{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "a9b74e9b",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"df = pd.read_csv(\"~/stats/Report_2021.csv\", encoding=\"latin-1\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4cf63957",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Country | \n",
" ISO Code | \n",
" Region | \n",
" Position 2021 | \n",
" Position 2020 | \n",
" Global Score | \n",
" With Abuses | \n",
" Without Abuses | \n",
" Journalist Killed | \n",
" Media Workers Killed | \n",
" Journalist Imprisoned | \n",
" Media Workers Imprisoned | \n",
" Situation | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Afghanistan | \n",
" AFG | \n",
" Asia Pacific | \n",
" 122 | \n",
" 122 | \n",
" 59.81 | \n",
" 36.72 | \n",
" 65.60 | \n",
" 3 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" Difficult | \n",
"
\n",
" \n",
" 1 | \n",
" Albania | \n",
" ALB | \n",
" Europe | \n",
" 83 | \n",
" 84 | \n",
" 69.41 | \n",
" 76.02 | \n",
" 69.41 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Problematic | \n",
"
\n",
" \n",
" 2 | \n",
" Algeria | \n",
" DZA | \n",
" Arab States | \n",
" 146 | \n",
" 146 | \n",
" 52.74 | \n",
" 64.45 | \n",
" 52.74 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" Difficult | \n",
"
\n",
" \n",
" 3 | \n",
" Andorra | \n",
" AND | \n",
" Europe | \n",
" 39 | \n",
" 37 | \n",
" 76.68 | \n",
" 100.00 | \n",
" 76.68 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 4 | \n",
" Angola | \n",
" AGO | \n",
" Africa | \n",
" 103 | \n",
" 106 | \n",
" 65.94 | \n",
" 74.35 | \n",
" 65.94 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Problematic | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 175 | \n",
" Venezuela | \n",
" VEN | \n",
" South America | \n",
" 148 | \n",
" 147 | \n",
" 52.40 | \n",
" 45.71 | \n",
" 53.84 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Difficult | \n",
"
\n",
" \n",
" 176 | \n",
" Vietnam | \n",
" VNM | \n",
" Asia Pacific | \n",
" 175 | \n",
" 175 | \n",
" 21.54 | \n",
" 31.96 | \n",
" 24.82 | \n",
" 0 | \n",
" 0 | \n",
" 24 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 177 | \n",
" Yemen | \n",
" YEM | \n",
" Middle East | \n",
" 169 | \n",
" 167 | \n",
" 37.65 | \n",
" 46.67 | \n",
" 37.65 | \n",
" 4 | \n",
" 0 | \n",
" 5 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 178 | \n",
" Zambia | \n",
" ZMB | \n",
" Africa | \n",
" 115 | \n",
" 120 | \n",
" 61.79 | \n",
" 100.00 | \n",
" 61.79 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Difficult | \n",
"
\n",
" \n",
" 179 | \n",
" Zimbabwe | \n",
" ZWE | \n",
" Africa | \n",
" 130 | \n",
" 126 | \n",
" 56.88 | \n",
" 65.34 | \n",
" 56.88 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" Difficult | \n",
"
\n",
" \n",
"
\n",
"
180 rows × 13 columns
\n",
"
"
],
"text/plain": [
" Country ISO Code Region Position 2021 Position 2020 \\\n",
"0 Afghanistan AFG Asia Pacific 122 122 \n",
"1 Albania ALB Europe 83 84 \n",
"2 Algeria DZA Arab States 146 146 \n",
"3 Andorra AND Europe 39 37 \n",
"4 Angola AGO Africa 103 106 \n",
".. ... ... ... ... ... \n",
"175 Venezuela VEN South America 148 147 \n",
"176 Vietnam VNM Asia Pacific 175 175 \n",
"177 Yemen YEM Middle East 169 167 \n",
"178 Zambia ZMB Africa 115 120 \n",
"179 Zimbabwe ZWE Africa 130 126 \n",
"\n",
" Global Score With Abuses Without Abuses Journalist Killed \\\n",
"0 59.81 36.72 65.60 3 \n",
"1 69.41 76.02 69.41 0 \n",
"2 52.74 64.45 52.74 0 \n",
"3 76.68 100.00 76.68 0 \n",
"4 65.94 74.35 65.94 0 \n",
".. ... ... ... ... \n",
"175 52.40 45.71 53.84 0 \n",
"176 21.54 31.96 24.82 0 \n",
"177 37.65 46.67 37.65 4 \n",
"178 61.79 100.00 61.79 0 \n",
"179 56.88 65.34 56.88 0 \n",
"\n",
" Media Workers Killed Journalist Imprisoned Media Workers Imprisoned \\\n",
"0 3 0 0 \n",
"1 0 0 0 \n",
"2 0 1 0 \n",
"3 0 0 0 \n",
"4 0 0 0 \n",
".. ... ... ... \n",
"175 0 0 0 \n",
"176 0 24 0 \n",
"177 0 5 0 \n",
"178 0 0 0 \n",
"179 0 1 0 \n",
"\n",
" Situation \n",
"0 Difficult \n",
"1 Problematic \n",
"2 Difficult \n",
"3 Satisfactory \n",
"4 Problematic \n",
".. ... \n",
"175 Difficult \n",
"176 Very Serious \n",
"177 Very Serious \n",
"178 Difficult \n",
"179 Difficult \n",
"\n",
"[180 rows x 13 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display(df)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c04f98fd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"64.91827777777779\n"
]
}
],
"source": [
"print(df['Global Score'].mean())"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "2a75a371",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([ 6., 3., 4., 9., 22., 25., 39., 39., 21., 12.]),\n",
" array([18.55 , 26.023, 33.496, 40.969, 48.442, 55.915, 63.388, 70.861,\n",
" 78.334, 85.807, 93.28 ]),\n",
" )"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQOUlEQVR4nO3df4zkdX3H8eerB4qilV9bcuWgR4VIiCmHbq8YrNFD7AlGsLENxNj7g/Rsgim0poo2bSVpE0hU9I/G5PSUS6OoRSwErUrxjLVpju7BgXecFMRT73JwS4UibUJ78O4f8z3ZLLvM3O7MzXzs85FMdr6f73f2+8rM7Gu/853vdyZVhSSpPb807gCSpKWxwCWpURa4JDXKApekRlngktSoo47kyk466aRavXr1kVylJDVv+/btj1XV1PzxI1rgq1evZmZm5kiuUpKal+RHC40PvAslyYok9yS5vZs+Pcm2JA8l+WKSFw0rrCSpv8PZB34VsHvO9PXADVV1BvA4cMUwg0mSXthABZ5kFXAx8OluOsA64OZukS3ApSPIJ0laxKBb4B8H3g88202fCDxRVQe76b3AKQvdMMnGJDNJZmZnZ5eTVZI0R98CT/I24EBVbV/KCqpqU1VNV9X01NTz3kSVJC3RIEehnA+8PclFwDHALwOfAI5LclS3Fb4K2De6mJKk+fpugVfVB6tqVVWtBi4DvlVV7wK2Au/sFtsA3DqylJKk51nOmZgfAP40yUP09olvHk4kSdIgDutEnqr6NvDt7vrDwNrhR5IkDeKInokp6flWX/PVcUc44vZcd/G4I/xC8MOsJKlRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVF9CzzJMUnuSnJvkl1Jru3Gb0zywyQ7usuakaeVJP3cIF+p9jSwrqqeSnI08N0k/9jN+7Oqunl08SRJi+lb4FVVwFPd5NHdpUYZSpLU30D7wJOsSLIDOADcUVXbull/k+S+JDckefEit92YZCbJzOzs7HBSS5IGK/Cqeqaq1gCrgLVJXg18EDgL+E3gBOADi9x2U1VNV9X01NTUcFJLkg7vKJSqegLYCqyvqv3V8zTwWWDtCPJJkhYxyFEoU0mO666/BLgQ+H6Sld1YgEuBnaOLKUmab5CjUFYCW5KsoFf4X6qq25N8K8kUEGAH8EejiylJmm+Qo1DuA85dYHzdSBJJkgbimZiS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUqEG+E/OYJHcluTfJriTXduOnJ9mW5KEkX0zyotHHlSQdMsgW+NPAuqo6B1gDrE9yHnA9cENVnQE8DlwxspSSpOfpW+DV81Q3eXR3KWAdcHM3voXeN9NLko6QgfaBJ1mRZAdwALgD+AHwRFUd7BbZC5wykoSSpAUNVOBV9UxVrQFWAWuBswZdQZKNSWaSzMzOzi4tpSTpeQ7rKJSqegLYCrwOOC7JUd2sVcC+RW6zqaqmq2p6ampqOVklSXMMchTKVJLjuusvAS4EdtMr8nd2i20Abh1RRknSAo7qvwgrgS1JVtAr/C9V1e1J7ge+kOSvgXuAzSPMKUmap2+BV9V9wLkLjD9Mb3+4JGkMPBNTkhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjBvlS41OTbE1yf5JdSa7qxj+cZF+SHd3lotHHlSQdMsiXGh8E3ldVdyd5ObA9yR3dvBuq6iOjiydJWswgX2q8H9jfXf9Zkt3AKaMOJkl6YYNsgf9cktX0vqF+G3A+8N4kfwDM0NtKf3yB22wENgKcdtppy80rjcTqa7467gjSYRv4TcwkLwO+DFxdVU8CnwReCayht4X+0YVuV1Wbqmq6qqanpqaWn1iSBAxY4EmOplfen6uqWwCq6tGqeqaqngU+BawdXUxJ0nyDHIUSYDOwu6o+Nmd85ZzF3gHsHH48SdJiBtkHfj7wbuB7SXZ0Yx8CLk+yBihgD/CeEeSTJC1ikKNQvgtkgVlfG34cSdKgPBNTkhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMO6/PApVHzc7mlwbkFLkmNssAlqVEWuCQ1ygKXpEb5JqakI25cb1bvue7isax3VNwCl6RGDfKdmKcm2Zrk/iS7klzVjZ+Q5I4kD3Y/jx99XEnSIYNsgR8E3ldVZwPnAVcmORu4Brizqs4E7uymJUlHSN8Cr6r9VXV3d/1nwG7gFOASYEu32Bbg0hFllCQt4LD2gSdZDZwLbANOrqr93axHgJOHG02S9EIGLvAkLwO+DFxdVU/OnVdVBdQit9uYZCbJzOzs7LLCSpKeM1CBJzmaXnl/rqpu6YYfTbKym78SOLDQbatqU1VNV9X01NTUMDJLkhjsKJQAm4HdVfWxObNuAzZ01zcAtw4/niRpMYOcyHM+8G7ge0l2dGMfAq4DvpTkCuBHwO+PJKEkaUF9C7yqvgtkkdkXDDeOJGlQnokpSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRg3yp8WeSHEiyc87Yh5PsS7Kju1w02piSpPkG2QK/EVi/wPgNVbWmu3xtuLEkSf30LfCq+g7w0yOQRZJ0GJazD/y9Se7rdrEcv9hCSTYmmUkyMzs7u4zVSZLmWmqBfxJ4JbAG2A98dLEFq2pTVU1X1fTU1NQSVydJmm9JBV5Vj1bVM1X1LPApYO1wY0mS+llSgSdZOWfyHcDOxZaVJI3GUf0WSHIT8EbgpCR7gb8C3phkDVDAHuA9o4soSVpI3wKvqssXGN48giySpMPgmZiS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGtX3VHpJ+kWx+pqvjm3de667eOi/0y1wSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIa1bfAk3wmyYEkO+eMnZDkjiQPdj+PH21MSdJ8g2yB3wisnzd2DXBnVZ0J3NlNS5KOoL4FXlXfAX46b/gSYEt3fQtw6XBjSZL6Weo+8JOran93/RHg5MUWTLIxyUySmdnZ2SWuTpI037LfxKyqAuoF5m+qqumqmp6amlru6iRJnaUW+KNJVgJ0Pw8ML5IkaRBLLfDbgA3d9Q3ArcOJI0ka1CCHEd4E/CvwqiR7k1wBXAdcmORB4M3dtCTpCOr7eeBVdfkisy4YchZNiHF+ZrKkwXkmpiQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY3q+3ngk2Kcn1G957qLx7ZuSVqMW+CS1KhlbYEn2QP8DHgGOFhV08MIJUnqbxi7UN5UVY8N4fdIkg6Du1AkqVHLLfACvplke5KNCy2QZGOSmSQzs7Ozy1ydJOmQ5Rb466vqNcBbgSuTvGH+AlW1qaqmq2p6ampqmauTJB2yrAKvqn3dzwPAV4C1wwglSepvyQWe5NgkLz90HXgLsHNYwSRJL2w5R6GcDHwlyaHf8/mq+vpQUkmS+lpygVfVw8A5Q8wiSToMzZxK///ROD8+QNLk8zhwSWqUBS5JjbLAJalRFrgkNco3MQfgm4mSJpFb4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElq1LIKPMn6JA8keSjJNcMKJUnqbznfSr8C+FvgrcDZwOVJzh5WMEnSC1vOFvha4KGqeriq/gf4AnDJcGJJkvpZzueBnwL8ZM70XuC35i+UZCOwsZt8KskDy1jnQk4CHhvy7xw2My7fpOcDMw7DpOeDJWbM9cta568tNDjyL3Soqk3AplH9/iQzVTU9qt8/DGZcvknPB2YchknPB5OVcTm7UPYBp86ZXtWNSZKOgOUU+L8BZyY5PcmLgMuA24YTS5LUz5J3oVTVwSTvBb4BrAA+U1W7hpZscCPbPTNEZly+Sc8HZhyGSc8HE5QxVTXuDJKkJfBMTElqlAUuSY1qqsCTnJpka5L7k+xKclU3fkKSO5I82P08fkz5jklyV5J7u3zXduOnJ9nWfeTAF7s3fccqyYok9yS5fRIzJtmT5HtJdiSZ6cYm4nHushyX5OYk30+yO8nrJizfq7r77tDlySRXT1LGLuefdH8rO5Pc1P0NTcxzMclVXbZdSa7uxibmPmyqwIGDwPuq6mzgPODK7vT9a4A7q+pM4M5uehyeBtZV1TnAGmB9kvOA64EbquoM4HHgijHlm+sqYPec6UnM+KaqWjPnmNtJeZwBPgF8varOAs6hd19OTL6qeqC779YArwX+G/jKJGVMcgrwx8B0Vb2a3sEQlzEhz8Ukrwb+kN5Z5+cAb0tyBhN0H1JVzV6AW4ELgQeAld3YSuCBCcj2UuBuemenPgYc1Y2/DvjGmLOtovfEWwfcDmQCM+4BTpo3NhGPM/AK4Id0BwFMWr4F8r4F+JdJy8hzZ3OfQO+IuNuB35mU5yLwe8DmOdN/Abx/ku7D1rbAfy7JauBcYBtwclXt72Y9Apw8xlwrkuwADgB3AD8Anqiqg90ie+k9ccfp4/SeiM920ycyeRkL+GaS7d3HMcDkPM6nA7PAZ7vdUJ9OcuwE5ZvvMuCm7vrEZKyqfcBHgB8D+4H/BLYzOc/FncBvJzkxyUuBi+idvDgx92GTBZ7kZcCXgaur6sm586r3b3Fsx0ZW1TPVe9m6it5Lr7PGlWUhSd4GHKiq7ePO0sfrq+o19D7t8sokb5g7c8yP81HAa4BPVtW5wH8x72X0uJ+Hh3T7j98O/P38eePO2O07voTeP8RfBY4F1o8rz3xVtZve7pxvAl8HdgDPzFtmrPdhcwWe5Gh65f25qrqlG340ycpu/kp6W79jVVVPAFvpvQQ8Lsmhk6bG/ZED5wNvT7KH3idIrqO3P3eSMh7aOqOqDtDbd7uWyXmc9wJ7q2pbN30zvUKflHxzvRW4u6oe7aYnKeObgR9W1WxV/S9wC73n58Q8F6tqc1W9tqreQG9//L8zQfdhUwWeJMBmYHdVfWzOrNuADd31DfT2jR9xSaaSHNddfwm9/fO76RX5O8edD6CqPlhVq6pqNb2X1t+qqncxQRmTHJvk5Yeu09uHu5MJeZyr6hHgJ0le1Q1dANzPhOSb53Ke230Ck5Xxx8B5SV7a/W0fuh8n6bn4K93P04DfBT7PJN2H49r5vsQ3FV5P7+XKffRezuygt1/qRHpvyj0I/BNwwpjy/QZwT5dvJ/CX3fivA3cBD9F7Kfvicd+XXa43ArdPWsYuy73dZRfw5934RDzOXZY1wEz3WP8DcPwk5esyHgv8B/CKOWOTlvFa4Pvd38vfAS+esOfiP9P7p3IvcMGk3YeeSi9JjWpqF4ok6TkWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWrU/wGO+4/BBe7k1gAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"plt.hist(df['Global Score'])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "3ef8e5ae",
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAARXElEQVR4nO3df4wf9X3n8ecLbGTiuDaYrcVhgqlCyfVIIMmWSxSKYkijXoiCe41ouOq0PlAtnSJfer0T8emkS6P+EEFVU9SWIqtQ+Q6bg6NJzQUpBzUQXXRXwjoQMCEplOKEn14wJBBHgaXv/rHjxCxfs7P2fnf9iZ8PaTUzn/l8Zt4g8eKjz87spKqQJLXnmIUuQJJ0aAxwSWqUAS5JjTLAJalRBrgkNWrRfN7spJNOqjVr1sznLSWpeTt37nyuqkamt89rgK9Zs4bx8fH5vKUkNS/J7kHtLqFIUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGjWvL/JI82XNptvm5T6PX3nRvNxHGsQA10+l2Qbrmk23GcZqjksoktQoA1ySGmWAS1KjDHBJalSvAE/yqSS7kjyU5Le6thOT3JHkkW57wlArlSS9zowBnuQs4DeBc4GzgY8meTuwCdhRVWcAO7pjSdI86TMD/+fAPVW1r6omga8A/xq4GNjS9dkCrBtKhZKkgfoE+C7gl5KsTPIW4CPAqcCqqnq66/MMsGrQ4CQbkownGZ+YmJiToiVJPQK8qh4GPgfcDnwZuB94bVqfAuog4zdX1WhVjY6MvOGTbpKkQ9Trl5hVdV1VvbeqzgdeAP4OeDbJyQDdds/wypQkTdf3KZSf7bZvY2r9extwKzDWdRkDtg+jQEnSYH3/FspfJVkJvAp8sqpeTHIlcHOSy4HdwCXDKlKS9Ea9AryqfmlA2/PAhXNekSSpF9/ElKRGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEb1/Sbmf0zyUJJdSW5MsiTJ6UnuSfJokpuSHDfsYiVJPzFjgCc5BfgPwGhVnQUcC3wC+Bzw+ap6O1Nfqr98mIVKkl6v7xLKIuD4JIuAtwBPAxcAt3TntwDr5rw6SdJBzRjgVfUk8IfAd5gK7u8BO4EXq2qy6/YEcMqg8Uk2JBlPMj4xMTE3VUuSei2hnABcDJwO/DNgKfArfW9QVZurarSqRkdGRg65UEnS6/VZQvkQ8A9VNVFVrwJfAD4ArOiWVABWA08OqUZJ0gB9Avw7wPuSvCVJgAuBbwJ3AR/v+owB24dToiRpkD5r4Pcw9cvKrwMPdmM2A58GfjvJo8BK4Loh1ilJmmbRzF2gqj4DfGZa82PAuXNekSSpF9/ElKRGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY3q9RihtJDO/uztfO+Hrw79Pms23TbU6y8/fjHf+MyHh3oPHV0McB3xvvfDV3n8yosWuozDNuz/Qejo4xKKJDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEbNGOBJzkxy/wE/30/yW0lOTHJHkke67QnzUbAkaUqfjxp/u6rOqapzgPcC+4AvApuAHVV1BrCjO5YkzZPZLqFcCPx9Ve0GLga2dO1bgHVzWJckaQazDfBPADd2+6uq6ulu/xlg1aABSTYkGU8yPjExcYhlSpKm6x3gSY4DPgb8r+nnqqqAGjSuqjZX1WhVjY6MjBxyoZKk15vNDPxfAV+vqme742eTnAzQbffMdXGSpIObTYBfyk+WTwBuBca6/TFg+1wVJUmaWaZWP2bolCwFvgP8XFV9r2tbCdwMvA3YDVxSVXvf7Dqjo6M1Pj5+2EXr6PLOLe9c6BLmzINjDy50CWpQkp1VNTq9vdcn1arqB8DKaW3PM/VUijRULz18pZ9UkwbwTUxJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqVK8AT7IiyS1JvpXk4STvT3JikjuSPNJtTxh2sZKkn+g7A78a+HJVvQM4G3gY2ATsqKozgB3dsSRpnswY4EmWA+cD1wFU1StV9SJwMbCl67YFWDecEiVJg/SZgZ8OTAB/meS+JH/RfaV+VVU93fV5Blg1aHCSDUnGk4xPTEzMTdWSpF4Bvgh4D/DnVfVu4AdMWy6pqgJq0OCq2lxVo1U1OjIycrj1SpI6fQL8CeCJqrqnO76FqUB/NsnJAN12z3BKlCQNMmOAV9UzwHeTnNk1XQh8E7gVGOvaxoDtQ6lQkjTQop79NgJbkxwHPAb8O6bC/+YklwO7gUuGU6IkaZBeAV5V9wOjA05dOKfVSJJ6801MSWqUAS5JjTLAJalRBrgkNarvUyjSglqz6baFLuGwLT9+8UKXoJ8yBriOeI9fedHQ77Fm023zch9pLrmEIkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RG9fpjVkkeB14CXgMmq2o0yYnATcAa4HHgkqp6YThlSpKmm80MfG1VnVNV+7+NuQnYUVVnADu6Y0nSPDmcJZSLgS3d/hZg3WFXI0nqrW+AF3B7kp1JNnRtq6rq6W7/GWDVoIFJNiQZTzI+MTFxmOVKkvbr+0GH86rqySQ/C9yR5FsHnqyqSlKDBlbVZmAzwOjo6MA+kqTZ6zUDr6onu+0e4IvAucCzSU4G6LZ7hlWkJOmNZgzwJEuTLNu/D3wY2AXcCox13caA7cMqUpL0Rn2WUFYBX0yyv/+2qvpyknuBm5NcDuwGLhlemZKk6WYM8Kp6DDh7QPvzwIXDKEqSNDPfxJSkRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RG9Q7wJMcmuS/Jl7rj05Pck+TRJDclOW54ZUqSppvNDPxTwMMHHH8O+HxVvR14Abh8LguTJL25XgGeZDVwEfAX3XGAC4Bbui5bgHVDqE+SdBB9Z+B/DFwB/GN3vBJ4saomu+MngFMGDUyyIcl4kvGJiYnDqVWSdIAZAzzJR4E9VbXzUG5QVZurarSqRkdGRg7lEpKkARb16PMB4GNJPgIsAX4GuBpYkWRRNwtfDTw5vDIlSdPNOAOvqv9SVaurag3wCeDOqvoN4C7g4123MWD70KqUJL3B4TwH/mngt5M8ytSa+HVzU5IkqY8+Syg/VlV3A3d3+48B5859SZKkPnwTU5IaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhrV56v0S5J8Lck3kjyU5LNd++lJ7knyaJKbkhw3/HIlSfv1mYH/CLigqs4GzgF+Jcn7gM8Bn6+qtwMvAJcPrUpJ0hv0+Sp9VdXL3eHi7qeAC4BbuvYtwLphFChJGqzXGniSY5PcD+wB7gD+Hnixqia7Lk8ApwylQknSQL0CvKpeq6pzgNVMfYn+HX1vkGRDkvEk4xMTE4dWpSTpDWb1FEpVvQjcBbwfWJFkUXdqNfDkQcZsrqrRqhodGRk5nFolSQfo8xTKSJIV3f7xwC8DDzMV5B/vuo0B24dUoyRpgEUzd+FkYEuSY5kK/Jur6ktJvgn8zyS/B9wHXDfEOiVJ08wY4FX1APDuAe2PMbUeLklaAL6JKUmNMsAlqVF91sCl5qzZdNu8jHn8yotmPUaaKwa4fioZrDoauIQiSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuI5qGzduZMmSJSRhyZIlbNy4caFLknozwHXU2rhxI9dccw0rVqwAYMWKFVxzzTWGuJphgOuode2117J8+XJuvPFGXnnlFW688UaWL1/Otddeu9ClSb0Y4DpqTU5OsnXrVtauXcvixYtZu3YtW7duZXJycqFLk3rp81HjU5PcleSbSR5K8qmu/cQkdyR5pNueMPxypbl1ww03cNZZZ3Hsscdy1llnccMNNyx0SVJvfWbgk8B/qqpfAN4HfDLJLwCbgB1VdQawozuWmrF06VK2bdvG+eefz969ezn//PPZtm0bS5cuXejSpF5SVbMbkGwH/rT7+WBVPZ3kZODuqjrzzcaOjo7W+Pj4IRcrzaVTTz2V559/nsnJSV599VUWL17MokWLWLlyJd/97ncXujzpx5LsrKrR6e2zWgNPsoapL9TfA6yqqqe7U88Aqw4yZkOS8STjExMTs6taGqKnnnqK9evXc8wxU/8ZHHPMMaxfv56nnnpqgSuT+uk9A0/yVuArwO9X1ReSvFhVKw44/0JVvek6uDNwHUlOPfVUXnrpJU444QR2797NaaedxgsvvMCyZcucgeuIclgz8CSLgb8CtlbVF7rmZ7ulE7rtnrkqVpoP+/bt4+WXX2bjxo2v2+7bt2+hS5N66fMUSoDrgIer6o8OOHUrMNbtjwHb5748aXj27t3LFVdcwfXXX8+yZcu4/vrrueKKK9i7d+9Clyb10mcG/gHg3wIXJLm/+/kIcCXwy0keAT7UHUtNWbt2Lbt27eK1115j165drF27dqFLknpbNFOHqvoqkIOcvnBuy5Hmz+rVqxkbG2Pr1q2cd955fPWrX2VsbIzVq1cvdGlSL76JqaPWVVddxeTkJJdddhlLlizhsssuY3JykquuumqhS5N6McB11Lr00ku5+uqrf/ziztKlS7n66qu59NJLF7gyqZ9Zv8hzOHyMUJJmb05e5JEkHTkMcElqlAEuSY0ywCWpUQa4JDVqXp9CSTIB7J63G0r9nQQ8t9BFSAdxWlWNTG+c1wCXjlRJxgc9piUdyVxCkaRGGeCS1CgDXJqyeaELkGbLNXBJapQzcElqlAEuSY0ywHVESbIqybYkjyXZmeT/J/nV7twHk3xphvG/k+Q/z/KeLx+k/b8meSjJA92XqP7lbK4rDduMX+SR5kv3/dW/BrZU1b/p2k4DPrYAtbwf+Cjwnqr6UZKTgOMO85qLqmpyTgqUcAauI8sFwCtVde3+hqraXVV/Mr1jkhOT/HU3O/7bJO864PTZ3cz9kSS/2fV/a5IdSb6e5MEkF89Qy8nAc1X1o66O56rqqe5av5jk/yX5RpKvJVmWZEmSv+yufV+StV3f9UluTXInsCPJ0iTXd+Pu61GHdFDOwHUk+RfA13v2/SxwX1WtS3IB8N+Bc7pz7wLeBywF7ktyG7AH+NWq+n43m/7bJLfWwR/Duh34b0n+Dvgb4Kaq+kqS44CbgF+vqnuT/AzwQ+BTQFXVO5O8A7g9yc9313oP8K6q2pvkD4A7q+qyJCuAryX5m6r6Qc9/bunHnIHriJXkz7pZ7r0DTp8H/A+AqroTWNmFKcD2qvphVT0H3AWcy9SHuf8gyQNMBfIpwKqD3buqXgbeC2wAJoCbkqwHzgSerqp7u37f75ZFzgNu6Nq+xdTf/Nkf4HdU1d5u/8PApiT3A3cDS4C3zebfi7SfM3AdSR4Cfm3/QVV9spstz/Y7fNNn1QX8BjACvLeqXk3yOFPhefCLVL3GVMjeneRBYAzYOctaAA6cXQf4tar69iFcR3odZ+A6ktwJLEny7w9oe8tB+v5fpkKZJB9kar36+925i7s16ZXAB4F7geXAni681wKnvVkhSc5McsYBTecwNav+NnBykl/s+i1LsmhaPT/P1Kx6UEj/H2Bj9wtbkrz7zeqQ3owzcB0xqqqSrAM+n+QKppYufgB8ekD33wGu75ZE9jE1O97vAaaWTk4CfreqnkqyFfjf3Ux6HPjWDOW8FfiTbp16EngU2FBVryT59e7c8Uytf38IuAb48+76k8D67umV6df9XeCPgQeSHAP8A1NPu0iz5qv0ktQol1AkqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWrUPwEV1KEomT4FgAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"df['Global Score'].plot.box()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "a588fc72",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Country | \n",
" ISO Code | \n",
" Region | \n",
" Position 2021 | \n",
" Position 2020 | \n",
" Global Score | \n",
" With Abuses | \n",
" Without Abuses | \n",
" Journalist Killed | \n",
" Media Workers Killed | \n",
" Journalist Imprisoned | \n",
" Media Workers Imprisoned | \n",
" Situation | \n",
"
\n",
" \n",
" \n",
" \n",
" 3 | \n",
" Andorra | \n",
" AND | \n",
" Europe | \n",
" 39 | \n",
" 37 | \n",
" 76.68 | \n",
" 100.00 | \n",
" 76.68 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 7 | \n",
" Australia | \n",
" AUS | \n",
" Asia Pacific | \n",
" 25 | \n",
" 26 | \n",
" 80.21 | \n",
" 100.00 | \n",
" 80.21 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 8 | \n",
" Austria | \n",
" AUT | \n",
" Europe | \n",
" 17 | \n",
" 18 | \n",
" 83.66 | \n",
" 89.01 | \n",
" 83.66 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 13 | \n",
" Belgium | \n",
" BEL | \n",
" Europe | \n",
" 11 | \n",
" 12 | \n",
" 88.31 | \n",
" 93.07 | \n",
" 88.31 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 19 | \n",
" Botswana | \n",
" BWA | \n",
" Africa | \n",
" 38 | \n",
" 39 | \n",
" 76.75 | \n",
" 93.07 | \n",
" 76.75 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 23 | \n",
" Burkina Faso | \n",
" BFA | \n",
" Africa | \n",
" 37 | \n",
" 38 | \n",
" 76.83 | \n",
" 93.07 | \n",
" 76.83 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 25 | \n",
" Cabo Verde | \n",
" CPV | \n",
" Africa | \n",
" 27 | \n",
" 25 | \n",
" 79.91 | \n",
" 100.00 | \n",
" 79.91 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 28 | \n",
" Canada | \n",
" CAN | \n",
" North America | \n",
" 14 | \n",
" 16 | \n",
" 84.75 | \n",
" 100.00 | \n",
" 84.75 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 36 | \n",
" Costa Rica | \n",
" CRI | \n",
" South America | \n",
" 5 | \n",
" 7 | \n",
" 91.24 | \n",
" 89.01 | \n",
" 91.79 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 39 | \n",
" Cyprus | \n",
" CYP | \n",
" Europe | \n",
" 26 | \n",
" 27 | \n",
" 80.15 | \n",
" 83.91 | \n",
" 80.15 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 40 | \n",
" Czech Republic | \n",
" CZE | \n",
" Europe | \n",
" 40 | \n",
" 40 | \n",
" 76.62 | \n",
" 100.00 | \n",
" 76.62 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 42 | \n",
" Denmark | \n",
" DNK | \n",
" Europe | \n",
" 4 | \n",
" 3 | \n",
" 91.43 | \n",
" 100.00 | \n",
" 91.43 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 50 | \n",
" Estonia | \n",
" EST | \n",
" Europe | \n",
" 15 | \n",
" 14 | \n",
" 84.75 | \n",
" 100.00 | \n",
" 84.75 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 54 | \n",
" Finland | \n",
" FIN | \n",
" Europe | \n",
" 2 | \n",
" 2 | \n",
" 93.01 | \n",
" 100.00 | \n",
" 93.01 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 55 | \n",
" France | \n",
" FRA | \n",
" Europe | \n",
" 34 | \n",
" 34 | \n",
" 77.40 | \n",
" 58.10 | \n",
" 82.11 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 59 | \n",
" Germany | \n",
" DEU | \n",
" Europe | \n",
" 13 | \n",
" 11 | \n",
" 84.76 | \n",
" 56.69 | \n",
" 91.75 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 60 | \n",
" Ghana | \n",
" GHA | \n",
" Africa | \n",
" 30 | \n",
" 30 | \n",
" 78.67 | \n",
" 82.08 | \n",
" 78.67 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 70 | \n",
" Iceland | \n",
" ISL | \n",
" Europe | \n",
" 16 | \n",
" 15 | \n",
" 84.63 | \n",
" 100.00 | \n",
" 84.63 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 75 | \n",
" Ireland | \n",
" IRL | \n",
" Europe | \n",
" 12 | \n",
" 13 | \n",
" 88.09 | \n",
" 100.00 | \n",
" 88.09 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 77 | \n",
" Italy | \n",
" ITA | \n",
" Europe | \n",
" 41 | \n",
" 41 | \n",
" 76.61 | \n",
" 72.27 | \n",
" 77.37 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 79 | \n",
" Jamaica | \n",
" JAM | \n",
" South America | \n",
" 7 | \n",
" 6 | \n",
" 90.04 | \n",
" 100.00 | \n",
" 90.04 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 88 | \n",
" Latvia | \n",
" LVA | \n",
" Europe | \n",
" 22 | \n",
" 22 | \n",
" 80.74 | \n",
" 100.00 | \n",
" 80.74 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 93 | \n",
" Liechtenstein | \n",
" LIE | \n",
" Europe | \n",
" 23 | \n",
" 24 | \n",
" 80.51 | \n",
" 100.00 | \n",
" 80.51 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 94 | \n",
" Lithuania | \n",
" LTU | \n",
" Europe | \n",
" 28 | \n",
" 28 | \n",
" 79.85 | \n",
" 100.00 | \n",
" 79.85 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 95 | \n",
" Luxembourg | \n",
" LUX | \n",
" Europe | \n",
" 20 | \n",
" 17 | \n",
" 82.44 | \n",
" 100.00 | \n",
" 82.44 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 111 | \n",
" Namibia | \n",
" NAM | \n",
" Africa | \n",
" 24 | \n",
" 23 | \n",
" 80.28 | \n",
" 89.01 | \n",
" 80.28 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 113 | \n",
" Netherlands | \n",
" NLD | \n",
" Europe | \n",
" 6 | \n",
" 5 | \n",
" 90.33 | \n",
" 86.14 | \n",
" 91.26 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 114 | \n",
" New Zealand | \n",
" NZL | \n",
" Asia Pacific | \n",
" 8 | \n",
" 9 | \n",
" 89.96 | \n",
" 100.00 | \n",
" 89.96 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 121 | \n",
" Norway | \n",
" NOR | \n",
" Europe | \n",
" 1 | \n",
" 1 | \n",
" 93.28 | \n",
" 100.00 | \n",
" 93.28 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 122 | \n",
" OECS | \n",
" NaN | \n",
" NaN | \n",
" 45 | \n",
" 44 | \n",
" 76.02 | \n",
" 100.00 | \n",
" 76.03 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 127 | \n",
" Papua New Guinea | \n",
" PNG | \n",
" Asia Pacific | \n",
" 47 | \n",
" 46 | \n",
" 75.12 | \n",
" 100.00 | \n",
" 75.12 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 132 | \n",
" Portugal | \n",
" PRT | \n",
" Europe | \n",
" 9 | \n",
" 10 | \n",
" 89.89 | \n",
" 100.00 | \n",
" 89.89 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 134 | \n",
" Romania | \n",
" ROU | \n",
" Europe | \n",
" 48 | \n",
" 48 | \n",
" 75.09 | \n",
" 100.00 | \n",
" 75.09 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 137 | \n",
" Samoa | \n",
" WSM | \n",
" Asia Pacific | \n",
" 21 | \n",
" 21 | \n",
" 80.76 | \n",
" 100.00 | \n",
" 80.76 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 144 | \n",
" Slovakia | \n",
" SVK | \n",
" Europe | \n",
" 35 | \n",
" 33 | \n",
" 76.98 | \n",
" 100.00 | \n",
" 76.98 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 145 | \n",
" Slovenia | \n",
" SVN | \n",
" Europe | \n",
" 36 | \n",
" 32 | \n",
" 76.90 | \n",
" 93.07 | \n",
" 76.90 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 147 | \n",
" South Africa | \n",
" ZAF | \n",
" Africa | \n",
" 32 | \n",
" 31 | \n",
" 78.41 | \n",
" 54.36 | \n",
" 84.39 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 148 | \n",
" South Korea | \n",
" KOR | \n",
" Asia Pacific | \n",
" 42 | \n",
" 42 | \n",
" 76.57 | \n",
" 100.00 | \n",
" 76.57 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 150 | \n",
" Spain | \n",
" ESP | \n",
" Europe | \n",
" 29 | \n",
" 29 | \n",
" 79.56 | \n",
" 76.02 | \n",
" 80.30 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 153 | \n",
" Suriname | \n",
" SUR | \n",
" South America | \n",
" 19 | \n",
" 20 | \n",
" 83.05 | \n",
" 100.00 | \n",
" 83.05 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 154 | \n",
" Sweden | \n",
" SWE | \n",
" Europe | \n",
" 3 | \n",
" 4 | \n",
" 92.76 | \n",
" 100.00 | \n",
" 92.76 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 155 | \n",
" Switzerland | \n",
" CHE | \n",
" Europe | \n",
" 10 | \n",
" 8 | \n",
" 89.45 | \n",
" 93.07 | \n",
" 89.45 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 157 | \n",
" Taiwan | \n",
" TWN | \n",
" Asia Pacific | \n",
" 43 | \n",
" 43 | \n",
" 76.14 | \n",
" 100.00 | \n",
" 76.14 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 163 | \n",
" Tonga | \n",
" TON | \n",
" Asia Pacific | \n",
" 46 | \n",
" 50 | \n",
" 75.41 | \n",
" 100.00 | \n",
" 75.41 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 164 | \n",
" Trinidad and Tobago | \n",
" TTO | \n",
" South America | \n",
" 31 | \n",
" 36 | \n",
" 78.45 | \n",
" 100.00 | \n",
" 78.45 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 171 | \n",
" United Kingdom | \n",
" GBR | \n",
" Europe | \n",
" 33 | \n",
" 35 | \n",
" 78.41 | \n",
" 86.14 | \n",
" 78.35 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 172 | \n",
" United States | \n",
" USA | \n",
" North America | \n",
" 44 | \n",
" 45 | \n",
" 76.07 | \n",
" 60.30 | \n",
" 79.97 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 173 | \n",
" Uruguay | \n",
" URY | \n",
" South America | \n",
" 18 | \n",
" 19 | \n",
" 83.62 | \n",
" 100.00 | \n",
" 83.62 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Country ISO Code Region Position 2021 \\\n",
"3 Andorra AND Europe 39 \n",
"7 Australia AUS Asia Pacific 25 \n",
"8 Austria AUT Europe 17 \n",
"13 Belgium BEL Europe 11 \n",
"19 Botswana BWA Africa 38 \n",
"23 Burkina Faso BFA Africa 37 \n",
"25 Cabo Verde CPV Africa 27 \n",
"28 Canada CAN North America 14 \n",
"36 Costa Rica CRI South America 5 \n",
"39 Cyprus CYP Europe 26 \n",
"40 Czech Republic CZE Europe 40 \n",
"42 Denmark DNK Europe 4 \n",
"50 Estonia EST Europe 15 \n",
"54 Finland FIN Europe 2 \n",
"55 France FRA Europe 34 \n",
"59 Germany DEU Europe 13 \n",
"60 Ghana GHA Africa 30 \n",
"70 Iceland ISL Europe 16 \n",
"75 Ireland IRL Europe 12 \n",
"77 Italy ITA Europe 41 \n",
"79 Jamaica JAM South America 7 \n",
"88 Latvia LVA Europe 22 \n",
"93 Liechtenstein LIE Europe 23 \n",
"94 Lithuania LTU Europe 28 \n",
"95 Luxembourg LUX Europe 20 \n",
"111 Namibia NAM Africa 24 \n",
"113 Netherlands NLD Europe 6 \n",
"114 New Zealand NZL Asia Pacific 8 \n",
"121 Norway NOR Europe 1 \n",
"122 OECS NaN NaN 45 \n",
"127 Papua New Guinea PNG Asia Pacific 47 \n",
"132 Portugal PRT Europe 9 \n",
"134 Romania ROU Europe 48 \n",
"137 Samoa WSM Asia Pacific 21 \n",
"144 Slovakia SVK Europe 35 \n",
"145 Slovenia SVN Europe 36 \n",
"147 South Africa ZAF Africa 32 \n",
"148 South Korea KOR Asia Pacific 42 \n",
"150 Spain ESP Europe 29 \n",
"153 Suriname SUR South America 19 \n",
"154 Sweden SWE Europe 3 \n",
"155 Switzerland CHE Europe 10 \n",
"157 Taiwan TWN Asia Pacific 43 \n",
"163 Tonga TON Asia Pacific 46 \n",
"164 Trinidad and Tobago TTO South America 31 \n",
"171 United Kingdom GBR Europe 33 \n",
"172 United States USA North America 44 \n",
"173 Uruguay URY South America 18 \n",
"\n",
" Position 2020 Global Score With Abuses Without Abuses \\\n",
"3 37 76.68 100.00 76.68 \n",
"7 26 80.21 100.00 80.21 \n",
"8 18 83.66 89.01 83.66 \n",
"13 12 88.31 93.07 88.31 \n",
"19 39 76.75 93.07 76.75 \n",
"23 38 76.83 93.07 76.83 \n",
"25 25 79.91 100.00 79.91 \n",
"28 16 84.75 100.00 84.75 \n",
"36 7 91.24 89.01 91.79 \n",
"39 27 80.15 83.91 80.15 \n",
"40 40 76.62 100.00 76.62 \n",
"42 3 91.43 100.00 91.43 \n",
"50 14 84.75 100.00 84.75 \n",
"54 2 93.01 100.00 93.01 \n",
"55 34 77.40 58.10 82.11 \n",
"59 11 84.76 56.69 91.75 \n",
"60 30 78.67 82.08 78.67 \n",
"70 15 84.63 100.00 84.63 \n",
"75 13 88.09 100.00 88.09 \n",
"77 41 76.61 72.27 77.37 \n",
"79 6 90.04 100.00 90.04 \n",
"88 22 80.74 100.00 80.74 \n",
"93 24 80.51 100.00 80.51 \n",
"94 28 79.85 100.00 79.85 \n",
"95 17 82.44 100.00 82.44 \n",
"111 23 80.28 89.01 80.28 \n",
"113 5 90.33 86.14 91.26 \n",
"114 9 89.96 100.00 89.96 \n",
"121 1 93.28 100.00 93.28 \n",
"122 44 76.02 100.00 76.03 \n",
"127 46 75.12 100.00 75.12 \n",
"132 10 89.89 100.00 89.89 \n",
"134 48 75.09 100.00 75.09 \n",
"137 21 80.76 100.00 80.76 \n",
"144 33 76.98 100.00 76.98 \n",
"145 32 76.90 93.07 76.90 \n",
"147 31 78.41 54.36 84.39 \n",
"148 42 76.57 100.00 76.57 \n",
"150 29 79.56 76.02 80.30 \n",
"153 20 83.05 100.00 83.05 \n",
"154 4 92.76 100.00 92.76 \n",
"155 8 89.45 93.07 89.45 \n",
"157 43 76.14 100.00 76.14 \n",
"163 50 75.41 100.00 75.41 \n",
"164 36 78.45 100.00 78.45 \n",
"171 35 78.41 86.14 78.35 \n",
"172 45 76.07 60.30 79.97 \n",
"173 19 83.62 100.00 83.62 \n",
"\n",
" Journalist Killed Media Workers Killed Journalist Imprisoned \\\n",
"3 0 0 0 \n",
"7 0 0 0 \n",
"8 0 0 0 \n",
"13 0 0 0 \n",
"19 0 0 0 \n",
"23 2 0 0 \n",
"25 0 0 0 \n",
"28 0 0 0 \n",
"36 0 0 0 \n",
"39 0 0 0 \n",
"40 0 0 0 \n",
"42 0 0 0 \n",
"50 0 0 0 \n",
"54 0 0 0 \n",
"55 0 0 0 \n",
"59 0 0 0 \n",
"60 0 0 1 \n",
"70 0 0 0 \n",
"75 0 0 0 \n",
"77 0 0 0 \n",
"79 0 0 0 \n",
"88 0 0 0 \n",
"93 0 0 0 \n",
"94 0 0 0 \n",
"95 0 0 0 \n",
"111 0 0 0 \n",
"113 1 0 0 \n",
"114 0 0 0 \n",
"121 0 0 0 \n",
"122 0 0 0 \n",
"127 0 0 0 \n",
"132 0 0 0 \n",
"134 0 0 0 \n",
"137 0 0 0 \n",
"144 0 0 0 \n",
"145 0 0 0 \n",
"147 0 0 0 \n",
"148 0 0 0 \n",
"150 0 0 0 \n",
"153 0 0 0 \n",
"154 0 0 0 \n",
"155 0 0 0 \n",
"157 0 0 0 \n",
"163 0 0 0 \n",
"164 0 0 0 \n",
"171 0 0 0 \n",
"172 0 0 0 \n",
"173 0 0 0 \n",
"\n",
" Media Workers Imprisoned Situation \n",
"3 0 Satisfactory \n",
"7 0 Satisfactory \n",
"8 0 Satisfactory \n",
"13 0 Good \n",
"19 0 Satisfactory \n",
"23 0 Satisfactory \n",
"25 0 Satisfactory \n",
"28 0 Satisfactory \n",
"36 0 Good \n",
"39 0 Satisfactory \n",
"40 0 Satisfactory \n",
"42 0 Good \n",
"50 0 Satisfactory \n",
"54 0 Good \n",
"55 0 Satisfactory \n",
"59 0 Satisfactory \n",
"60 0 Satisfactory \n",
"70 0 Satisfactory \n",
"75 0 Good \n",
"77 0 Satisfactory \n",
"79 0 Good \n",
"88 0 Satisfactory \n",
"93 0 Satisfactory \n",
"94 0 Satisfactory \n",
"95 0 Satisfactory \n",
"111 0 Satisfactory \n",
"113 0 Good \n",
"114 0 Good \n",
"121 0 Good \n",
"122 0 Satisfactory \n",
"127 0 Satisfactory \n",
"132 0 Good \n",
"134 0 Satisfactory \n",
"137 0 Satisfactory \n",
"144 0 Satisfactory \n",
"145 0 Satisfactory \n",
"147 0 Satisfactory \n",
"148 0 Satisfactory \n",
"150 0 Satisfactory \n",
"153 0 Satisfactory \n",
"154 0 Good \n",
"155 0 Good \n",
"157 0 Satisfactory \n",
"163 0 Satisfactory \n",
"164 0 Satisfactory \n",
"171 0 Satisfactory \n",
"172 0 Satisfactory \n",
"173 0 Satisfactory "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Paysbon est toujours un DataFrame : \n"
]
}
],
"source": [
"Score=df[\"Global Score\"] # df[label_colonne] sélectionne une colonne (renvoie la Series correspondante)\n",
"Paysbon = df.loc[Score > 75] # df.loc[critère] sélectionne un sous-échantillon de lignes.\n",
" # Le critère de sélection doit lui-même être calculé à partir d'une Series.\n",
"display(Paysbon)\n",
"print(\"Paysbon est toujours un DataFrame : \", type(Paysbon))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "fb2a2980",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"moyenne des Score: 64.91827777777779\n",
"écart-type des Score: 15.831010824369084\n",
"quantiles des prix:\n"
]
},
{
"data": {
"text/plain": [
"0.10 44.4750\n",
"0.25 56.1800\n",
"0.50 68.3100\n",
"0.75 75.5625\n",
"0.90 83.1070\n",
"Name: Global Score, dtype: float64"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEWCAYAAACT7WsrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmB0lEQVR4nO3deZgdZZ328e9NRFkCRLZ+2TQMIogEkLQsymg3OIiIoAwqCGrcIjoqvMZRdFTch3EGHZARRYS4ElcGJqCCSARUlgSBhFWEMBIQZA0dEAnc7x9V/XJozumu7j6nT6Vzf67rXH1qv7tOd/+6qp56SraJiIhoZo1uB4iIiPpKkYiIiJZSJCIioqUUiYiIaClFIiIiWkqRiIiIllIkImpE0ixJl1Scd4Gkd45xO3MlfW4sy8bqJUUiJiVJe0n6raQHJd0n6TeSXlyDXL2S5ku6X9IDkq6T9HlJz+52tohmUiRi0pG0PjAf+AqwIbAF8Gng0TZvZ8oo538JsAD4DbC97WnAfsBKYOd2ZotolxSJmIyeD2D7DNuP237E9nm2rxmcQdK7JF0v6aHyv/ldy/EvKE/jPCDpWkkHNiwzV9LJks6VtALol7S5pJ9I+oukWyV9YJhcXwROt/2vtu8qM/6v7WNtL2i2gKSXSLqiPCK6oiw0jbaRdLmk5ZLOkrRhw7I/kvTnctmLJL1wlPsxIkUiJqWbgMclfUvSq4aeypH0euBTwFuA9YEDgXslrQn8D3AesCnwfuB7krZrWPxNwOeB9YDflvNfTXG0sg9wtKRXDg0kaV1gT+AnVb+J8g/+OcCJwEbAl4BzJG3UMNtbgLcDm1EckZzYMO1nwLbl93Il8L2q244YlCIRk47t5cBegIFvAH+RdLaknnKWdwJftH2FCzfbvg3YA5gKHGf7b7Z/RXHa6rCG1Z9l+ze2nwBmAJvY/kw5/y3l9g5tEuvZFL9vfx4cIemL5RHLCkkfb7LMq4E/2P6O7ZW2zwBuAF7TMM93bC+xvQL4BPCGwdNgtk+z/ZDtRymK4s6SNqi8IyNIkYhJyvb1tmfZ3hLYEdgc+M9y8lbAH5sstjnwp7IADLqN4ihh0J8a3j8X2Lz8Q/+ApAeAjwE9PN39wBMU//EPZvxweV3iTOAZLfLcNmTccHluA9YENpY0RdJxkv4oaTmwtJxn4ybbiWgpRSImPds3AHMpigUUf1i3aTLrHcBWkhp/L54DLGtcXcP7PwG32p7W8FrP9v5NMqwALgMOHkX0OygKUaOhebYaMu0x4B6K02IHAa8ANgCml/NoFNuPSJGIyUfS9pLmSNqyHN6K4pTRpeUspwIfkjRThedJei7FH/GHgQ9LWlNSH8WpnXktNnU58JCkj0hau/zvfcdhmtp+GHi7pGMkbVpm2xLYusX85wLPl/QmSc+Q9EZgB4pTYIOOkLSDpHWAzwA/tv04xTWTR4F7gXWAL7TeYxGtpUjEZPQQsDtwWdkK6VJgCTAHwPaPKC4+f7+c97+BDW3/jaIovIriv/GvAm8pj0SepvxjfACwC3BrucypFP+5N5v/EmBv4GXATeXpqZ9TNIv9SpP57y3XP4fij/2HgQNs39Mw23cojpL+DKwFDLau+jbF6adlwHU8WSAjRkV56FBERLSSI4mIiGgpRSIiIlpKkYiIiJZSJCIioqVmN/CssjbeeGNPnz69retcsWIF6667blvX2W7JOH51zwfJ2C51z9iNfIsWLbrH9iZNJ9qeNK+ZM2e63S688MK2r7PdknH86p7PTsZ2qXvGbuQDFrrF39WcboqIiJZSJCIioqUUiYiIaClFIiIiWkqRiIiIllIkIiKipRSJiIhoKUUiIiJaSpGIiIiWJlW3HBFRH9OPOafp+KXHvXqCk8R45EgiIiJaqlwkJO0l6W3l+00ktXoub0RETBKVioSkY4GPAB8tR60JfLdToSIioh6qHkm8DjgQWAFg+w5gvU6FioiIeqhaJP5WdidrAEn17Yw9IiLapmqR+KGkrwPTJL0L+CXwjc7FioiIOhixCawkAT8AtgeWA9sBn7R9foezRUREl41YJGxb0rm2ZwApDBERq5Gqp5uulPTijiaJiIjaqXrH9e7A4ZJuo2jhJIqDjJ06liwiIrquapF4ZUdTRERELVU63WT7NmAa8JryNa0cFxERk1jVO66PAr4HbFq+vivp/RWWO03S3ZKWNIz7gaSrytdSSVe1WHappMXlfAsrfTcREdFWVU83vQPY3fYKAEn/BvwO+MoIy80FTgK+PTjC9hsH30s6HnhwmOX7bd9TMWNERLRZ1SIh4PGG4cfLccOyfZGk6U1XWNx/8QZg74oZIiJigqnobWOEmaQPAm8FzixHvRaYa/s/Kyw7HZhve8ch418GfMl2b4vlbgXup+gK5Ou2T2kx32xgNkBPT8/MefPmjfj9jMbAwABTp05t6zrbLRnHr+75YNXLuHhZ85MEM7bYYCIjPU3d92M38vX39y9q+be4SpEAkLQrsFc5eLHt31dcbjrNi8TJwM22j2+x3Ba2l0nalOImvvfbvmi4bfX29nrhwvZevliwYAF9fX1tXWe7JeP41T0frHoZ6/rQobrvx27kk9SySFQ63SRpD+Ba21eWw+tL2t32ZWMM9AzgYGBmq3lsLyu/3i3pTGA3YNgiERER7VX1juuTgYGG4YFy3Fi9ArjB9u3NJkpaV9J6g++BfYElzeaNiIjOqVok5IbzUrafoFrngGdQtILaTtLtkt5RTjoUOGPIvJtLOrcc7AEukXQ1cDlwju2fV8waERFtUrV10y2SPsCTRw/vBW4ZaSHbh7UYP6vJuDuA/cv3twA7V8wWEREdUvVI4kjgJcAy4HaKvpxmdypURETUQ6UjCdt3U5wiioiI1UjVbjm+WLZoWlPSBZL+IumIToeLiIjuqnq6aV/by4EDgKXA84B/7lSoiIioh6pFYvC01KuBH9kerr+liIiYJKq2bpov6QbgEeA9kjYB/tq5WBERUQdVnydxDEXrpl7bjwEPAwd1MlhERHRf1SMJbN/X8H4FxWNMIyJiEqt6TSIiIlZDKRIREdFS1fskJOkISZ8sh58jabfORouIiG6reiTxVWBPYLAvpoeA/+pIooiIqI2qF653t72rpN8D2L5f0jM7mCsiImqg6pHEY5KmUDxKlPI+iSc6lioiImqhapE4keL51ptK+jxwCfCFjqWKiIhaqNoL7PckLQL2AQS81vb1HU0WERFdV/lmOuAu4OJymbUl7Tr4zOuIiJicKhUJSZ8FZgF/pLwuUX7duzOxIiKiDqpek3gDsI3tPtv95WvEAiHpNEl3S1rSMO5TkpZJuqp87d9i2f0k3SjpZknHVMwZERFtVLVILAGmjWH9c4H9moz/su1dyte5QyeWLan+C3gVsANwmKQdxrD9iIgYh6rXJP4V+H15RPDo4EjbBw63kO2LJE0fQ67dgJtt3wIgaR5Fr7PXjWFdERExRrI98kzStcDXgcU03B9h+9cVlp0OzLe9Yzn8KYrrG8uBhcAc2/cPWeYQYD/b7yyH30xxQ9/7mqx/NjAboKenZ+a8efNG/H5GY2BggKlTp7Z1ne2WjONX93yw6mVcvKz5s8lmbLHBREZ6mrrvx27k6+/vX2S7t9m0qkcSD9s+sU15TgY+S3Hh+7PA8cDbx7oy26cApwD09va6r6+vDRGftGDBAtq9znZLxvGrez5Y9TLOOuacpvMsPbxv4gI1Uff9WLd8VYvExZL+FTibp55uGnUTWNt3Db6X9A1gfpPZlgFbNQxvWY6LiIgJVLVIvKj8ukfDuDE1gZW0me07y8HXUVwUH+oKYFtJW1MUh0OBN412WxERMT5V77juH8vKJZ0B9AEbS7odOBbok7QLRZFZCry7nHdz4FTb+9teKel9wC+AKcBptq8dS4aIiBi7qjfT9VD01bS57VeVzVH3tP3N4ZazfViT0U2XsX0HsH/D8LnA05rHRkTExBn2PglJ/1y+nUvxX/3m5fBNwNEdSxUREbXQskhIOhq4uRzc2PYPKZu/2l4JPN7xdBER0VXDHUn8EDigfL9C0kY8+TyJPYDmjaAjImLSaHlNwvYdko4sBz9I0fx1G0m/ATYBDpmAfBER0UXDXri2/Vj59UpJLwe2o3iexI2D0yIiYvKq2rppCkXLo+nlMvtKwvaXOpgtIiK6rOrNdP8D/JUhfTdFRMTkVrVIbGl7p44miYiI2qn6PImfSdq3o0kiIqJ2qh5JXAqcKWkN4DGKi9e2vX7HkkVERNdVLRJfAvYEFrvKAygiImJSqHq66U/AkhSIiIjVS9UjiVuABZJ+xlOfJ5EmsBERk1jVInFr+Xpm+YqIiNVA1edJfLrTQSIion6qXpOIiIjVUIpERES0lCIREREtVSoSkp4v6QJJS8rhnSR9vMJyp0m6e3C5cty/S7pB0jWSzpQ0rcWySyUtlnSVpIUVv5+IiGijqkcS3wA+SnG3NbavAQ6tsNxcYL8h484Hdiz7grqpXG8r/bZ3sd1bMWdERLRR1SKxju3Lh4xbOdJCti8C7hsy7rzy8adQdPexZcUMERExwaoWiXskbcOTjy89BLizDdt/O/CzFtMMnCdpkaTZbdhWRESMkqr0tCHp74BTgJcA91PcWHeE7aUVlp0OzLe945Dx/wL0Agc36+5D0ha2l0nalOIU1fvLI5Oh880GZgP09PTMnDdv3ojfz2gMDAwwderUtq6z3ZJx/OqeD1a9jIuXPdh0nhlbbDCRkZ6m7vuxG/n6+/sXtTqtX6lI/P+ZpXWBNWw/NIplpjOkSEiaBbwb2Mf2wxXW8SlgwPZ/DDdfb2+vFy5s7zXuBQsW0NfX19Z1tlsyjl/d88Gql3H6Mec0nWfpca+ewERPV/f92I18kloWiWHvuJb0wRbjgbH13SRpP+DDwMtbFYjGYlS+3xf4zGi3FRER4zNStxzrjWflks4A+oCNJd0OHEvRmulZwPllsbnU9pGSNgdOtb0/0EPx/IrBjN+3/fPxZImIiNEbtkiMt88m24c1Gf3NFvPeAexfvr8F2Hk8246IiPHLHdcREdFSikRERLRUtVuOrauMi4iIyaXqkcRPmoz7cTuDRERE/YzUBHZ74IXABpIObpi0PrBWJ4NFRET3jdQEdjvgAGAa8JqG8Q8B7+pQpoiIqImRmsCeBZwlaU/bv5ugTBERUROVnnEN3CzpY8D0xmVsv70ToSIioh6qFomzgIuBXwKPdy5ORETUSdUisY7tj3Q0SURE1E7VJrDzJe3f0SQREVE7VY8kjgI+JulRikeYCrDt9TuWLCJWCY1dgs+ZsZJZLboIj1VTpSJhe1y9wUZExKqp6pEEkp4NbEvDTXTNnhQXERGTR6UiIemdFKectgSuAvYAfgfs3bFkERHRdVUvXB8FvBi4zXY/8CLggU6FioiIeqhaJP5q+68Akp5l+waKLjsiImISq3pN4nZJ04D/pnjs6P3AbZ0KFRER9VC1ddPryrefknQhsAGQZ05HRExyVR86dLykHQBs/9r22bb/VmG50yTdLWlJw7gNJZ0v6Q/l12e3WPat5Tx/kPTWqt9QRES0T9VrEtcD35B0maQjJW1Qcbm5wH5Dxh0DXGB7W+CCcvgpJG0IHAvsDuwGHNuqmEREROdUKhK2T7X9UuAtFD3BXiPp+5L6R1juIuC+IaMPAr5Vvv8W8Nomi74SON/2fbbvB87n6cUmIiI6TLarzShNoXgA0duArYAfAnsBK2wfOsxy04H5tncshx+wPa18L+D+weGGZT4ErGX7c+XwJ4BHbP9Hk/XPBmYD9PT0zJw3b16l76eqgYEBpk6d2tZ1tlsyjl/d80H3My5e9uCI8/SsDXc9Mvw8M7aoeiJi5G2PZV3d3o8j6Ua+/v7+RbZ7m02rejPdlykKxK+AL9i+vJz0b5JuHGsw25ZUrUq1XscpwCkAvb297uvrG8/qnmbBggW0e53tlozjV/d80P2MVfpkmjNjJccvHv7PytLD+9q27bGsq9v7cSR1y1f1msQ1wC62391QIAbtNspt3iVpM4Dy691N5llGcbQyaMtyXERETKCq1yROB54paTdJLxt8ldNGPgZ9qrOBwdZKb6V4oNFQvwD2lfTs8oL1vuW4iIiYQB3tu0nSGUAfsLGk2ylaLB0H/FDSOyhuyHtDOW8vcKTtd9q+T9JngSvKVX3G9tAL4BER0WGjeZ7Ei4FLbfdL2h74wkgL2T6sxaR9msy7EHhnw/BpwGkV80VERAek76aIiGgpfTdFRERL6bspIiJaqvxkukG2f92JIBERUT9Vr0lERMRqaNRHEhExetOHuVt56XGvnsAkEaNTtavwdSWtUb5/vqQDJa3Z2WgREdFtVU83XQSsJWkL4DzgzRTdgEdExCRWtUjI9sPAwcBXbb8eeGHnYkVERB1ULhKS9gQOBwZPrk7pTKSIiKiLqkXiKOCjwJm2r5X0d8CFnYsVERF1ULV10/22DxwcsH0L8IHORIqIiLqoeiTxVUmXS3rvKJ5vHRERq7iqz5P4e+AIigcBLSqfb71vR5NFRETXVb7j2vZNwMeBjwAvB06QdIOkgzsVLiIiuqvqzXQ7lc+5vp7iQUOvsf2C8v2XO5gvIiK6qOqF668ApwIfs/3I4Ejbd0j6eEeSRdRYq2420sVGvU0/5hzmzFjJrCGfXz631qp2Ff7yYaZ9p31xIiKiTqqebtpW0o8lXSfplsHXWDcqaTtJVzW8lks6esg8fZIebJjnk2PdXkREjE3V002nA8dSXH/oB97GOLoZt30jsAuApCnAMuDMJrNebPuAsW4nIiLGp+of+rVtX0DRh9Nttj8FtOsk3j7AH23ncagRETUj2yPPJP0W2Av4MfAriv/8j7O93bgDSKcBV9o+acj4PuAnwO3AHcCHbF/bZPnZwGyAnp6emfPmzRtvpKcYGBhg6tSpbV1nuyXj+I023+JlDzYdP2OL5veatpp/uGWG6vY+HO57GNSzNtz1yPDzVP1+q2x7tOtavOzBphnHkqlTuvE59/f3L7Ld22xa1SLxYormr9OAz1I84/qLti8dTzBJz6QoAC+0fdeQaesDT9gekLQ/cILtbYdbX29vrxcuXDieSE+zYMEC+vr62rrOdkvG8RttvtG2bmrHQ4e6vQ+H+x4GzZmxkuMXD38WeywtidrVmmywddPQjHVq3dSNz1lSyyJRtXXTFeWK1gA+YPuhNmV7FcVRxF1DJ9he3vD+XElflbSx7XvatO2IiBhB1dZNvZIWA9cAiyVdLWlmG7Z/GHBGi23+H0kq3+9WZr23DduMiIiKqrZuOg14r+2LASTtRdHiaaexbljSusA/AO9uGHckgO2vAYcA75G0EngEONRVzo1FRETbVC0Sjw8WCADbl5R/vMfM9gpgoyHjvtbw/iTgpKHLRUTExKlaJH4t6esUp4YMvBFYIGlXANtXdihfRHRIlQvREVWLxM7l12OHjH8RRdHYu22JIiKiNqq2burvdJCIiKifMXetERERk1+KREREtJQiERERLVW9mW4dSZ+Q9I1yeFtJ6Z01ImKSq3okcTrwKLBnObwM+FxHEkVERG1ULRLb2P4i8BiA7YcBdSxVRETUQtUi8TdJa1PcE4GkbSiOLCIiYhKrejPdscDPga0kfQ94KTCrU6EihmpXV9GtLF72ILOabKNOXUgP6vS+6KbcBV4/VW+mO1/SlcAeFKeZjkqX3RERk9+wRWKwb6YGd5ZfnyPpOemzKSJichvpSOL48utaQC9wNcWRxE7AQp5s7RQREZPQsBeubfeX/TbdCexqu9f2TIqO/ZZNRMCIiOieqq2btrO9eHDA9hLgBZ2JFBERdVG1ddM1kk4FvlsOH07xKNOIiJjEqhaJtwHvAY4qhy8CTu5IooiIqI2qTWD/Cny5fLWFpKXAQ8DjwErbvUOmCzgB2B94GJiV1lQREROr6pFEp/QPc7/Fq4Bty9fuFEcuu09UsIiIqHdX4QcB33bhUmCapM26HSoiYnUi26NbQFoDmGp7+bg2LN0K3E/RH9TXbZ8yZPp84Djbl5TDFwAfsb1wyHyzgdkAPT09M+fNmzeeWE8zMDDA1KlT27rOdlsdMi5e9mDT8TO22GDM62x0930Pctcj1dc/2jyt5h/NMj1r0zTjSOtpZbhMYzVSRhg+52gzjWV/N8vYrp+jdujG73N/f/+ioaf8B1U63STp+8CRFNcPrgDWl3SC7X8fR669bC+TtClwvqQbbF802pWUxeUUgN7eXvf19Y0j0tMtWLCAdq+z3VaHjM36VQJYevjY19noK987i+MXP/3XodX6R5un1fyjWWbOjJVNM460nlaGyzRWI2WE4XOONtNY9nezjO36OWqHuv0+Vz3dtEN55PBa4GfA1sCbx7Nh28vKr3cDZwK7DZllGbBVw/CW5Aa+iIgJVbVIrClpTYoicbbtxyi7DR8LSetKWm/wPbAvsGTIbGcDb1FhD+BB23cSERETpmrrpq8DSyn6brpI0nOB8VyT6AHOLFq58gzg+7Z/LulIANtfA86laP56M0UT2LeNY3sRETEGVe+TOBE4sWHUbZL6x7pR27cAOzcZ/7WG9wb+aazbiIiI8at0uklSj6RvSvpZObwD8NaOJouIiK6rek1iLvALYPNy+Cbg6A7kiYiIGqlaJDa2/UPgCQDbKymaw0ZExCRWtUiskLQRZYumwdZGHUsVERG1ULV10wcpmqRuI+k3wCbAIR1LFRERtTBikZA0BXh5+dqO4vGlN5b3SkSsUqa3uBN3zowJDjKBWn3PMXat9unS41497vXMmbGSvrGE6pARTzfZfhw4zPZK29faXpICERGxeqh6uuk3kk4CfgCsGByZ5ztERExuVYvELuXXzzSMM7B3W9NEREStVL3jesx3V0dExKqr6h3XG0k6UdKVkhZJOqFsEhsREZNY1fsk5gF/Af6RounrXyiuT0RExCRW9ZrEZrY/2zD8OUlv7ESgiIioj6pHEudJOlTSGuXrDRR9OUVExCQ27JGEpIcoWjGJokO/75aT1gAGgA91MlxERHTXsEXC9noTFSQiIuqn6jUJJO0ETG9cxvZPO5CpK1rdZj93v3UnOEnUyUR0aZFuM8au0/uuW5/NWLY72i5BqqpUJCSdBuwEXEvZXTjFaahJUyQiIuLpqh5J7GF7h3ZtVNJWwLcpnnVt4BTbJwyZpw84C7i1HPVT2413fEdERIdVLRK/k7SD7evatN2VwBzbV0paD1gk6fwm67/Y9gFt2mZERIxS1SLxbYpC8WfgUYrWTra901g2avtO4M7y/UOSrge2ANpVhCIiog2qFolvAm8GFvPkNYm2kDQdeBFwWZPJe0q6GrgD+JDta9u57YiIGJ5sjzyT9Dvbe7Z949JU4NfA54e2lJK0PvCE7QFJ+wMn2N62yTpmA7MBenp6Zs6bN29MWRYva/401q03mMLUqVPHtM6JMjAwMOkztvp8ZmyxQVvW07M23PXIqGNVztNqu6MxUsZObruqKvtxuM9sIrI2y9iufdeOn8ex/iyOdtuN+vv7F9nubTatapH4KjAN+B+K003A+JrASloTmA/8wvaXKsy/FOi1fU+reXp7e71w4cIx5RmuCWxfX9+Y1jlRFixYMOkzdvJJYFA8Dez4xZVbhLfUKk87mlKOlLGT266qyn4c7jObiKzNMrZr37XryXRj+VkcTxNYSS2LRNUka1MUh30bxo25CawkUZzCur5VgZD0f4C7bFvSbhR3ed87lu1FRMTYVH2exNvavN2XUl7jkHRVOe5jwHPK7X2NorfZ90haCTwCHOoqhz0REdE2VW+m2xL4CsUfd4CLgaNs3z6Wjdq+hKKF1HDznAScNJb1R0REe1Q93XQ68H3g9eXwEeW4f+hEqDpZvOxBZjU5b9ipW+CrGHoec86Mlcw65pyOZ2rXdYHojHTvUV+r8mdTtavwTWyfbntl+ZoLbNLBXBERUQNVi8S9ko6QNKV8HUEuIkdETHpVi8TbgTcAf6a4U/oQoN0XsyMiomaqtm66DTiww1kiIqJmRnoy3SeHmewhz72OiIhJZqQjiRVNxq0LvAPYCEiRiIiYxEZ6fOnxg+/LLr2PorgWMQ84vtVyERExOYx4TULShsAHgcOBbwG72r6/08EiIqL7Rrom8e/AwcApwAzbAxOSKiIiamGkJrBzgM2BjwN3SFpevh6StLzz8SIioptGuiZR9T6K1c5wt9m3q/vqbnV3MdouBMayLzrdTUG3ukFYlbtfmCh13Ed1zFQXKQIREdFSikRERLSUIhERES2lSEREREspEhER0VKKREREtJQiERERLXWtSEjaT9KNkm6WdEyT6c+S9INy+mWSpnchZkTEaq0rRULSFOC/gFcBOwCHSdphyGzvAO63/Tzgy8C/TWzKiIjo1pHEbsDNtm+x/TeKXmUPGjLPQRQdCgL8GNhHkiYwY0TEak+2J36j0iHAfrbfWQ6/Gdjd9vsa5llSznN7OfzHcp57hqxrNjC7HNwOuLHNcTcG7hlxru5KxvGrez5Ixnape8Zu5Huu7U2aTaj0+NI6s30KRS+1HSFpoe3eTq2/HZJx/OqeD5KxXeqesW75unW6aRmwVcPwluW4pvNIegawAXDvhKSLiAige0XiCmBbSVtLeiZwKHD2kHnOBt5avj8E+JW7cW4sImI11pXTTbZXSnof8AtgCnCa7WslfQZYaPts4JvAdyTdDNxHUUi6oWOnstooGcev7vkgGdul7hlrla8rF64jImLVkDuuIyKipRSJiIhoKUWigaStJF0o6TpJ10o6qhy/oaTzJf2h/PrsLuVbS9Llkq4u8326HL912XXJzWVXJs/sRr4hWadI+r2k+XXMKGmppMWSrpK0sBxXi8+5IeM0ST+WdIOk6yXtWZeMkrYr993ga7mko+uSryHn/y1/V5ZIOqP8Harbz+JRZb5rJR1djqvNfkyReKqVwBzbOwB7AP9UdhdyDHCB7W2BC8rhbngU2Nv2zsAuwH6S9qDosuTLZRcm91N0adJtRwHXNwzXMWO/7V0a2qTX5XMedALwc9vbAztT7M9aZLR9Y7nvdgFmAg8DZ9YlH4CkLYAPAL22d6RoJHMoNfpZlLQj8C6KXih2Bg6Q9DxqtB+xnVeLF3AW8A8Ud3FvVo7bDLixBtnWAa4Edqe4O/MZ5fg9gV90OduWFD/YewPzAdUw41Jg4yHjavM5U9wXdCtl45I6ZmzItC/wm7rlA7YA/gRsSNGScz7wyjr9LAKvB77ZMPwJ4MN12o85kmih7HX2RcBlQI/tO8tJfwZ6uphriqSrgLuB84E/Ag/YXlnOcjvFL0c3/SfFD/oT5fBG1C+jgfMkLSq7doEafc7A1sBfgNPL03anSlqXemUcdChwRvm+NvlsLwP+A/hf4E7gQWAR9fpZXAL8vaSNJK0D7E9xE3Ft9mOKRBOSpgI/AY62vbxxmovS3rV2w7Yfd3GIvyXFIer23crSjKQDgLttL+p2lhHsZXtXip6I/0nSyxondvtzpvjPd1fgZNsvAlYw5JRDDTJSns8/EPjR0Gndzleexz+IouBuDqwL7NetPM3Yvp7i9Nd5wM+Bq4DHh8zT1f2YIjGEpDUpCsT3bP+0HH2XpM3K6ZtR/BffVbYfAC6kOFyeVnZdAs27OJlILwUOlLSUonffvSnOrdcp4+B/mdi+m+Jc+m7U63O+Hbjd9mXl8I8pikadMkJRZK+0fVc5XKd8rwButf0X248BP6X4+azbz+I3bc+0/TKKayQ3UaP9mCLRQJIo7vS+3vaXGiY1dhHyVoprFRNO0iaSppXv16a4XnI9RbE4pNv5AGx/1PaWtqdTnIb4le3DqVFGSetKWm/wPcU59SXU5HMGsP1n4E+StitH7QNcR40ylg7jyVNNUK98/wvsIWmd8nd7cB/W5mcRQNKm5dfnAAcD36dO+7FbF0Pq+AL2ojisu4bisO8qinOEG1FciP0D8Etgwy7l2wn4fZlvCfDJcvzfAZcDN1Mc9j+r2/uyzNUHzK9bxjLL1eXrWuBfyvG1+Jwbcu4CLCw/7/8Gnl2njBSnb+4FNmgYV5t8ZZ5PAzeUvy/fAZ5Vp5/FMuPFFMXramCfuu3HdMsREREt5XRTRES0lCIREREtpUhERERLKRIREdFSikRERLSUIhGTnqR/KXvYvKbssXT3bmcarbLbhgslDUg6aci0mWWPtjdLOrG8J6BWPYnGqitFIiY1SXsCBwC72t6J4i7cP41znR1/7G+TbfyVovO3DzWZ/WSKnkS3LV+DXU/UpyfRWGWlSMRktxlwj+1HAWzfY/sOAEkvlvRbFc/nuFzSeuXzBk4v/zP/vaT+ct5Zks6W9CvggvKu7dPK5X4v6aChG5a0maSLyqOXJZL+vhw/0DDPIZLmlu/nSvqapMuALzauy/YK25dQFIunbANY3/alLm56+jbw2nLyQcC3yvffahgfUVnH/yOK6LLzgE9KuoniztUf2P512THdD4A32r5C0vrAIxTPwbDtGZK2p+gp9vnlunYFdrJ9n6QvUHQ58vayq5TLJf3S9oqGbb+Johvqz0uaQtG9+0i2BF5i+/ER5yxsQdHP06DGXk1r05NorLpyJBGTmu0BiofizKboevsHkmYB2wF32r6inG+5i+6j9wK+W467AbgNGCwS59u+r3y/L3BM2W37AmAt4DlDNn8F8DZJnwJm2H6oQuQfjaJAVFYeZaR7hRi1HEnEpFf+0V0ALJC0mKLDtLF0Zd54lCDgH23fOMx2Lyq7IH81MFfSl2x/m6f+sV5rmG1UsYzi6GNQY6+md0nazPad3e5JNFZdOZKISU3Fs5i3bRi1C8XRwY3AZpJeXM63Xnmx+GLg8HLc8ymODpoVgl8A729oSfSiJtt+LnCX7W8Ap1KcroLij/cLJK0BvG483195Omm5pD3KLG/hyR5D69OTaKyyciQRk91U4CvldYOVFD1/zrb9N0lvLKetTXE94hXAV4GTyyOOlcAs24+WtaDRZymewHdN+cf+VopWVI36gH+W9BgwQPEHHIpWRvMpTn8tLDOOqHxGx/rAMyW9FtjX9nXAe4G5wNrAz8oXwHHADyW9g6IwvqHKdiIapRfYiIhoKaebIiKipRSJiIhoKUUiIiJaSpGIiIiWUiQiIqKlFImIiGgpRSIiIlr6fx0vUTnWWF77AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"Score=df[\"Global Score\"]\n",
"print(\"moyenne des Score:\",Score.mean())\n",
"print(\"écart-type des Score:\",Score.std())\n",
"print(\"quantiles des prix:\")\n",
"display(df['Global Score'].quantile([0.1,0.25,0.5,0.75,0.90]))\n",
"Score.hist(bins=50)\n",
"plt.title(\"Score Global\")\n",
"plt.xlabel(\"Score sur 100\")\n",
"plt.ylabel(\"Nombres de pays ayant le même score\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "177f7309",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Country | \n",
" ISO Code | \n",
" Region | \n",
" Position 2021 | \n",
" Position 2020 | \n",
" Global Score | \n",
" With Abuses | \n",
" Without Abuses | \n",
" Journalist Killed | \n",
" Media Workers Killed | \n",
" Journalist Imprisoned | \n",
" Media Workers Imprisoned | \n",
" Situation | \n",
"
\n",
" \n",
" \n",
" \n",
" 3 | \n",
" Andorra | \n",
" AND | \n",
" Europe | \n",
" 39 | \n",
" 37 | \n",
" 76.68 | \n",
" 100.00 | \n",
" 76.68 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 7 | \n",
" Australia | \n",
" AUS | \n",
" Asia Pacific | \n",
" 25 | \n",
" 26 | \n",
" 80.21 | \n",
" 100.00 | \n",
" 80.21 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 8 | \n",
" Austria | \n",
" AUT | \n",
" Europe | \n",
" 17 | \n",
" 18 | \n",
" 83.66 | \n",
" 89.01 | \n",
" 83.66 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 13 | \n",
" Belgium | \n",
" BEL | \n",
" Europe | \n",
" 11 | \n",
" 12 | \n",
" 88.31 | \n",
" 93.07 | \n",
" 88.31 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 19 | \n",
" Botswana | \n",
" BWA | \n",
" Africa | \n",
" 38 | \n",
" 39 | \n",
" 76.75 | \n",
" 93.07 | \n",
" 76.75 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 23 | \n",
" Burkina Faso | \n",
" BFA | \n",
" Africa | \n",
" 37 | \n",
" 38 | \n",
" 76.83 | \n",
" 93.07 | \n",
" 76.83 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 25 | \n",
" Cabo Verde | \n",
" CPV | \n",
" Africa | \n",
" 27 | \n",
" 25 | \n",
" 79.91 | \n",
" 100.00 | \n",
" 79.91 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 28 | \n",
" Canada | \n",
" CAN | \n",
" North America | \n",
" 14 | \n",
" 16 | \n",
" 84.75 | \n",
" 100.00 | \n",
" 84.75 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 36 | \n",
" Costa Rica | \n",
" CRI | \n",
" South America | \n",
" 5 | \n",
" 7 | \n",
" 91.24 | \n",
" 89.01 | \n",
" 91.79 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 39 | \n",
" Cyprus | \n",
" CYP | \n",
" Europe | \n",
" 26 | \n",
" 27 | \n",
" 80.15 | \n",
" 83.91 | \n",
" 80.15 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 40 | \n",
" Czech Republic | \n",
" CZE | \n",
" Europe | \n",
" 40 | \n",
" 40 | \n",
" 76.62 | \n",
" 100.00 | \n",
" 76.62 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 42 | \n",
" Denmark | \n",
" DNK | \n",
" Europe | \n",
" 4 | \n",
" 3 | \n",
" 91.43 | \n",
" 100.00 | \n",
" 91.43 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 50 | \n",
" Estonia | \n",
" EST | \n",
" Europe | \n",
" 15 | \n",
" 14 | \n",
" 84.75 | \n",
" 100.00 | \n",
" 84.75 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 54 | \n",
" Finland | \n",
" FIN | \n",
" Europe | \n",
" 2 | \n",
" 2 | \n",
" 93.01 | \n",
" 100.00 | \n",
" 93.01 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 55 | \n",
" France | \n",
" FRA | \n",
" Europe | \n",
" 34 | \n",
" 34 | \n",
" 77.40 | \n",
" 58.10 | \n",
" 82.11 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 59 | \n",
" Germany | \n",
" DEU | \n",
" Europe | \n",
" 13 | \n",
" 11 | \n",
" 84.76 | \n",
" 56.69 | \n",
" 91.75 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 60 | \n",
" Ghana | \n",
" GHA | \n",
" Africa | \n",
" 30 | \n",
" 30 | \n",
" 78.67 | \n",
" 82.08 | \n",
" 78.67 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 70 | \n",
" Iceland | \n",
" ISL | \n",
" Europe | \n",
" 16 | \n",
" 15 | \n",
" 84.63 | \n",
" 100.00 | \n",
" 84.63 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 75 | \n",
" Ireland | \n",
" IRL | \n",
" Europe | \n",
" 12 | \n",
" 13 | \n",
" 88.09 | \n",
" 100.00 | \n",
" 88.09 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 77 | \n",
" Italy | \n",
" ITA | \n",
" Europe | \n",
" 41 | \n",
" 41 | \n",
" 76.61 | \n",
" 72.27 | \n",
" 77.37 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 79 | \n",
" Jamaica | \n",
" JAM | \n",
" South America | \n",
" 7 | \n",
" 6 | \n",
" 90.04 | \n",
" 100.00 | \n",
" 90.04 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 88 | \n",
" Latvia | \n",
" LVA | \n",
" Europe | \n",
" 22 | \n",
" 22 | \n",
" 80.74 | \n",
" 100.00 | \n",
" 80.74 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 93 | \n",
" Liechtenstein | \n",
" LIE | \n",
" Europe | \n",
" 23 | \n",
" 24 | \n",
" 80.51 | \n",
" 100.00 | \n",
" 80.51 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 94 | \n",
" Lithuania | \n",
" LTU | \n",
" Europe | \n",
" 28 | \n",
" 28 | \n",
" 79.85 | \n",
" 100.00 | \n",
" 79.85 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 95 | \n",
" Luxembourg | \n",
" LUX | \n",
" Europe | \n",
" 20 | \n",
" 17 | \n",
" 82.44 | \n",
" 100.00 | \n",
" 82.44 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 111 | \n",
" Namibia | \n",
" NAM | \n",
" Africa | \n",
" 24 | \n",
" 23 | \n",
" 80.28 | \n",
" 89.01 | \n",
" 80.28 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 113 | \n",
" Netherlands | \n",
" NLD | \n",
" Europe | \n",
" 6 | \n",
" 5 | \n",
" 90.33 | \n",
" 86.14 | \n",
" 91.26 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 114 | \n",
" New Zealand | \n",
" NZL | \n",
" Asia Pacific | \n",
" 8 | \n",
" 9 | \n",
" 89.96 | \n",
" 100.00 | \n",
" 89.96 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 121 | \n",
" Norway | \n",
" NOR | \n",
" Europe | \n",
" 1 | \n",
" 1 | \n",
" 93.28 | \n",
" 100.00 | \n",
" 93.28 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 122 | \n",
" OECS | \n",
" NaN | \n",
" NaN | \n",
" 45 | \n",
" 44 | \n",
" 76.02 | \n",
" 100.00 | \n",
" 76.03 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 127 | \n",
" Papua New Guinea | \n",
" PNG | \n",
" Asia Pacific | \n",
" 47 | \n",
" 46 | \n",
" 75.12 | \n",
" 100.00 | \n",
" 75.12 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 132 | \n",
" Portugal | \n",
" PRT | \n",
" Europe | \n",
" 9 | \n",
" 10 | \n",
" 89.89 | \n",
" 100.00 | \n",
" 89.89 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 134 | \n",
" Romania | \n",
" ROU | \n",
" Europe | \n",
" 48 | \n",
" 48 | \n",
" 75.09 | \n",
" 100.00 | \n",
" 75.09 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 137 | \n",
" Samoa | \n",
" WSM | \n",
" Asia Pacific | \n",
" 21 | \n",
" 21 | \n",
" 80.76 | \n",
" 100.00 | \n",
" 80.76 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 139 | \n",
" Senegal | \n",
" SEN | \n",
" Africa | \n",
" 49 | \n",
" 47 | \n",
" 74.78 | \n",
" 71.67 | \n",
" 75.38 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Problematic | \n",
"
\n",
" \n",
" 144 | \n",
" Slovakia | \n",
" SVK | \n",
" Europe | \n",
" 35 | \n",
" 33 | \n",
" 76.98 | \n",
" 100.00 | \n",
" 76.98 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 145 | \n",
" Slovenia | \n",
" SVN | \n",
" Europe | \n",
" 36 | \n",
" 32 | \n",
" 76.90 | \n",
" 93.07 | \n",
" 76.90 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 147 | \n",
" South Africa | \n",
" ZAF | \n",
" Africa | \n",
" 32 | \n",
" 31 | \n",
" 78.41 | \n",
" 54.36 | \n",
" 84.39 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 148 | \n",
" South Korea | \n",
" KOR | \n",
" Asia Pacific | \n",
" 42 | \n",
" 42 | \n",
" 76.57 | \n",
" 100.00 | \n",
" 76.57 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 150 | \n",
" Spain | \n",
" ESP | \n",
" Europe | \n",
" 29 | \n",
" 29 | \n",
" 79.56 | \n",
" 76.02 | \n",
" 80.30 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 153 | \n",
" Suriname | \n",
" SUR | \n",
" South America | \n",
" 19 | \n",
" 20 | \n",
" 83.05 | \n",
" 100.00 | \n",
" 83.05 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 154 | \n",
" Sweden | \n",
" SWE | \n",
" Europe | \n",
" 3 | \n",
" 4 | \n",
" 92.76 | \n",
" 100.00 | \n",
" 92.76 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 155 | \n",
" Switzerland | \n",
" CHE | \n",
" Europe | \n",
" 10 | \n",
" 8 | \n",
" 89.45 | \n",
" 93.07 | \n",
" 89.45 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 157 | \n",
" Taiwan | \n",
" TWN | \n",
" Asia Pacific | \n",
" 43 | \n",
" 43 | \n",
" 76.14 | \n",
" 100.00 | \n",
" 76.14 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 163 | \n",
" Tonga | \n",
" TON | \n",
" Asia Pacific | \n",
" 46 | \n",
" 50 | \n",
" 75.41 | \n",
" 100.00 | \n",
" 75.41 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 164 | \n",
" Trinidad and Tobago | \n",
" TTO | \n",
" South America | \n",
" 31 | \n",
" 36 | \n",
" 78.45 | \n",
" 100.00 | \n",
" 78.45 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 171 | \n",
" United Kingdom | \n",
" GBR | \n",
" Europe | \n",
" 33 | \n",
" 35 | \n",
" 78.41 | \n",
" 86.14 | \n",
" 78.35 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 172 | \n",
" United States | \n",
" USA | \n",
" North America | \n",
" 44 | \n",
" 45 | \n",
" 76.07 | \n",
" 60.30 | \n",
" 79.97 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 173 | \n",
" Uruguay | \n",
" URY | \n",
" South America | \n",
" 18 | \n",
" 19 | \n",
" 83.62 | \n",
" 100.00 | \n",
" 83.62 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Country ISO Code Region Position 2021 \\\n",
"3 Andorra AND Europe 39 \n",
"7 Australia AUS Asia Pacific 25 \n",
"8 Austria AUT Europe 17 \n",
"13 Belgium BEL Europe 11 \n",
"19 Botswana BWA Africa 38 \n",
"23 Burkina Faso BFA Africa 37 \n",
"25 Cabo Verde CPV Africa 27 \n",
"28 Canada CAN North America 14 \n",
"36 Costa Rica CRI South America 5 \n",
"39 Cyprus CYP Europe 26 \n",
"40 Czech Republic CZE Europe 40 \n",
"42 Denmark DNK Europe 4 \n",
"50 Estonia EST Europe 15 \n",
"54 Finland FIN Europe 2 \n",
"55 France FRA Europe 34 \n",
"59 Germany DEU Europe 13 \n",
"60 Ghana GHA Africa 30 \n",
"70 Iceland ISL Europe 16 \n",
"75 Ireland IRL Europe 12 \n",
"77 Italy ITA Europe 41 \n",
"79 Jamaica JAM South America 7 \n",
"88 Latvia LVA Europe 22 \n",
"93 Liechtenstein LIE Europe 23 \n",
"94 Lithuania LTU Europe 28 \n",
"95 Luxembourg LUX Europe 20 \n",
"111 Namibia NAM Africa 24 \n",
"113 Netherlands NLD Europe 6 \n",
"114 New Zealand NZL Asia Pacific 8 \n",
"121 Norway NOR Europe 1 \n",
"122 OECS NaN NaN 45 \n",
"127 Papua New Guinea PNG Asia Pacific 47 \n",
"132 Portugal PRT Europe 9 \n",
"134 Romania ROU Europe 48 \n",
"137 Samoa WSM Asia Pacific 21 \n",
"139 Senegal SEN Africa 49 \n",
"144 Slovakia SVK Europe 35 \n",
"145 Slovenia SVN Europe 36 \n",
"147 South Africa ZAF Africa 32 \n",
"148 South Korea KOR Asia Pacific 42 \n",
"150 Spain ESP Europe 29 \n",
"153 Suriname SUR South America 19 \n",
"154 Sweden SWE Europe 3 \n",
"155 Switzerland CHE Europe 10 \n",
"157 Taiwan TWN Asia Pacific 43 \n",
"163 Tonga TON Asia Pacific 46 \n",
"164 Trinidad and Tobago TTO South America 31 \n",
"171 United Kingdom GBR Europe 33 \n",
"172 United States USA North America 44 \n",
"173 Uruguay URY South America 18 \n",
"\n",
" Position 2020 Global Score With Abuses Without Abuses \\\n",
"3 37 76.68 100.00 76.68 \n",
"7 26 80.21 100.00 80.21 \n",
"8 18 83.66 89.01 83.66 \n",
"13 12 88.31 93.07 88.31 \n",
"19 39 76.75 93.07 76.75 \n",
"23 38 76.83 93.07 76.83 \n",
"25 25 79.91 100.00 79.91 \n",
"28 16 84.75 100.00 84.75 \n",
"36 7 91.24 89.01 91.79 \n",
"39 27 80.15 83.91 80.15 \n",
"40 40 76.62 100.00 76.62 \n",
"42 3 91.43 100.00 91.43 \n",
"50 14 84.75 100.00 84.75 \n",
"54 2 93.01 100.00 93.01 \n",
"55 34 77.40 58.10 82.11 \n",
"59 11 84.76 56.69 91.75 \n",
"60 30 78.67 82.08 78.67 \n",
"70 15 84.63 100.00 84.63 \n",
"75 13 88.09 100.00 88.09 \n",
"77 41 76.61 72.27 77.37 \n",
"79 6 90.04 100.00 90.04 \n",
"88 22 80.74 100.00 80.74 \n",
"93 24 80.51 100.00 80.51 \n",
"94 28 79.85 100.00 79.85 \n",
"95 17 82.44 100.00 82.44 \n",
"111 23 80.28 89.01 80.28 \n",
"113 5 90.33 86.14 91.26 \n",
"114 9 89.96 100.00 89.96 \n",
"121 1 93.28 100.00 93.28 \n",
"122 44 76.02 100.00 76.03 \n",
"127 46 75.12 100.00 75.12 \n",
"132 10 89.89 100.00 89.89 \n",
"134 48 75.09 100.00 75.09 \n",
"137 21 80.76 100.00 80.76 \n",
"139 47 74.78 71.67 75.38 \n",
"144 33 76.98 100.00 76.98 \n",
"145 32 76.90 93.07 76.90 \n",
"147 31 78.41 54.36 84.39 \n",
"148 42 76.57 100.00 76.57 \n",
"150 29 79.56 76.02 80.30 \n",
"153 20 83.05 100.00 83.05 \n",
"154 4 92.76 100.00 92.76 \n",
"155 8 89.45 93.07 89.45 \n",
"157 43 76.14 100.00 76.14 \n",
"163 50 75.41 100.00 75.41 \n",
"164 36 78.45 100.00 78.45 \n",
"171 35 78.41 86.14 78.35 \n",
"172 45 76.07 60.30 79.97 \n",
"173 19 83.62 100.00 83.62 \n",
"\n",
" Journalist Killed Media Workers Killed Journalist Imprisoned \\\n",
"3 0 0 0 \n",
"7 0 0 0 \n",
"8 0 0 0 \n",
"13 0 0 0 \n",
"19 0 0 0 \n",
"23 2 0 0 \n",
"25 0 0 0 \n",
"28 0 0 0 \n",
"36 0 0 0 \n",
"39 0 0 0 \n",
"40 0 0 0 \n",
"42 0 0 0 \n",
"50 0 0 0 \n",
"54 0 0 0 \n",
"55 0 0 0 \n",
"59 0 0 0 \n",
"60 0 0 1 \n",
"70 0 0 0 \n",
"75 0 0 0 \n",
"77 0 0 0 \n",
"79 0 0 0 \n",
"88 0 0 0 \n",
"93 0 0 0 \n",
"94 0 0 0 \n",
"95 0 0 0 \n",
"111 0 0 0 \n",
"113 1 0 0 \n",
"114 0 0 0 \n",
"121 0 0 0 \n",
"122 0 0 0 \n",
"127 0 0 0 \n",
"132 0 0 0 \n",
"134 0 0 0 \n",
"137 0 0 0 \n",
"139 0 0 0 \n",
"144 0 0 0 \n",
"145 0 0 0 \n",
"147 0 0 0 \n",
"148 0 0 0 \n",
"150 0 0 0 \n",
"153 0 0 0 \n",
"154 0 0 0 \n",
"155 0 0 0 \n",
"157 0 0 0 \n",
"163 0 0 0 \n",
"164 0 0 0 \n",
"171 0 0 0 \n",
"172 0 0 0 \n",
"173 0 0 0 \n",
"\n",
" Media Workers Imprisoned Situation \n",
"3 0 Satisfactory \n",
"7 0 Satisfactory \n",
"8 0 Satisfactory \n",
"13 0 Good \n",
"19 0 Satisfactory \n",
"23 0 Satisfactory \n",
"25 0 Satisfactory \n",
"28 0 Satisfactory \n",
"36 0 Good \n",
"39 0 Satisfactory \n",
"40 0 Satisfactory \n",
"42 0 Good \n",
"50 0 Satisfactory \n",
"54 0 Good \n",
"55 0 Satisfactory \n",
"59 0 Satisfactory \n",
"60 0 Satisfactory \n",
"70 0 Satisfactory \n",
"75 0 Good \n",
"77 0 Satisfactory \n",
"79 0 Good \n",
"88 0 Satisfactory \n",
"93 0 Satisfactory \n",
"94 0 Satisfactory \n",
"95 0 Satisfactory \n",
"111 0 Satisfactory \n",
"113 0 Good \n",
"114 0 Good \n",
"121 0 Good \n",
"122 0 Satisfactory \n",
"127 0 Satisfactory \n",
"132 0 Good \n",
"134 0 Satisfactory \n",
"137 0 Satisfactory \n",
"139 0 Problematic \n",
"144 0 Satisfactory \n",
"145 0 Satisfactory \n",
"147 0 Satisfactory \n",
"148 0 Satisfactory \n",
"150 0 Satisfactory \n",
"153 0 Satisfactory \n",
"154 0 Good \n",
"155 0 Good \n",
"157 0 Satisfactory \n",
"163 0 Satisfactory \n",
"164 0 Satisfactory \n",
"171 0 Satisfactory \n",
"172 0 Satisfactory \n",
"173 0 Satisfactory "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"position est toujours un DataFrame : \n"
]
}
],
"source": [
"Pos = df[\"Position 2021\"] # df[label_colonne] sélectionne une colonne (renvoie la Series correspondante)\n",
"Position = df.loc[Pos < 50] # df.loc[critère] sélectionne un sous-échantillon de lignes. # Le critère de sélection doit lui-même être calculé à partir d'une Series.\n",
"display(Position)\n",
"print(\"position est toujours un DataFrame : \", type(Position))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2812820d",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "30e593f8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}