5XYh5R8Nqa0AgNoWTHTs0dwJb5YXF5cf2cyngKBs3Cht2zazfPLkzPLWrc3fLqT8oyG1FQAwv7rmmTKzkqRxScsk/Ym7f77i9Q2S7pZ0TNI/S/qsu78433syz1T+dXREgVClUkk6caL524WUfzSktgIAmjDPlLufdPeVkrolXWJmKypW+StJve7eJ+mbkh6u0ZAhMxszs7Fjx47VvQMIU7WAaL7ypNsdOdJYeZZCaisAYH4N/ZrP3V+X9C1JH60on3T3H5cXH5C0qsb2I+4+4O4DXV1dMZqLkJRKjZUn3S6k/KMhtRUAML96fs3XZWZnlf9+u6SrJP1TxTrnzlq8VtLhJrYRgZoeA1RvedLtQso/GlJbAQDzq+fO1LmSvmVmT0t6StI33f3rZrbZzK4tr3N7edqEA5Jul7ShNc1FSLZulYaHZ+4olUrR8nyDyJNsF1L+0ZDaCgCYH4mOAQAAFkCiYwAAgBYhmAIAAEiAYAoAACABgikAAIAECKYylnZ+trg579KuL26/ZJHvLu0+zb20D2JIJxuA9uTumTxWrVrlRbd9u3tnp7s08+jsjMpbYXh4bl3Tj+Hh9qovbr+k3Z/u6fdp7qV9EEM62QBkStKY14hpmBohQ2nnZ4ub8y7t+uL2Sxb57tLu09xL+yCGdLIByNR8UyMQTGVo0aLov7SVzKRTp5pfn1nt11pxGsStL26/pN2f0+9dS0YfrbClfRBDOtkAZIp5ptpU2vnZ4ua8S7u+uP2SRb67tPs099I+iCGdbADaFsFUhtLOzxY3513a9cXtlyzy3aXdp7mX9kEM6WQD0L5qDaZq9YMB6JHt2917etzNoudWj18dHnYvlaLxsqVS6wdKx60vbr+k3Z/u6fdp7qV9EEM62QBkRgxABwAAiI8xUwAAAC1CMAUAAJAAwRQAAEACBFMAAAAJEEyhpUh7htwqQlLGIuwj0AQdWTcA+TU6Gs23NDUVLU9MzMy/NDjY/O2A1GzcKG3bNrN88uTM8tat2bSp2Yqwj0CTMDUCWoa0Z8itIiRlLMI+Ag1gagRk4siRxsqTbgekplqQMV95iIqwj0CTEEyhZUh7htwqQlLGIuwj0CQEU2gZ0p4ht4qQlLEI+wg0CcEUWmZwUBoZicY6mUXPIyMLDyKPux2Qmq1bpeHhmbs0pVK0nKeB2UXYR6BJGIAOAACwAAagAwAAtAjBFAAAQAIEUwAAAAkQTAEAACRAMAUAAJAAwVSFtBPsxq0vlPyjJCwuMA5+dUk+vKH0adoZzkO5cCO/3D2Tx6pVq7zdbN/u3tnpLs08Ojuj8naqb3h47jbTj+Hh1rQzrrT7E22Eg19dkg9vKH0at51pbxdXKMcBTSdpzGvENMwzNUvaCXbj1hdK/lESFhcYB7+6JB/eUPo07QznoVy4Ebz55pkimJpl0aLovxmVzKRTp9qnPrPar2V0OKtKuz/RRjj41SX58IbSp3HbmfZ2cYVyHNB0TNpZp7QT7MatL5T8oyQsLjAOfnVJPryh9GnaGc5DuXAj1wimZkk7wW7c+kLJP0rC4gLj4FeX5MMbSp+mneE8lAs38q3WYKpWP9pxALp7NIawp8fdLHpu9ZjCuPUND7uXStHYx1Kp/QafT0u7P9FGOPjVJfnwhtKncduZ9nZxhXIc0FRiADoAAEB8jJkCAABoEYIpAACABAimAAAAEiCYAgAASIBgKmOhpJQKJRcg0PZCyuu2bl30oZ9+rFuXr/qAJiGYytDoaDS9zMRENKHuxES03Kpra9z6Nm6Utm2byYJx8mS0TEAFNCjtD30S69ZJe/bMLduzp3UBTtr1AU3E1AgZCiWlVCi5AIG2F1Jet7TzVoWSJwuFxdQIberIkcbKs6qvWiA1XzmAGtL+0ANIBcFUhkJJKRVKLkCg7ZHXDcglgqkMhZJSKpRcgEDbCymv29q1jZWHVh/QRARTGRoclEZGouESZtHzyEhU3k71bd0qDQ/P3IkqlaLlrVtb004gt9L+0Cfx5JNnBjJr10bleagPaCIGoAMAACyAAegAAAAtQjAFAACQAMEUAABAAgRTAAAACSwYTJnZEjP7ezM7YGaHzOwPqqzzNjPbYWbPmNk+M+ttSWsbEDf9VUhps+KIm2OP/pxH2juZ9kGMK+12FiGBZNzcdWn3aSgffC5stdE3jXH3eR+STNJPl/9eLGmfpEsr1tko6Svlv2+StGOh9121apW3yvbt7p2d7lEOgujR2RmVt2K7UAwPz9236cfw8Pzb0Z/zSHsn0z6IobQzbn0hWbu2+j6uXTv/dmn3aSgffC5stdE3VUka81qxUq0Xqq4sdUr6rqTVFeVPSLqs/HeHpFdVnnah1qOVwVRPT/VrQE9Pa7YLRalUff9Kpfm3oz/nkfZOpn0QQ2ln3PpCUm3/ph/zSbtPQ/ngc2Grjb6par5gqq55psysJGlc0jJJf+Lun694/aCkj7r70fLys+WA69WK9YYkDUnS0qVLV01US/jZBIsWRUewkpl06lTztwtF3Dyi9Oc80t7JtA9iXGm3swhJckPp01A++FzYaqNvqko8z5S7n3T3lZK6JV1iZiviNMTdR9x9wN0Hurq64rxFXeKmv8p72qy4Ofboz3mkvZNpH8S40m4nCSRrS7tPQ/ngc2Grjb5pWEO/5nP31yV9S9JHK156SdJ7JMnMOiS9U9JkE9oXS9z0VyGlzYojbo49+nMeae9k2gcxrrTbWYQEknFz16Xdp6F88Lmw1UbfNK7W93/TD0ldks4q//12SX8r6eMV63xGcwegP7rQ+7ZyzJR7NN6tp8fdLHqud/xb3O1CMTw8MxSiVKp/fC79OY+0dzLtgxhX2u2MW19IKgehLzT4fFrafRrKB58LW230zRmUZMyUmfVJelhSSdGdrEfdfbOZbS6/8W4zWyLpTyV9QNJrkm5y9+fme19y8wEAgFDMN2aqY6GN3f1pRUFSZfnvz/r7LUk3JmkkAABAiJgBHQAAIAGCKQAAgAQIpgAAABIgmAIAAEiAYKpCUXM0IiB5T0Ca9v6Fsl0SoRz7vOM45FetORNa/Wj1PFNx5DxHI/Ig7wlI096/ULZLIpRjn3cch+ApaW6+VmjHeaZ6e6Vq6QJ7eqQXXki7NUAVcU/SUE7utPcvlO2SCOXY5x3HIXjzzTNFMDVLznM0Ig/ynoA07f0LZbskQjn2ecdxCF7iRMdFUeAcjQhF3hOQpr1/oWyXRCjHPu84DrlGMDVLkXM0IhB5T0Ca9v6Fsl0SoRz7vOM45FutwVStfrTjAHT3XOdoRF7kPQFp2vsXynZJhHLs847jEDQxAB0AACA+xkwBAAC0CMEUAABAAgRTAAAACRBMAQAAJEAwBYQmbn6vjRuljo5oksCOjmi5lfWlLe39S/s4JKkzbaG0MxQh9WdIbW2mWj/za/WjXadGANpa3Pxew8Nzt5l+DA+3pr60pb1/aR+HJHWmLZR2hiKk/gyprTGIqRGAnIib36ujQzp58szyUkk6caL59aUt7f1L+zgkqTNtobQzFCH1Z0htjYHcfEBexM3vZVb7tfmuAaHkE0t7/9I+DknqTFso7QxFSP0ZUltjYJ4pIC/i5vcqlRorT1pf2tLev7SPQ5I60xZKO0MRUn+G1NYmI5gCQhI3v9fQUGPlSetLW9r7l/ZxSFJn2kJpZyhC6s+Q2tpstQZTtfrBAHQgprj5vYaH3UulaFBoqVTfoOck9aUt7f1L+zgkqTNtobQzFCH1Z0htbZAYgA4AABAfY6YAAABahGAKAAAgAYIpAACABAimAAAAEiCYQr4UIS9U2vt44YXRpHvTjwsvbG19oRzDtHP6AWhftX7m1+oHUyOg6XKeF8rd09/H5cur55Jbvrw19YVyDNPO6Qcgc2JqBBRCzvNCSUp/H5OkP4kjlGOYdk4/AJkjNx+KIed5oSSlv49pB1OhHMO0c/oByBzzTKEYipAXKu/7GMr+pZ3TD0BbI5hCfhQhL1Ta+7h8eWPlSYVyDNPO6QegrRFMIT8GB6WRkWj8iVn0PDISledF2vt46NCZgdPy5VF5K4RyDOO2M5T9A9AQxkwBAAAsgDFTAAAALUIwBQAAkADBFAAAQAIEUwAAAAkQTAEAACRAMAVkJe2Et3lPzBtKO4E8K+jnsCPrBgCFNDoqDQ1JU1PR8sREtCy1Zs6huPWl3c64QmknkGcF/hwyzxSQhbQT3uY9MW8o7QTyLOefQxIdA+0m7YS3eU/MG0o7gTzL+eeQSTuBdpN2wtu8J+YNpZ1AnhX4c0gwBWQh7YS3eU/MG0o7gTwr8OeQYArIQtoJb/OemDeUdgJ5VuDPIWOmAAAAFsCYKQAAgBYhmAIAAEiAYAoAACCBBYMpM3uPmX3LzP7RzA6Z2R1V1vmwmf3AzPaXH7/fmuYCAAC0l3ruTJ2Q9FvuvlzSpZI+Y2bLq6z3t+6+svzY3NRWInuh5JELSdq58orQp2nauFHq6Ih+tdTRES3nDecMUB93b+gh6b9Luqqi7MOSvt7I+6xatcoRiO3b3Ts73aO5baNHZ2dUnof6shB3H9PeDtUND8/ty+nH8HDWLWsezhlgDkljXiOmaWhqBDPrlfS/JK1w9x/OKv+wpD+XdFTSv0j6j+5+aL73YmqEgISSRy4kaefKK0KfpqmjQzp58szyUkk6cSL99rQC5wwwR1Ny85nZT0v6n5K2uPtfVLz2M5JOufubZnaNpPvc/X1V3mNI0pAkLV26dNVEtQ8q2k8oeeRCknauvCL0aZrMar+W0dx9Tcc5A8yReJ4pM1us6M7TaGUgJUnu/kN3f7P89zckLTazc6qsN+LuA+4+0NXV1dBOIEOh5JELSdq58orQp2kqlRorDxHnDFC3en7NZ5IelHTY3b9UY52fK68nM7uk/L6TzWwoMhRKHrmQpJ0rrwh9mqahocbKQ8Q5A9Sv1mCq6YekX5Dkkp6WtL/8uEbSr0v69fI6vyHpkKQDkv5O0uULvS8D0AOzfbt7T4+7WfTc6kGoadeXhbj7mPZ2qG542L1UigZml0r5Gnw+jXMGOE3NGoDeTAxABwAAoSA3HwAAQIsQTAEAACRAMAUAAJAAwRQAAEACBFMAAAAJEEyhPiQ8bb4iJMoFgALoyLoBCMDoaDQZ4dRUtDwxMTM54eBgdu0K2caN0rZtM8snT84sb92aTZsAALEwzxQWRsLT5itColwAyBHmmUIyR440Vo6FVQuk5isHALQtgiksjISnzVeERLkAUBAEU1gYCU+brwiJcgGgIAimsLDBQWlkJBojZRY9j4ww+DyJrVul4eGZO1GlUrTM4HMACA4D0AEAABbAAHQAAIAWIZgCAABIgGAKAAAgAYIpAACABAimmoTUdTXQMbXRN2Hj+AEoIzdfE5C6rgY6pjb6JmwcPwCzMDVCE5C6rgY6pjb6JmwcP6Bw5psagWCqCRYtkqp1o5l06lT67WkbdExt9E3YOH5A4TDPVIuRuq4GOqY2+iZsHD8AsxBMNQGp62qgY2qjb8LG8QMwC8FUE5C6rgY6pjb6JmwcPwCzMGYKAABgAYyZAgAAaBGCKQAAgAQIpgAAABIgmAIAAEiAYApAe9m4UeroiH4l19ERLbcSOfYAJERuPgDtY+NGadu2meWTJ2eWt25tfn3k2APQBEyNAKB9dHREAVSlUkk6caL59ZFjD0CdmBoBQBiqBVLzlSd15Ehj5QBQBcEUgPZRKjVWnhQ59gA0AcEUgPYxPV6p3vKkyLEHoAkIpgC0j61bpeHhmTtRpVK03IrB5xI59gA0BQPQAQAAFsAAdAAAgBYhmAIAAEiAYAoAACABgikAAIAECKYAAAASIJgCAABIgGAKAAAgAYIpAACABAimAAAAEiCYAgAASIBgCgAAIAGCKQAAgAQIpgAAABIgmAIAAEiAYAoAACABgikAAIAEFgymzOw9ZvYtM/tHMztkZndUWcfM7Mtm9oyZPW1mH2xNcwEAANpLPXemTkj6LXdfLulSSZ8xs+UV6/yypPeVH0OStjW1lQjX6KjU2ystWhQ9j45m3SIAAJpqwWDK3V929++W/35D0mFJ51Wstl7SIx75O0lnmdm5TW8twjI6Kg0NSRMTknv0PDREQAUAyJWGxkyZWa+kD0jaV/HSeZJenLV8VGcGXCiaTZukqam5ZVNTUTkAADlRdzBlZj8t6c8l/aa7/zBOZWY2ZGZjZjZ27NixOG+BkBw50lg5AAABqiuYMrPFigKpUXf/iyqrvCTpPbOWu8tlc7j7iLsPuPtAV1dXnPYiJEuXNlYOAECA6vk1n0l6UNJhd/9SjdV2S7ql/Ku+SyX9wN1fbmI7EaItW6TOzrllnZ1ROQAAOdFRxzprJN0s6R/MbH+57D9JWipJ7v4VSd+QdI2kZyRNSfq1prcU4RkcjJ43bYq+2lu6NAqkpssBAMgBc/dMKh4YGPCxsbFM6gYAAGiEmY27+0C115gBHQAAIAGCKQAAgAQIpgAAABIgmAIAAEiAYAoAACABgikAAIAECKYAAAASIJgCAABIgGAKAAAgAYIpAACABDJLJ2NmxyRNZFJ5a50j6dWsG9GG6Jfa6Jvq6Jfa6Jvq6Jfq6JfaGumbHnfvqvZCZsFUXpnZWK3cPUVGv9RG31RHv9RG31RHv1RHv9TWrL7haz4AAIAECKYAAAASIJhqvpGsG9Cm6Jfa6Jvq6Jfa6Jvq6Jfq6JfamtI3jJkCAABIgDtTAAAACRBMxWRmJTP7npl9vcprG8zsmJntLz8+nUUbs2BmL5jZP5T3e6zK62ZmXzazZ8zsaTP7YBbtTFsd/fJhM/vBrHPm97NoZxbM7Cwz22Vm/2Rmh83ssorXi3rOLNQvhTxnzOznZ+3zfjP7oZn9ZsU6hTtn6uyXQp4zkmRmnzWzQ2Z20Mz+zMyWVLz+NjPbUT5n9plZbyPv39HU1hbLHZIOS/qZGq/vcPffSLE97eQj7l5r3o5flvS+8mO1pG3l5yKYr18k6W/d/eOptaZ93Cfpr939BjP7N5I6K14v6jmzUL9IBTxn3P1/S1opRf+plfSSpL+sWK1w50yd/SIV8Jwxs/Mk3S5pubv/yMwelXSTpIdmrfYpSf/q7svM7CZJ90j6RL11cGcqBjPrlvQxSQ9k3ZYArZf0iEf+TtJZZnZu1o1CNszsnZKukPSgJLn7T9z99YrVCnfO1NkvkNZKetbdKyeALtw5U6FWvxRZh6S3m1mHov+Y/EvF6+slPVz+e5ektWZm9b45wVQ8fyTptyWdmmed68u3l3eZ2XvSaVZbcEl/Y2bjZjZU5fXzJL04a/louSzvFuoXSbrMzA6Y2f8wswvTbFyGzpd0TNJ/LX9t/oCZ/VTFOkU8Z+rpF6mY58xsN0n6syrlRTxnZqvVL1IBzxl3f0nSvZKOSHpZ0g/c/W8qVjt9zrj7CUk/kHR2vXUQTDXIzD4u6RV3H59ntb+S1OvufZK+qZlotwh+wd0/qOg2+2fM7IqsG9QmFuqX7ypKVdAv6b9Ieizl9mWlQ9IHJW1z9w9I+n+SfifbJrWFevqlqOeMJKn81ee1knZm3ZZ2skC/FPKcMbN3KbrzdL6kfyfpp8zsV5tZB8FU49ZIutbMXpD0NUlXmtn22Su4+6S7/7i8+ICkVek2MTvl/wHI3V9R9H39JRWrvCRp9p267nJZri3UL+7+Q3d/s/z3NyQtNrNzUm9o+o5KOuru+8rLuxQFEbMV8ZxZsF8KfM5M+2VJ33X3/1vltSKeM9Nq9kuBz5l1kp5392PuflzSX0i6vGKd0+dM+avAd0qarLcCgqkGufvvunu3u/cqupW6193nRLgV381fq2igeu6Z2U+Z2Tum/5Z0taSDFavtlnRL+dc2lyq63fpyyk1NVT39YmY/N/39vJldouizWfcHOVTu/n8kvWhmP18uWivpHytWK9w5U0+/FPWcmeXfq/ZXWYU7Z2ap2S8FPmeOSLrUzDrL+79WZ/67vFvSreW/b1D0b3vdE3Hya74mMbPNksbcfbek283sWkknJL0maUOWbUvRv5X0l+XPaoek/+buf21mvy5J7v4VSd+QdI2kZyRNSfq1jNqapnr65QZJw2Z2QtKPJN3UyAc5cP9B0mj564nnJP0a54ykhfulsOdM+T8lV0m6bVZZ4c+ZOvqlkOeMu+8zs12KvuY8Iel7kkYq/t1+UNKfmtkziv7dvqmROpgBHQAAIAG+5gMAAEiAYAoAACABgikAAIAECKYAAAASIJgCAABIgGAKAAAgAYIpAACABAimAAAAEvj/cIhBmjoGY4YAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAFnCAYAAACCQszOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAxWElEQVR4nO3de5gcdZ3v8c+3u+eayQWGgURCZgJEINxCMkhYFJWEswosLLgruFFgAbNMvIG6K26OcfU5rLrP0QWfNXhGRHJkABcURQ6LXIwEViBOhIAQIBgyQyAJIVxymUwymf6dP7onkxl6Zqq7urq6qt+v5+lnpqqrf/X9VXVNvqn+9e9rzjkBAACgMImwAwAAAIgykikAAAAfSKYAAAB8IJkCAADwgWQKAADAB5IpAAAAHzwnU2aWNLMnzeyeHM9damZbzOyp7OOK4oYJAABQnlJ5bPsFSWskTRjh+Z855z7rPyQAAIDo8JRMmdlUSWdLulbSF4ux44MOOsi1tLQUoykAAIBArVq16g3nXFOu57zembpO0j9JGj/KNh8zs9MlvSjpaufcK6M12NLSos7OTo+7BwAACI+ZdY303JhjpszsHEmvO+dWjbLZryW1OOdOkPSApGUjtLXQzDrNrHPLli1j7RoAAKDseRmAfpqkc81svaTbJZ1hZrfsv4Fzbqtzbnd28UZJc3I15Jxrd861Oudam5py3ikDAACIlDGTKefcV51zU51zLZIukvRb59wn99/GzKbst3iuMgPVAQAAYi+fb/MNYWbflNTpnLtb0ufN7FxJeyW9KenS4oQHAADC1tfXpw0bNqi3tzfsUAJXW1urqVOnqqqqyvNrzDkXYEgja21tdQxABwCg/L388ssaP368GhsbZWZhhxMY55y2bt2q7du3a/r06UOeM7NVzrnWXK9jBnQAADCq3t7e2CdSkmRmamxszPsOHMkUAAAYU9wTqQGF9JNkCgAAVIQ333xTZ555pmbMmKEzzzxTb731VlHaJZkCAAAV4dvf/rbmzZuntWvXat68efr2t79dlHZJpgAgDx0dUkuLlEhkfnZ0hB0RUH6KfZ0sWbJE11133b7lxYsX6/rrr8+7nV/96le65JJLJEmXXHKJfvnLX/oLLKvgqREAoNJ0dEgLF0o9PZnlrq7MsiQtWBBeXEA5CeI6ueyyy3TBBRfoqquuUjqd1u23366VK1dq+/bt+sAHPpDzNbfeeqtmzpw5ZN3mzZs1ZUpmaszJkydr8+bNhQU0DMkUAHi0ePHgPxADenoy60mmgIwgrpOWlhY1NjbqySef1ObNm3XSSSepsbFRkvTUU08V1KaZFW1QPckUAHjU3Z3feqASBXWdXHHFFbr55pu1adMmXXbZZZKU952pQw45RBs3btSUKVO0ceNGHXzwwf6CyiKZAgCPpk3LfGSRaz2AjKCuk/PPP19LlixRX1+fbr31VknS+PHj87ozde6552rZsmW65pprtGzZMp133nn+gspiADoAeHTttVJ9/dB19fWZ9QAygrpOqqur9eEPf1gf//jHlUwmC2rjmmuu0QMPPKAZM2bowQcf1DXXXOMvqCzuTAGARwPjPRYvznxkMW1a5h8IxksBg4K6TtLptB5//HHdcccdBbfR2Niohx56yF8gOZBMAUAeFiwgeQLGUuzr5LnnntM555yj888/XzNmzChew0VCMgUAAMrazJkztW7durDDGBFjpgAAAHwgmQIAAPCBZAoAAMAHkikAAAAfSKYAAEBFuOOOO3TssccqkUios7OzaO2STAEAgIpw3HHH6Re/+IVOP/30orZLMgUAAIqro0NqaZESiczPjg5fzS1ZskTXXXfdvuXFixfr+uuvz7udY445RkcddZSvWHJhnikAAFA8HR3SwoVST09muasrsywVPJPnZZddpgsuuEBXXXWV0um0br/9dq1cuTLvQsdBIZkCAADFs3jxYCI1oKcns77AZKqlpUWNjY168skntXnzZp100klqbGyUpLwKHQeFZAoAABRPd3d+6z264oordPPNN2vTpk267LLLJIk7UwAAIIamTct8tJdrvQ/nn3++lixZor6+Pt16662SpPHjx5fFnSkGoAMAgOK59lqpvn7ouvr6zHofqqur9eEPf1gf//jHlUwmC2rjrrvu0tSpU/XYY4/p7LPP1l/+5V/6imkAd6YAAEDxDIyLWrw489HetGmZRKrA8VID0um0Hn/8cd1xxx0Ft3H++efr/PPP9xVHLtyZAgAAxbVggbR+vZROZ376TKSee+45HXnkkZo3b55mzJhRlBCLiTtTAACgrM2cOVPr1q0LO4wRcWcKAADAB5IpALFV5EmYgYrmnAs7hJIopJ8kUwBiaWAS5q4uybnBSZhJqID81dbWauvWrbFPqJxz2rp1q2pra/N6nYV1YFpbW10xKzYDwP5aWnJPddPcnBkPC8C7vr4+bdiwQb29vWGHErja2lpNnTpVVVVVQ9ab2SrnXGuu1zAAHUAsBTQJM1CRqqqqNH369LDDKFt8zAcglkaabNnnJMwA8C4kUwBiKaBJmAHgXUimAMTSggVSe3tmjJRZ5md7u++5AwHgXRgzBSC2FiwgeQIQPO5MAQAA+EAyBQAA4APJFAAAgA8kUwAAAD6QTAEAAPhAMgUgUBQbBhB3TI0AIDADxYZ7ejLLA8WGJaYsABAf3JkCEJjFiwcTqQE9PZn1ABAXJFMAAkOxYQCVgGQKQGAoNgygEpBMAQgMxYYBVAKSKQCBodgwgErAt/kABIpiwwDijjtTAAAAPpBMAQAA+EAyBQAA4IPnZMrMkmb2pJndk+O5GjP7mZm9ZGZPmFlLUaMEAAAoU/ncmfqCpDUjPHe5pLecc0dK+ndJ3/EbGABEGTUJgcrhKZkys6mSzpZ04wibnCdpWfb3OyXNMzPzHx4ARM9ATcKuLsm5wZqEJFRAPHm9M3WdpH+SlB7h+UMlvSJJzrm9kt6R1Og3OACIImoSApVlzGTKzM6R9LpzbpXfnZnZQjPrNLPOLVu2+G0OAMoSNQmByuLlztRpks41s/WSbpd0hpndMmybVyUdJklmlpI0UdLW4Q0559qdc63OudampiZfgQNAuaImIVBZxkymnHNfdc5Ndc61SLpI0m+dc58cttndki7J/v432W1cUSMFgIigJiFQWQqeZ8rMvmlm52YXfyyp0cxekvRFSdcUIzgAiCJqEgKVxcK6gdTa2uo6OztD2TcAAEA+zGyVc64113PMgA4AAOADyRQAAIAPJFMAAAA+kEwBAAD4QDIFIHIWLZJSqcw35VKpzDIAhCUVdgAAkI9Fi6Qbbhhc7u8fXF66NJyYAFQ27kwBiJT29vzWA0DQSKYAREp/f37rASBoJFMAIiWZzG89AASNZApApCxcmN96AAgaA9ABRMrAIPP29sxHe8lkJpFi8DmAsJBMAYicpUtJngCUDz7mAwAA8IFkCgAAwAeSKQAAAB9IpgAAAHwgmQIAAPCBZApAQebPzxQaHnjMnx92RKXR0SG1tEiJROZnR0fYEQEREcTFUyYXJMkUgLzNny899NDQdQ89FP+EqqMjM6dVV5fkXObnwoUkVMCYgrh4yuiCNOdcyXcqSa2tra6zszOUfQPwx2zk50L6k1ISLS2Zv9fDNTdL69eXOhogQoK4eEp8QZrZKudca67nuDMFAB51d+e3HkBWEBdPGV2QJFMA4NG0afmtB5AVxMVTRhckyRSAvM2bl9/6uLj2Wqm+fui6+vrMegCjCOLiKaMLkmQKQN4efPDdidO8eZn1cbZgQabAcnNzZtxYc3NmecGCsCMDylwQF08ZXZAMQAcAABgDA9ABAAACQjIFAADgA8kUAACADyRTAAAAPpBMAShImGW2yqQcFwBIklJhBwAgegZKYvX0ZJYHSmJJhX8r2WubQewbAPxgagQAeQuzzBb18QCEgakRABRVmGW2yqgcFwBIIpkCUIAwy2yVUTkuAJBEMgWgAGGW2SqjclwAIIlkCkABwiyzVUbluABAEgPQAQAAxsQAdAAAgICQTAEAAPhAMgUAAOADyRQAAIAPJFNAiYRZTy6ffVP3DigTXIyRQW0+oATCrCeXz76peweUCS7GSGFqBKAEwqwnl8++qXsHlAkuxrIz2tQIJFNACSQSUq5LzUxKp8tn32HGCWA/XIxlh3mmgJCFWU8un31T9w4oE1yMkUIyBZRAmPXk8tk3de+AMsHFGCkkU0AJhFlPLp99U/cOKBNcjJHCmCkAAIAxMGYKAAAgICRTAAAAPpBMAQAA+EAyBQAA4MOYyZSZ1ZrZSjNbbWbPmtk3cmxzqZltMbOnso8rggkXAACgvHi5M7Vb0hnOuRMlzZL0ETObm2O7nznnZmUfNxYzSACls2iRlEplvo2dSmWW/WwXlQLPAFCoMQsdu8zcCTuyi1XZRzjzKQAI1KJF0g03DC739w8uL12a/3ZRKfAMAH54mmfKzJKSVkk6UtIPnHNfGfb8pZK+JWmLpBclXe2ce2W0NplnCig/qVQmMRoumZT27s1/u6gUeAaAsfieZ8o51++cmyVpqqT3mdlxwzb5taQW59wJkh6QtGyEQBaaWaeZdW7ZssVzBwCURq4EKdd6r9t1d+febqT1xRTmvgFUlry+zeece1vSckkfGbZ+q3Nud3bxRklzRnh9u3Ou1TnX2tTUVEC4AIKUTHpb73W7qBR4BgA/vHybr8nMJmV/r5N0pqTnh20zZb/FcyWtKWKMAEpkYEzRWOu9bheVAs8A4IeXO1NTJC03s6cl/UHSA865e8zsm2Z2bnabz2enTVgt6fOSLg0mXABBWrpUamsbvMOUTGaW9x9Uns92USnwDAB+UOgYAABgDBQ6BgAACAjJFAAAgA8kUwAAAD6QTAEAAPhAMgWUSBB14rzWxwuiTa/9iUq/IyGIgxnmiQTiwjkXymPOnDkOqBS33OJcfb1z0uCjvj6zvlBtbUPbG3i0tQXfptf+RKXfkRDEwQzzRAIRI6nTjZDTMDUCUAJB1InzWh8viDa99icq/Y6EIA5mmCcSiJjRpkYgmQJKIJHI/Hd+ODMpnS6sTbORnyv0svbaptf+RKXfkRDEwQzzRAIRwzxTQMiCqBPntT5eEG167U9U+h0JQRzMME8kECMkU0AJBFEnzmt9vCDa9NqfqPQ7EoI4mGGeSCBORhpMFfSDAeioNLfc4lxzs3NmmZ/FGLvb1uZcMpkZD5xMFmcQttc2vfYnKv2OhCAOZpgnEogQMQAdAACgcIyZAgAACAjJFAAAgA8kUwAAAD6QTAEAAPhAMgVgCEq1IaeoFESMSpyIlVTYAQAoHx0dmfmaenoyy11dg/M3LViQ/3aIiUWLpBtuGFzu7x9cXro0nJhyiUqciB2mRgCwD6XakFNUCiJGJU5EElMjAPCku9vbeq/bISZyJSijrQ9LVOJE7JBMAdiHUm3IKSoFEaMSJ2KHZArAPpRqQ05RKYgYlTgROyRTAPZZsEBqb8+MfTLL/Gxvf/egcq/bISaWLpXa2gbv8CSTmeVyG9QdlTgROwxABwAAGAMD0AEAAAJCMgUAAOADyRQAAIAPJFMAAAA+kEwBAAD4QDIF5BBEEd982gyzVisFjEMQt4Pu9Q0cZr+DqOhd7P7E7X0RZ865UB5z5sxxQDm65Rbn6uudkwYf9fWZ9aVos61t6HYDj7a2wvcfRJwokrgddK9v4DD77XXf+cRY7P7E7X0RA5I63Qg5DfNMAcMEUcQ3nzbDrNVKAeMQxO2ge30Dh9nvICp6F7s/cXtfxMBo80yRTAHDJBKZ/wYOZyal08G3aTZyO0FfrkH0HWOI20H3+gYOs99e951PjMXuT9zeFzHApJ1AHoIo4ptPm2HWaqWAcQjidtC9voHD7HcQFb2L3Z+4vS9ijmQKGCaIIr75tBlmrVYKGIcgbgfd6xs4zH4HUdG72P2J2/si7kYaTBX0gwHoKGe33OJcc7NzZpmfxRjzmU+bbW3OJZOZMafJZGkGnw8Iou8YQ9wOutc3cJj99rrvfGIsdn/i9r6IODEAHQAAoHCMmQIAAAgIyRQAAIAPJFMAAAA+kEwBAAD4QDIFlEiY9f4KrfXnnFPf1j719+SY0RoYSZg15ebPz7zRBx7z54fSXn9/j3p6XlRvb7fC+qIXSicVdgBAJejoyEyz09OTWe7qGpx2Z8GCYNtctEi64YbB5f7+weWlS3O3vfO5nVr7+bXa9t/bMv8Q9Eu102s1+dLJOuxLhylRw//DMIIg3uxezZ8vPfTQ0HUPPZRZ/+CDJWnvnXd+rxdfbFNPzxolEjVyrl+JRL0OPvgiHX74vyqVmpB/HCh7TI0AlECY9f7yrfXX9a9d6vpfXUr3pqVhfx4SdQnVHFajE35zgupa6goLHPEWZk25YtdiyqM955xeeulqbdzYrnR6V46mapRKTdKJJ96vhoYT8o8FoWNqBCBk3d35rS9mm7kSqZHWb7plk7qu7VJ617sTKUlK70pr19pdWn3mavXv4qM/5BDEmz0CXn31+9q48Uc5EylJcm63+vo2a/XqM9XX91aJo0PQSKaAEgiz3p/XUmk7Vu/QiwtfVLpnjCKqTtrz6h69dPVL3gJFZanAmnLvvPN7rVv3VaXTPWNuu3fv23rhhctLEBVKiWQKKIEw6/15LZW24foNmY/2PEjvSmvzss3a8/oej9GiYoRZU27evPzWF6m9DRuuH/GO1HDO7dGbb/6Xdu1aV1hMKEskU0AJLFggtbdnho2YZX62t/sbj+u1zaVLpba2wTtRyWRmefjg8633bs350d5IrNq0/Q/bC+8A4imIN7tXDz747gRo3rzCBp/n0d5bbz2QV7NmVdq27YnCYkJZYgA6AEnSwzUPy+3x/vcgUZfQEd87QodeeWiAUQHl73e/S0nKZwxhSocf/i1Nm/bloEJCABiADmBMVY1VeW1vSVNqErOrAFVVjXltn0hUq6rqgICiQRhIpgBIkhpmN+S1fbovrUkfnBRMMECENDTMzvMVaR1wgM/JRFFWSKYASJKmfmGqEg0e/ySY1HhWo2qm1AQbFBABhx12tZJJ7/8ZmTjxQ6qtbQ4wIpQayRQASdIB8w9Q9cHVnrZN1CU07Z/j+1V3IB8HHHCmqqqaPG2bSNSrpeV/BhwRSm3MZMrMas1spZmtNrNnzewbObapMbOfmdlLZvaEmbUEEi3gk9eSYWGWFsuH15p7XvpjZjr6pqOVrh79z4LVmJoubNKE1hDLYgRxgop5MMPed6HFGEvNa927fI55COfRzHT00TcrkagfY7saHXTQeZp4z/p4/SGK2x/WQjjnRn1IMkkN2d+rJD0hae6wbRZJ+mH294sk/WysdufMmeOAUrrlFufq653L1IHIPOrrM+sL2S5sbW1DYxx4tLUN3W6k/nTc2Oe6v9ft/jDnD+7RpkfdioYV7sEJj7rlWj7yI5X5+UjjI25Fwwq3YuIKt/L4le6lr7zkdj6/szQdD+IE+T2Y5bRvr+2Fbd683HHOmzd0u3yOeYnOY1/f2279+m+5lStPdI88cqB7+OF69+ijTW75co3ySLnly+UeeajePfxfcivukXviZrm1i+S2H1sb3T9EcfvDOgpJnW6EnCavqRHMrF7So5LanHNP7Lf+N5L+xTn3mJmlJG2S1ORGaZypEVBqXkuGhVlaLB9ea+7l6s9svakliTU6oKY/UzpmmH5JOSdON+WeiyopJaoSOvSzh+rw7xwuS4xS08yvIE6Qn4NZbvvOtxhjWLzWvcvnmJfgPL7xxj16/vlLlE73KJ3uzbHFSBfJCOvTUqJPOuT3DZrx9a1KJKp9x1hScfvDOorRpkbwlEyZWVLSKklHSvqBc+4rw57/k6SPOOc2ZJf/LOkU59wbw7ZbKGmhJE2bNm1OV64DCwQkkchd69RMSqfz3y5sXv8tGt6fuXpDX9dzqlXxO5OoT2jK5VM04/szit724E4COEGFHsxy3Hexi/0GJYhjHvB53Lz5Nr3wwhWeysbkK9ErNR52oWbOvE1mFp0/RHH7wzoK3/NMOef6nXOzJE2V9D4zO66QQJxz7c65Vudca1OTt8F6QLF4LRkWldJiXmvu7R93o3bra1oTSCIlSemetDb+eKO2/GJLIO1LCuYEFXIwy3XfXtuLinyOeYDncdeudYElUpKUrpW2bv21Nm5sHz2WcvtDFLc/rAXK69t8zrm3JS2X9JFhT70q6TBJyn7MN1HS1iLEBxSN15JhYZYWy4fXmnv79+cMva5kQInUgHRPWuv+OcC6Y0GcoEIOZrnu22t7YfNaRy+fYx7gedy06Sdyrm/E54shne7Ryy9/PTMWOSp/iOL2h7VAXr7N12Rmk7K/10k6U9Lzwza7W9Il2d//RtJvRxsvBYTBa8mwMEuL5cNrzb39+zNPm1WTTwG+AvWu69Xe7QGNzwniBBVyMMt1317bC5vXOnr5HPMAz+Prr/8s8GRKkvr7t2n37u7o/CGK2x/WAo05ZsrMTpC0TJnxqAlJ/+mc+6aZfVOZke13m1mtpJ9KOknSm5Iucs6N+l9TBqADpff7Kb/Xnk17At9PcnxSs1fO1rijxwW+L6AUHnlkgvr7gy/snUxO1PHH/1qTJn0g8H0hP6ONmRqzsJZz7mllkqTh65fs93uvpL/1EySA4CXGFTBP78BL8vh00PU7JWqYExjxkUjUFZBMJZT5Bl8+d4Pd4Df6EBn8tQMqyIRTCphoM628EilJsipTbXNt/vsCylRDw4kFvCqt/BIpKZ3erXHjTihgXwgTyRRQQaZ8eooS9YVd9lbrbe4oqzEddP5Bwc41BZTYlCkLlUgU9rF1ZiSMFwlNnPh+JZN1Be0H4SGZAirIAR86QAd+9EBZ9diJTqIuocl/P1kyafwp45UaP+aoAMmk6qZqzbg+wHmmgBA0NX1M48fPkYfRMUok6nTIIRdLSqihYbZSqfGe9pFI1Oq97/2hv0ARCpIpoMIc/eOjNWHuhFHvUCXqEjr8O4dnxlg5qe/1Ph1/7/FKHZCSpUZIxJJSclxSJ9x/glITPCReQISYmWbO/Jnq649WIjHynaNEok7NzUtUVdUoKa29e9/U8cf/WsnkRI1QVyD7unodc8xPVV9/ZPGDR+BIpoAc4lyPMzUxpVm/naX3LHqPrNqUHJ+UVZsS9Qkl6hKqPbxWJ/zXCZr6uana9tg2SdLuV3ar4cQGnfynkzXxAxNlNdnX1ZiSDUkl6hOaeNpEnfynkzXumIh+gy8KxVqDiDHMNr0qkwuypmayWls7ddBBF8isZt/HfmbVSiTGqarqEM2ceaeam6/Rtm2PSZJ2796ghoaTdPLJz2j8+JOzr6uXZEokapVMjldNTbNOOulRNTVdUHhwZXKMKtZIRfuCflDoGOUqBvU4Pdvz1h73+p2vu1eue8W9duNrbucLg8WK0+m0e3jcw265lrsVDSvc9qe3D77ujT1u022b3CvXv+I2dWxy25/Z7tLpdBhdKI4oFGsNIsYw2yx2v0ts165X3Guv3ehefvkbrrv73922bauGXAMrVkxwy5fLrVgx3m3fvnrf+t7eDe7VV3/kXn75G27Dhh+4t9562PX39/kLpkyPUdyoWIWOi4l5plCuYlCPsyh6N/Rq5XtXKr0rreT4pN57w3t1yIJDwg4rGFEo1hpEjGG26VUEL8g9ezbrscea5dxuJZMNmjFjqSZP/lRwO4zgMYoi37X5gErS3Z3f+rja+OON+37v396v1370WojRBMzrSQ/zzRFEjGG26VUEL8hNm34qs8z4qP7+Hdq06f8Gu8MIHqO4IZkChol5PU7PttyxReldaSXqErJq0zsPv6M9W4KfPT0UUSjWGkSMYbbpVQQvyE2bblI63aNkcoISiXF6++0HtXt3gP8ZieAxihuSKWCYmNfj9GzOyjk6deOpOmXdKZrbNVenvXGaqptiOjNzFIq1BhFjmG16FcELctas36m19RmddNJ/a/bsx/W+9z2v6uopwe0wgscodkYaTBX0gwHoKGe33OJcc7NzZpmfjOOsAF5PephvjiBiDLNNr7ggx8YxCpwYgA4AAFA4BqADAAAEhGQKAADAB5IpAAAAH0imAAAAfCCZAgDJe22zRYukVEoyy/xctMhfe0HwGqMUTG2+KByjSq1lxzEPxkhf8wv6wdQIAMqG19pmbW1Dtxl4tLUV1l4QvMaYT5z59CcKx6hSa9lxzH0RUyMAwCi81jZLpaT+/ndvl0xKe/fm314QvMYoBVObLwrHqFJr2XHMfRltagSSKQBIJDL/Vx7OTEqnhy6PZP/Xe20vCF5jlLzHmU9/onCMwtx3mDjmvjDPFACMxmtts2Qy93bD14dZK81rjFIwtfmicIwqtZYdxzwwJFMA4LW22cKFuV8/fH2YtdK8xigFU5svCseoUmvZccyDM9JgqqAfDEAHUFa81jZra3MumcwMoE0mcw/szqe9IHiN0blgavNF4RhVai07jnnBxAB0AACAwjFmCgAAICAkUwAAAD6QTAEAAPhAMgUAAOADyRSAYEWlHlex4zz22MyEhAOPY48tvxiD2ndUzjlQLCN9zS/oB1MjABUgKvW4ih3nzJm569PNnFk+MQa176iccyBPYmoEAKGISj2uYseZT0kXr6JSVy0q5xzIE7X5AIQjKvW4ih1nEMlUVOqqReWcA3linikA4YhKPa4oxBmVumpROJZAkZFMAQhOVOpxFTvOmTPzW+9FVOqqReWcA0VEMgUgOAsWSO3tmfEyZpmf7e2Z9eWk2HE+++y7E6eZMzPryyXGoPYdlXMOFBFjpgAAAMbAmCkAAICAkEwBAAD4QDIFAADgA8kUAACADyRTAAAAPpBMAYivIAruem0zKkWJgVKJ8fsyFXYAABCIjg5p4UKppyez3NWVWZYKn/PIa5tB7LvYMQKlFPP3JfNMAYin/Qru7pH0tKTNkg6dMkUnbNigRKKAG/Nei/hGpSgxUCoxeF8yzxSAytPdrX5J/yHpQEnzJP2dpA9s3KjGxkbddtttBbXpab3X7YIQ5r6BkcT8fUkyBSCepk3T30v6iqSdkrZlHzskvf3227r88su1ZMkS5XV33msR36gUJQZKJebvS5IpALF011//tX4uqWeE53ft2qXvfve7+d2h8lrENypFiYFSifn7kmQKQOy88cYbuvQnPxkxkRrQ09Ojz33uc+rt7fXWsNcivlEpSgyUSszflwxABxA7d911ly655BJt3759zG0nTJig++67T6eeemoJIgMQVQxAB1BRurq6tHv3bk/bOufUHZNBsADCQTIFIHYmT56smpoaT9uamQ488MCAIwIQZyRTAGLnlFNOUV9fn6dt0+m03v/+9wccEYA4GzOZMrPDzGy5mT1nZs+a2RdybPMhM3vHzJ7KPpYEEy4AjG369OmaO3fumNtVV1fryiuvVF1dXQmiAhBXXu5M7ZX0JefcTElzJX3GzGbm2O4R59ys7OObRY0SgD9h1qgLyb/927+prrp61G1qamr0pS99KbMQhZp7YVq0SEqlMt/ESqUyy+WoUs8PQjVmbT7n3EZJG7O/bzezNZIOlfRcwLEBKIYwa9SVUH9/v+69917dd999WrdunWzjRu3as2fU16RSKV188cU6YNs2HbNqlS7fu1eHSeVZcy9MixZJN9wwuNzfP7i8dGk4MeVSqecHoctragQza5G0QtJxzrlt+63/kKSfS9og6TVJX3bOPTtaW0yNAJRIEDWxyqzO1jPPPKMLL7xQr7zyinbs2DHkuZQyt9eHM7Mhs58nJdVIWizpy5KqpfKquRemVCqTQA2XTEp7cx3dkFTq+UFJjDY1gudkyswaJD0s6Vrn3C+GPTdBUto5t8PMzpJ0vXNuRo42FkpaKEnTpk2b05XrTQ+guBIJKdd1bial0+XTZoGeeeYZnXrqqdq5c2dR2quX9B5JT0kaN7w/ZdTvkjIb+bmQ5irMqVLPD0rC9zxTZlalzJ2njuGJlCQ557Y553Zkf79XUpWZHZRju3bnXKtzrrWpqSmvTgAoUBA1scqkzpZzTuecc07REikpU37mVUn/JJVXzb0wJZP5rQ9LpZ4fhM7Lt/lM0o8lrXHOfW+EbSZnt5OZvS/b7tZiBgqgQEHUxCqTOlurVq3Sm2++WfR2d0m6UVLv178+9Iky6XfJDYw78ro+LJV6fhA6L3emTpP0KUln7Df1wVlmdqWZXZnd5m8k/cnMVkv6vqSLXFh1agAMFURNrDKps/XII49ozxiDzAtVW1enNbNmDV1ZJv0uuaVLpba2wTtRyWRmuZwGn0uVe34QOmrzAYis73znO1q8eLH6cw2O9mnixIm67777PM1XBSD+qM0HIJaOPPJI1Q//WGcMiYS3P3u9vb2aPn16IWEBqDAkUwAia968eXnflUp7+FZXVVWVTj/9dB1yyCGFhgaggpBMAYisSZMm6Vvf+taYd6fq6up03HHHSZJmz57tafuf/vSnRYsTQLyRTAGItM9+9rP6yle+MmJ9vfr6ei3NDpQ2M/3VX/2VLrzwwhETqrq6Ot10003clQLgGckUgEhLJBJasmSJHnvsMR199NFKJpOqq6tTbW2tzj77bD388MO6+OKLtXbtWjnn9MQTT+imm27SjTfeqNmzZ6uqqkp1dXVKJpOaPXu2HnvsMX3sYx8Lu1sAIoRkCqgEFVD89cQTT9SaNWu0fft2rV27Vu+8847umTZNrXPnan0yqeTu3ZKkp59+WpL0iU98Yt88VWvXrtWuXbu0atUqnXjiiWF2A0AEjVnoGEDEVVjx17q6Oh166KFDivM+KGmgIMqWTZu0ceNGTZkyRZLU0NCghoaGcIIFEAvcmQLibvHiwURqQE9PZn2ctbfv+/W7knolTZDUl07re9/LWcwBAArCnSkg7rq781sfF/tNmXCbpP17e+KiRSUPB0B8kUwBcTdtWuajvVzr4yyZ3JdQzc4+9q1nMk4ARcTHfEDcVWrx16gU5wUQeSRTQNxVavHXqBTnBRB5FDoGAAAYA4WOAQAAAkIyBQAA4APJFAAAgA8kUwAAAD6QTAE+xa7sXZw6FKe+hI1jCYyISTsBH2JX9i5OHYpTX8LGsQRGxdQIgA8tLbknF29ultavL3U0RRCnDsWpL2HjWAKjTo1AMgX4kEhIuS4hMymdLn08vsWpQ3HqS9g4lgDzTAFBGam8XWTL3sWpQ3HqS9g4lsCoSKYAH2JX9i5OHYpTX8LGsQRGRTIF+BC7sndx6lCc+hI2jiUwKsZMAQAAjIExUwAAAAEhmQIAAPCBZAoAAMAHkikAAAAfSKYAICoWLZJSqcw36lKpzLJf1NwDfKM2HwBEwaJF0g03DC739w8uL11aWJvU3AOKgqkRACAKUqlMAjVcMint3VtYm9TcAzxjagQAiLpcidRo673o7s5vPYCcSKYAIAqSyfzWe0HNPaAoSKYAIAoGxjJ5Xe8FNfeAoiCZAoAoWLpUamsbvBOVTGaWCx18LlFzDygSBqADAACMgQHoAAAAASGZAgAA8IFkCgAAwIfYz4C+ecdmPdL9iJ5/43nt6tulIw48QmfNOEuTGyaHHRoAAIiB2CZTPX09+uJvvqhlq5epKlGlnXt2Kq20xlWN06L/t0izp8zWbR+7Tc2TmsMOFQAARFgsP+Zb//Z6zfrhLC1bvUy9e3u1fc92pZWWJO3s26nd/bu18tWVOm7pcbpv7X0hRwsAAKIsdsnUW7ve0sk/Oll/fuvP6t3bO+J2/a5fO/p26G/v+Fute2tdCSMEAABxErtk6tJfXqptu7cp7dKetu/Z26Nzbj1H/Wkf9a0AAEDFilUy1fV2l+5fd7/29O/x/Jq0S6v7nW7d8dwdAUYGAADiKlbJ1N0v3C2T5f26nX071fFMRwARAQCAuItVMvX4hse1a++ugl777OvPFjkaAABQCWKVTPX09RT82h17dhQxEgAAUClilUwdceARShTYpSkNU4ocDQAAqASxSqbOPepcjasel/fr6lJ1+uSJnwwgIgAAEHexSqZOO+w0meU/AF2SPj3700WOBgAAVIJYJVPJRFL/+Bf/qLpUnefXpCylvzv+7zSpdlJwgQEAgNgaM5kys8PMbLmZPWdmz5rZF3JsY2b2fTN7ycyeNrPZwYQ7ti+e+kWNrxnvefvaqlp940PfCDAiAAAQZ17uTO2V9CXn3ExJcyV9xsxmDtvmo5JmZB8LJd1Q1CjHsH33dj29+Wk9vP5hrd60Wv/ywX9RbbJ2zNfVper05VO/rO53uvW79b/THzf+cdQSNEBF6OiQWlqkRCLzs4M52ABgNOacy+8FZr+S9B/OuQf2W/d/JP3OOXdbdvkFSR9yzm0cqZ3W1lbX2dlZWNRZv37h1/ra8q/puS3Pqa6qbt+EnXvTe7Wzb6enNsZVjVMqkZIkOefU29+rY5uO1dWnXq1PHv/JgsdgAZHU0SEtXCj17DfNSH291N4uLVgQXlwAEDIzW+Wca835XD7JlJm1SFoh6Tjn3Lb91t8j6dvOuUezyw9J+opzbsRsyU8ytWXnFl1+9+V66OWHfM0tNZpxVeN09EFH61cX/UqHTjg0kH0AZaelRerqevf65mZp/fpSRwMAZWO0ZMrzAHQza5D0c0lX7Z9I5RnIQjPrNLPOLVu2FNKEduzZoZN/dLLue+m+wBIpKVNi5qlNT+mDN39Q23YX1F0gerq781sPAPCWTJlZlTKJVIdz7hc5NnlV0mH7LU/NrhvCOdfunGt1zrU2NTUVEq8+ddentHnHZvWl+wp6fT76Xb82bNugC++4MPB9AWVh2rT81gMAPH2bzyT9WNIa59z3RtjsbkkXZ7/VN1fSO6ONlyrUn9/8s37z0m/U21+6QeK7+3drRfcKPb7h8ZLtEwjNtddmxkjtr74+sx4AkJOXO1OnSfqUpDPM7Kns4ywzu9LMrsxuc6+kdZJekvQjSYuCCPbna34up/wGzBdD795e/XzNz0u+X6DkFizIDDZvbpbMMj8ZfA4Ao0qNtUF2UPmoX2lzmVHsnylWUCO5/8/3hzJ1Qdql9Wj3oyXfLxCKBQtIngAgD5GaAf3t3rdD2/fWnq2h7RsAAJSvSCVTh4w7pODXmkwJK7y7E2smFvxaAAAQX5FKpj7Y8kHVJGvyfl1CCTk5pV1aSUvm/fqqRJU+cuRH8n4dAACIv0glUxccc0Fhd5f2G/HV7/rzfnl1slrnHX1e/vsFAACxF6lk6sgDj9Qnjv+E6lJ1nl9TX1WvhbMXqi5Vp4bqBn169qdVX1U/9guzqpPVOmP6GWp9T85JTwEAQIWLVDIlST846wc68sAjPX1cV5uq1fRJ03XprEtVlahSwhK6/KTLdVTjUapNjV0IOZVIaVLtJP3kvJ8UI3QAABBDkUumalO1uv9T9+vYpmNHvcNUX1Wv+dPn64krntCzW55Vv+tXf7pfa95Yo0cve1RnHXnWqK+vS9XpuIOP0zNtz6ixvjGIrgAAgBiIXDIlSZMbJuuP//BHfe30r2nqhKmqS9VpYs1ETaiZoOpkteZOnaulZy3V3Z+4W+Oqx2nlqyu1s2+ndvbt1B9e/YPqq+p158fvVPs57Tp16qmqSdZoQs0ETaiZoLpUnSZUT9BX3/9VPX754zp43MFhdxcAAJQxy8y3WXqtra2us7OzKG11vd2l7ne6VZuq1REHHqED6w4c8vysH87S6s2rJUlzpsxR58Kh+31r11t66c2XtDe9V9MmTtN7xr9HmSo6AAAAkpmtcs7lHEA95gzoUdA8qVnNk5pzPuec04tbX9y3/Pwbz8s5NyRZOqDuAJ186MmBxwkAAOIntDtTZrZFUlfgO0ppqg5Sk2zfR5ppbdUL2qOewPeNsRwk6Y2wg8CIOD/li3NT3jg/5cvPuWl2zjXleiK0ZKpUzKxzpNtyCBfnprxxfsoX56a8cX7KV1DnJpID0AEAAMoFyRQAAIAPlZBMtYcdAEbEuSlvnJ/yxbkpb5yf8hXIuYn9mCkAAIAgVcKdKQAAgMDEMpkys1ozW2lmq83sWTP7RtgxYSgzS5rZk2Z2T9ixYCgzW29mz5jZU2ZWnJl1UTRmNsnM7jSz581sjZmdGnZMkMzsqOw1M/DYZmZXhR0XBpnZ1dmc4E9mdpuZjV2k12vbcfyYzzIzco5zzu0wsypJj0r6gnPu8ZBDQ5aZfVFSq6QJzrlzwo4Hg8xsvaRW5xzz5JQhM1sm6RHn3I1mVi2p3jn3dshhYT9mlpT0qqRTnHPBz6eIMZnZocrkAjOdc7vM7D8l3eucu7kY7cfyzpTL2JFdrMo+4pc1RpSZTZV0tqQbw44FiBIzmyjpdEk/liTn3B4SqbI0T9KfSaTKTkpSnZmlJNVLeq1YDccymZL2fYz0lKTXJT3gnHsi5JAw6DpJ/yQpHXIcyM1Jut/MVpnZwrCDwRDTJW2R9JPsx+Q3mtm4sIPCu1wk6bawg8Ag59yrkv63pG5JGyW945y7v1jtxzaZcs71O+dmSZoq6X1mdlzIIUGSmZ0j6XXn3KqwY8GI3u+cmy3po5I+Y2anhx0Q9klJmi3pBufcSZJ2Srom3JCwv+xHr+dKuiPsWDDIzA6QdJ4y/yF5j6RxZvbJYrUf22RqQPYW+HJJHwk5FGScJunc7Lic2yWdYWa3hBsS9pf9H5ycc69LukvS+8KNCPvZIGnDfnfa71QmuUL5+KikPzrnNocdCIaYL+ll59wW51yfpF9I+otiNR7LZMrMmsxsUvb3OklnSno+1KAgSXLOfdU5N9U516LMrfDfOueK9r8D+GNm48xs/MDvkv6HpD+FGxUGOOc2SXrFzI7Krpon6bkQQ8K7fUJ8xFeOuiXNNbP67JfU5klaU6zGU8VqqMxMkbQs+42KhKT/dM7xFXxgbIdIuivzt0YpSbc65+4LNyQM8zlJHdmPk9ZJ+vuQ40FW9j8gZ0r6h7BjwVDOuSfM7E5Jf5S0V9KTKuJs6LGcGgEAAKBUYvkxHwAAQKmQTAEAAPhAMgUAAOADyRQAAIAPJFMAAAA+kEwBAAD4QDIFAADgA8kUAACAD/8f9jKEPEpsyacAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#importer les bibliothèques\n", + "#pour l'affichage (si déjà fait pour np, plt)\n", + "%matplotlib inline\n", + "#charger des datasest de sklearn\n", + "from sklearn import datasets\n", + "#charger la base iris\n", + "iris = datasets.load_iris()\n", + "#vérifier le type de la variable iris\n", + "print(type(iris))\n", + "#vérifier le type de données\n", + "print(type(iris.data))\n", + "#vérifier les dimensions\n", + "print(iris.data.shape)\n", + "#Sur wikipédia chercher la signification de ces données\n", + "X = iris.data[:, :2] # Utiliser les deux premières colonnes afin d'avoir un␣\n", + "print(np.unique(iris.target))\n", + "#on va garder deux classes seulement pour un test simple\n", + "y = (iris.target != 0) * 1 # re-étiquetage des fleurs\n", + "print(X.shape)\n", + "print(np.unique(y))\n", + "#visualisation des données\n", + "plt.figure(figsize=(10, 6))\n", + "plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='b', label='classe 0')\n", + "plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='r', label='classe 1')\n", + "plt.legend();\n", + "#charger le modèle pour y binaire\n", + "from sklearn.linear_model import LogisticRegression\n", + "model = LogisticRegression(C=1e20) # Régression logistique\n", + "# Entrainement du modèle avec toutes les données\n", + "model.fit(X, y)\n", + "Xnew = np.array([\n", + "[5.5, 2.5],\n", + "[7, 3],\n", + "[3,2],\n", + "[5,3]\n", + "])\n", + "model.predict(Xnew)\n", + "#vérification visuelle\n", + "#visualisation des données\n", + "\n", + "plt.figure(figsize=(10, 6))\n", + "plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='b', label='y= 0')\n", + "plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='r', label='y= 1')\n", + "s = np.random.rand(*Xnew[:, 0].shape) * 800 + 500\n", + "print(s.shape)\n", + "Color='kygm' #noir jaune vert magneta\n", + "for i in range(Xnew.shape[0]):\n", + " plt.scatter(Xnew[i, 0], Xnew[i, 1],s[i],color=Color[i],marker=r'$\\clubsuit$',)\n", + "plt.legend();\n", + "\n", + " # comme n'importe quelle librarire, il faut commencer par la charger à l'aide␣\n", + "\n", + "import pandas\n", + "# maintenat que c'est fait on peut utiliser son contenu\n", + "# par exemple :vérifier la version installée sur votre machine\n", + "pandas.__version__\n", + " # et si on lui donne un nom pour faciliter les appels\n", + "import pandas as pd\n", + "\n", + "# Lecture d'un fichier de données et le récupérer sous forme de dataframe sous␣\n", + "\n", + "df = pd.read_csv(\"Prix_Appartements.csv\") # à partir d'un csv\n", + "df.head(5)\n", + "## On peut afficher les dimensions (nombre de lignes et de colonnes) ## avec␣\n", + "print('la taille :',df.shape) ## (nb lignes, nb colonnes) print('*'*40)\n", + "print('Avec :',df.shape[0],' lignes') ## (nb lignes, nb colonnes) print('*'*40)\n", + "print('Avec :',df.shape[1],' colonnes') ## (nb lignes, nb colonnes)␣\n", + "print('*'*40)\n", + "## La commande df.head(n) permet d'afficher uniquement les n premiers éléments␣\n", + "# car la taille de la dataframe est grande avec 4622 lignes\n", + "df.head(6) # les 6 premières lignes de 0 à 5 = 6-1\n", + "\n", + " ## De même df.tail(n) affiche les n=3 derniers éléments\n", + "df.tail(3)\n", + " # La commande describe() est très utile. Elle permet d'obtenir, en une seule␣\n", + "\n", + "# des statistiques des colonnes (UNIQUEMENT pour les colonnes de type numérique)\n", + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ea50541a", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}