{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "a9b74e9b",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"df = pd.read_csv(\"~/stats/Report_2021.csv\", encoding=\"latin-1\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4cf63957",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Country | \n",
" ISO Code | \n",
" Region | \n",
" Position 2021 | \n",
" Position 2020 | \n",
" Global Score | \n",
" With Abuses | \n",
" Without Abuses | \n",
" Journalist Killed | \n",
" Media Workers Killed | \n",
" Journalist Imprisoned | \n",
" Media Workers Imprisoned | \n",
" Situation | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Afghanistan | \n",
" AFG | \n",
" Asia Pacific | \n",
" 122 | \n",
" 122 | \n",
" 59.81 | \n",
" 36.72 | \n",
" 65.60 | \n",
" 3 | \n",
" 3 | \n",
" 0 | \n",
" 0 | \n",
" Difficult | \n",
"
\n",
" \n",
" 1 | \n",
" Albania | \n",
" ALB | \n",
" Europe | \n",
" 83 | \n",
" 84 | \n",
" 69.41 | \n",
" 76.02 | \n",
" 69.41 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Problematic | \n",
"
\n",
" \n",
" 2 | \n",
" Algeria | \n",
" DZA | \n",
" Arab States | \n",
" 146 | \n",
" 146 | \n",
" 52.74 | \n",
" 64.45 | \n",
" 52.74 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" Difficult | \n",
"
\n",
" \n",
" 3 | \n",
" Andorra | \n",
" AND | \n",
" Europe | \n",
" 39 | \n",
" 37 | \n",
" 76.68 | \n",
" 100.00 | \n",
" 76.68 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 4 | \n",
" Angola | \n",
" AGO | \n",
" Africa | \n",
" 103 | \n",
" 106 | \n",
" 65.94 | \n",
" 74.35 | \n",
" 65.94 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Problematic | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 175 | \n",
" Venezuela | \n",
" VEN | \n",
" South America | \n",
" 148 | \n",
" 147 | \n",
" 52.40 | \n",
" 45.71 | \n",
" 53.84 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Difficult | \n",
"
\n",
" \n",
" 176 | \n",
" Vietnam | \n",
" VNM | \n",
" Asia Pacific | \n",
" 175 | \n",
" 175 | \n",
" 21.54 | \n",
" 31.96 | \n",
" 24.82 | \n",
" 0 | \n",
" 0 | \n",
" 24 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 177 | \n",
" Yemen | \n",
" YEM | \n",
" Middle East | \n",
" 169 | \n",
" 167 | \n",
" 37.65 | \n",
" 46.67 | \n",
" 37.65 | \n",
" 4 | \n",
" 0 | \n",
" 5 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 178 | \n",
" Zambia | \n",
" ZMB | \n",
" Africa | \n",
" 115 | \n",
" 120 | \n",
" 61.79 | \n",
" 100.00 | \n",
" 61.79 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Difficult | \n",
"
\n",
" \n",
" 179 | \n",
" Zimbabwe | \n",
" ZWE | \n",
" Africa | \n",
" 130 | \n",
" 126 | \n",
" 56.88 | \n",
" 65.34 | \n",
" 56.88 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" Difficult | \n",
"
\n",
" \n",
"
\n",
"
180 rows × 13 columns
\n",
"
"
],
"text/plain": [
" Country ISO Code Region Position 2021 Position 2020 \\\n",
"0 Afghanistan AFG Asia Pacific 122 122 \n",
"1 Albania ALB Europe 83 84 \n",
"2 Algeria DZA Arab States 146 146 \n",
"3 Andorra AND Europe 39 37 \n",
"4 Angola AGO Africa 103 106 \n",
".. ... ... ... ... ... \n",
"175 Venezuela VEN South America 148 147 \n",
"176 Vietnam VNM Asia Pacific 175 175 \n",
"177 Yemen YEM Middle East 169 167 \n",
"178 Zambia ZMB Africa 115 120 \n",
"179 Zimbabwe ZWE Africa 130 126 \n",
"\n",
" Global Score With Abuses Without Abuses Journalist Killed \\\n",
"0 59.81 36.72 65.60 3 \n",
"1 69.41 76.02 69.41 0 \n",
"2 52.74 64.45 52.74 0 \n",
"3 76.68 100.00 76.68 0 \n",
"4 65.94 74.35 65.94 0 \n",
".. ... ... ... ... \n",
"175 52.40 45.71 53.84 0 \n",
"176 21.54 31.96 24.82 0 \n",
"177 37.65 46.67 37.65 4 \n",
"178 61.79 100.00 61.79 0 \n",
"179 56.88 65.34 56.88 0 \n",
"\n",
" Media Workers Killed Journalist Imprisoned Media Workers Imprisoned \\\n",
"0 3 0 0 \n",
"1 0 0 0 \n",
"2 0 1 0 \n",
"3 0 0 0 \n",
"4 0 0 0 \n",
".. ... ... ... \n",
"175 0 0 0 \n",
"176 0 24 0 \n",
"177 0 5 0 \n",
"178 0 0 0 \n",
"179 0 1 0 \n",
"\n",
" Situation \n",
"0 Difficult \n",
"1 Problematic \n",
"2 Difficult \n",
"3 Satisfactory \n",
"4 Problematic \n",
".. ... \n",
"175 Difficult \n",
"176 Very Serious \n",
"177 Very Serious \n",
"178 Difficult \n",
"179 Difficult \n",
"\n",
"[180 rows x 13 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display(df)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c04f98fd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"64.91827777777779\n"
]
}
],
"source": [
"print(df['Global Score'].mean())"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "2a75a371",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([ 6., 3., 4., 9., 22., 25., 39., 39., 21., 12.]),\n",
" array([18.55 , 26.023, 33.496, 40.969, 48.442, 55.915, 63.388, 70.861,\n",
" 78.334, 85.807, 93.28 ]),\n",
" )"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQOUlEQVR4nO3df4zkdX3H8eerB4qilV9bcuWgR4VIiCmHbq8YrNFD7AlGsLENxNj7g/Rsgim0poo2bSVpE0hU9I/G5PSUS6OoRSwErUrxjLVpju7BgXecFMRT73JwS4UibUJ78O4f8z3ZLLvM3O7MzXzs85FMdr6f73f2+8rM7Gu/853vdyZVhSSpPb807gCSpKWxwCWpURa4JDXKApekRlngktSoo47kyk466aRavXr1kVylJDVv+/btj1XV1PzxI1rgq1evZmZm5kiuUpKal+RHC40PvAslyYok9yS5vZs+Pcm2JA8l+WKSFw0rrCSpv8PZB34VsHvO9PXADVV1BvA4cMUwg0mSXthABZ5kFXAx8OluOsA64OZukS3ApSPIJ0laxKBb4B8H3g88202fCDxRVQe76b3AKQvdMMnGJDNJZmZnZ5eTVZI0R98CT/I24EBVbV/KCqpqU1VNV9X01NTz3kSVJC3RIEehnA+8PclFwDHALwOfAI5LclS3Fb4K2De6mJKk+fpugVfVB6tqVVWtBi4DvlVV7wK2Au/sFtsA3DqylJKk51nOmZgfAP40yUP09olvHk4kSdIgDutEnqr6NvDt7vrDwNrhR5IkDeKInokp6flWX/PVcUc44vZcd/G4I/xC8MOsJKlRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVF9CzzJMUnuSnJvkl1Jru3Gb0zywyQ7usuakaeVJP3cIF+p9jSwrqqeSnI08N0k/9jN+7Oqunl08SRJi+lb4FVVwFPd5NHdpUYZSpLU30D7wJOsSLIDOADcUVXbull/k+S+JDckefEit92YZCbJzOzs7HBSS5IGK/Cqeqaq1gCrgLVJXg18EDgL+E3gBOADi9x2U1VNV9X01NTUcFJLkg7vKJSqegLYCqyvqv3V8zTwWWDtCPJJkhYxyFEoU0mO666/BLgQ+H6Sld1YgEuBnaOLKUmab5CjUFYCW5KsoFf4X6qq25N8K8kUEGAH8EejiylJmm+Qo1DuA85dYHzdSBJJkgbimZiS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUqEG+E/OYJHcluTfJriTXduOnJ9mW5KEkX0zyotHHlSQdMsgW+NPAuqo6B1gDrE9yHnA9cENVnQE8DlwxspSSpOfpW+DV81Q3eXR3KWAdcHM3voXeN9NLko6QgfaBJ1mRZAdwALgD+AHwRFUd7BbZC5wykoSSpAUNVOBV9UxVrQFWAWuBswZdQZKNSWaSzMzOzi4tpSTpeQ7rKJSqegLYCrwOOC7JUd2sVcC+RW6zqaqmq2p6ampqOVklSXMMchTKVJLjuusvAS4EdtMr8nd2i20Abh1RRknSAo7qvwgrgS1JVtAr/C9V1e1J7ge+kOSvgXuAzSPMKUmap2+BV9V9wLkLjD9Mb3+4JGkMPBNTkhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjBvlS41OTbE1yf5JdSa7qxj+cZF+SHd3lotHHlSQdMsiXGh8E3ldVdyd5ObA9yR3dvBuq6iOjiydJWswgX2q8H9jfXf9Zkt3AKaMOJkl6YYNsgf9cktX0vqF+G3A+8N4kfwDM0NtKf3yB22wENgKcdtppy80rjcTqa7467gjSYRv4TcwkLwO+DFxdVU8CnwReCayht4X+0YVuV1Wbqmq6qqanpqaWn1iSBAxY4EmOplfen6uqWwCq6tGqeqaqngU+BawdXUxJ0nyDHIUSYDOwu6o+Nmd85ZzF3gHsHH48SdJiBtkHfj7wbuB7SXZ0Yx8CLk+yBihgD/CeEeSTJC1ikKNQvgtkgVlfG34cSdKgPBNTkhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMO6/PApVHzc7mlwbkFLkmNssAlqVEWuCQ1ygKXpEb5JqakI25cb1bvue7isax3VNwCl6RGDfKdmKcm2Zrk/iS7klzVjZ+Q5I4kD3Y/jx99XEnSIYNsgR8E3ldVZwPnAVcmORu4Brizqs4E7uymJUlHSN8Cr6r9VXV3d/1nwG7gFOASYEu32Bbg0hFllCQt4LD2gSdZDZwLbANOrqr93axHgJOHG02S9EIGLvAkLwO+DFxdVU/OnVdVBdQit9uYZCbJzOzs7LLCSpKeM1CBJzmaXnl/rqpu6YYfTbKym78SOLDQbatqU1VNV9X01NTUMDJLkhjsKJQAm4HdVfWxObNuAzZ01zcAtw4/niRpMYOcyHM+8G7ge0l2dGMfAq4DvpTkCuBHwO+PJKEkaUF9C7yqvgtkkdkXDDeOJGlQnokpSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRg3yp8WeSHEiyc87Yh5PsS7Kju1w02piSpPkG2QK/EVi/wPgNVbWmu3xtuLEkSf30LfCq+g7w0yOQRZJ0GJazD/y9Se7rdrEcv9hCSTYmmUkyMzs7u4zVSZLmWmqBfxJ4JbAG2A98dLEFq2pTVU1X1fTU1NQSVydJmm9JBV5Vj1bVM1X1LPApYO1wY0mS+llSgSdZOWfyHcDOxZaVJI3GUf0WSHIT8EbgpCR7gb8C3phkDVDAHuA9o4soSVpI3wKvqssXGN48giySpMPgmZiS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGtX3VHpJ+kWx+pqvjm3de667eOi/0y1wSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIa1bfAk3wmyYEkO+eMnZDkjiQPdj+PH21MSdJ8g2yB3wisnzd2DXBnVZ0J3NlNS5KOoL4FXlXfAX46b/gSYEt3fQtw6XBjSZL6Weo+8JOran93/RHg5MUWTLIxyUySmdnZ2SWuTpI037LfxKyqAuoF5m+qqumqmp6amlru6iRJnaUW+KNJVgJ0Pw8ML5IkaRBLLfDbgA3d9Q3ArcOJI0ka1CCHEd4E/CvwqiR7k1wBXAdcmORB4M3dtCTpCOr7eeBVdfkisy4YchZNiHF+ZrKkwXkmpiQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY3q+3ngk2Kcn1G957qLx7ZuSVqMW+CS1KhlbYEn2QP8DHgGOFhV08MIJUnqbxi7UN5UVY8N4fdIkg6Du1AkqVHLLfACvplke5KNCy2QZGOSmSQzs7Ozy1ydJOmQ5Rb466vqNcBbgSuTvGH+AlW1qaqmq2p6ampqmauTJB2yrAKvqn3dzwPAV4C1wwglSepvyQWe5NgkLz90HXgLsHNYwSRJL2w5R6GcDHwlyaHf8/mq+vpQUkmS+lpygVfVw8A5Q8wiSToMzZxK///ROD8+QNLk8zhwSWqUBS5JjbLAJalRFrgkNco3MQfgm4mSJpFb4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElq1LIKPMn6JA8keSjJNcMKJUnqbznfSr8C+FvgrcDZwOVJzh5WMEnSC1vOFvha4KGqeriq/gf4AnDJcGJJkvpZzueBnwL8ZM70XuC35i+UZCOwsZt8KskDy1jnQk4CHhvy7xw2My7fpOcDMw7DpOeDJWbM9cta568tNDjyL3Soqk3AplH9/iQzVTU9qt8/DGZcvknPB2YchknPB5OVcTm7UPYBp86ZXtWNSZKOgOUU+L8BZyY5PcmLgMuA24YTS5LUz5J3oVTVwSTvBb4BrAA+U1W7hpZscCPbPTNEZly+Sc8HZhyGSc8HE5QxVTXuDJKkJfBMTElqlAUuSY1qqsCTnJpka5L7k+xKclU3fkKSO5I82P08fkz5jklyV5J7u3zXduOnJ9nWfeTAF7s3fccqyYok9yS5fRIzJtmT5HtJdiSZ6cYm4nHushyX5OYk30+yO8nrJizfq7r77tDlySRXT1LGLuefdH8rO5Pc1P0NTcxzMclVXbZdSa7uxibmPmyqwIGDwPuq6mzgPODK7vT9a4A7q+pM4M5uehyeBtZV1TnAGmB9kvOA64EbquoM4HHgijHlm+sqYPec6UnM+KaqWjPnmNtJeZwBPgF8varOAs6hd19OTL6qeqC779YArwX+G/jKJGVMcgrwx8B0Vb2a3sEQlzEhz8Ukrwb+kN5Z5+cAb0tyBhN0H1JVzV6AW4ELgQeAld3YSuCBCcj2UuBuemenPgYc1Y2/DvjGmLOtovfEWwfcDmQCM+4BTpo3NhGPM/AK4Id0BwFMWr4F8r4F+JdJy8hzZ3OfQO+IuNuB35mU5yLwe8DmOdN/Abx/ku7D1rbAfy7JauBcYBtwclXt72Y9Apw8xlwrkuwADgB3AD8Anqiqg90ie+k9ccfp4/SeiM920ycyeRkL+GaS7d3HMcDkPM6nA7PAZ7vdUJ9OcuwE5ZvvMuCm7vrEZKyqfcBHgB8D+4H/BLYzOc/FncBvJzkxyUuBi+idvDgx92GTBZ7kZcCXgaur6sm586r3b3Fsx0ZW1TPVe9m6it5Lr7PGlWUhSd4GHKiq7ePO0sfrq+o19D7t8sokb5g7c8yP81HAa4BPVtW5wH8x72X0uJ+Hh3T7j98O/P38eePO2O07voTeP8RfBY4F1o8rz3xVtZve7pxvAl8HdgDPzFtmrPdhcwWe5Gh65f25qrqlG340ycpu/kp6W79jVVVPAFvpvQQ8Lsmhk6bG/ZED5wNvT7KH3idIrqO3P3eSMh7aOqOqDtDbd7uWyXmc9wJ7q2pbN30zvUKflHxzvRW4u6oe7aYnKeObgR9W1WxV/S9wC73n58Q8F6tqc1W9tqreQG9//L8zQfdhUwWeJMBmYHdVfWzOrNuADd31DfT2jR9xSaaSHNddfwm9/fO76RX5O8edD6CqPlhVq6pqNb2X1t+qqncxQRmTHJvk5Yeu09uHu5MJeZyr6hHgJ0le1Q1dANzPhOSb53Ke230Ck5Xxx8B5SV7a/W0fuh8n6bn4K93P04DfBT7PJN2H49r5vsQ3FV5P7+XKffRezuygt1/qRHpvyj0I/BNwwpjy/QZwT5dvJ/CX3fivA3cBD9F7Kfvicd+XXa43ArdPWsYuy73dZRfw5934RDzOXZY1wEz3WP8DcPwk5esyHgv8B/CKOWOTlvFa4Pvd38vfAS+esOfiP9P7p3IvcMGk3YeeSi9JjWpqF4ok6TkWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWrU/wGO+4/BBe7k1gAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"plt.hist(df['Global Score'])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "3ef8e5ae",
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAARXElEQVR4nO3df4wf9X3n8ecLbGTiuDaYrcVhgqlCyfVIIMmWSxSKYkijXoiCe41ouOq0PlAtnSJfer0T8emkS6P+EEFVU9SWIqtQ+Q6bg6NJzQUpBzUQXXRXwjoQMCEplOKEn14wJBBHgaXv/rHjxCxfs7P2fnf9iZ8PaTUzn/l8Zt4g8eKjz87spKqQJLXnmIUuQJJ0aAxwSWqUAS5JjTLAJalRBrgkNWrRfN7spJNOqjVr1sznLSWpeTt37nyuqkamt89rgK9Zs4bx8fH5vKUkNS/J7kHtLqFIUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGjWvL/JI82XNptvm5T6PX3nRvNxHGsQA10+l2Qbrmk23GcZqjksoktQoA1ySGmWAS1KjDHBJalSvAE/yqSS7kjyU5Le6thOT3JHkkW57wlArlSS9zowBnuQs4DeBc4GzgY8meTuwCdhRVWcAO7pjSdI86TMD/+fAPVW1r6omga8A/xq4GNjS9dkCrBtKhZKkgfoE+C7gl5KsTPIW4CPAqcCqqnq66/MMsGrQ4CQbkownGZ+YmJiToiVJPQK8qh4GPgfcDnwZuB94bVqfAuog4zdX1WhVjY6MvOGTbpKkQ9Trl5hVdV1VvbeqzgdeAP4OeDbJyQDdds/wypQkTdf3KZSf7bZvY2r9extwKzDWdRkDtg+jQEnSYH3/FspfJVkJvAp8sqpeTHIlcHOSy4HdwCXDKlKS9Ea9AryqfmlA2/PAhXNekSSpF9/ElKRGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEb1/Sbmf0zyUJJdSW5MsiTJ6UnuSfJokpuSHDfsYiVJPzFjgCc5BfgPwGhVnQUcC3wC+Bzw+ap6O1Nfqr98mIVKkl6v7xLKIuD4JIuAtwBPAxcAt3TntwDr5rw6SdJBzRjgVfUk8IfAd5gK7u8BO4EXq2qy6/YEcMqg8Uk2JBlPMj4xMTE3VUuSei2hnABcDJwO/DNgKfArfW9QVZurarSqRkdGRg65UEnS6/VZQvkQ8A9VNVFVrwJfAD4ArOiWVABWA08OqUZJ0gB9Avw7wPuSvCVJgAuBbwJ3AR/v+owB24dToiRpkD5r4Pcw9cvKrwMPdmM2A58GfjvJo8BK4Loh1ilJmmbRzF2gqj4DfGZa82PAuXNekSSpF9/ElKRGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY3q9RihtJDO/uztfO+Hrw79Pms23TbU6y8/fjHf+MyHh3oPHV0McB3xvvfDV3n8yosWuozDNuz/Qejo4xKKJDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEbNGOBJzkxy/wE/30/yW0lOTHJHkke67QnzUbAkaUqfjxp/u6rOqapzgPcC+4AvApuAHVV1BrCjO5YkzZPZLqFcCPx9Ve0GLga2dO1bgHVzWJckaQazDfBPADd2+6uq6ulu/xlg1aABSTYkGU8yPjExcYhlSpKm6x3gSY4DPgb8r+nnqqqAGjSuqjZX1WhVjY6MjBxyoZKk15vNDPxfAV+vqme742eTnAzQbffMdXGSpIObTYBfyk+WTwBuBca6/TFg+1wVJUmaWaZWP2bolCwFvgP8XFV9r2tbCdwMvA3YDVxSVXvf7Dqjo6M1Pj5+2EXr6PLOLe9c6BLmzINjDy50CWpQkp1VNTq9vdcn1arqB8DKaW3PM/VUijRULz18pZ9UkwbwTUxJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqVK8AT7IiyS1JvpXk4STvT3JikjuSPNJtTxh2sZKkn+g7A78a+HJVvQM4G3gY2ATsqKozgB3dsSRpnswY4EmWA+cD1wFU1StV9SJwMbCl67YFWDecEiVJg/SZgZ8OTAB/meS+JH/RfaV+VVU93fV5Blg1aHCSDUnGk4xPTEzMTdWSpF4Bvgh4D/DnVfVu4AdMWy6pqgJq0OCq2lxVo1U1OjIycrj1SpI6fQL8CeCJqrqnO76FqUB/NsnJAN12z3BKlCQNMmOAV9UzwHeTnNk1XQh8E7gVGOvaxoDtQ6lQkjTQop79NgJbkxwHPAb8O6bC/+YklwO7gUuGU6IkaZBeAV5V9wOjA05dOKfVSJJ6801MSWqUAS5JjTLAJalRBrgkNarvUyjSglqz6baFLuGwLT9+8UKXoJ8yBriOeI9fedHQ77Fm023zch9pLrmEIkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RG9fpjVkkeB14CXgMmq2o0yYnATcAa4HHgkqp6YThlSpKmm80MfG1VnVNV+7+NuQnYUVVnADu6Y0nSPDmcJZSLgS3d/hZg3WFXI0nqrW+AF3B7kp1JNnRtq6rq6W7/GWDVoIFJNiQZTzI+MTFxmOVKkvbr+0GH86rqySQ/C9yR5FsHnqyqSlKDBlbVZmAzwOjo6MA+kqTZ6zUDr6onu+0e4IvAucCzSU4G6LZ7hlWkJOmNZgzwJEuTLNu/D3wY2AXcCox13caA7cMqUpL0Rn2WUFYBX0yyv/+2qvpyknuBm5NcDuwGLhlemZKk6WYM8Kp6DDh7QPvzwIXDKEqSNDPfxJSkRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RG9Q7wJMcmuS/Jl7rj05Pck+TRJDclOW54ZUqSppvNDPxTwMMHHH8O+HxVvR14Abh8LguTJL25XgGeZDVwEfAX3XGAC4Bbui5bgHVDqE+SdBB9Z+B/DFwB/GN3vBJ4saomu+MngFMGDUyyIcl4kvGJiYnDqVWSdIAZAzzJR4E9VbXzUG5QVZurarSqRkdGRg7lEpKkARb16PMB4GNJPgIsAX4GuBpYkWRRNwtfDTw5vDIlSdPNOAOvqv9SVaurag3wCeDOqvoN4C7g4123MWD70KqUJL3B4TwH/mngt5M8ytSa+HVzU5IkqY8+Syg/VlV3A3d3+48B5859SZKkPnwTU5IaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhrV56v0S5J8Lck3kjyU5LNd++lJ7knyaJKbkhw3/HIlSfv1mYH/CLigqs4GzgF+Jcn7gM8Bn6+qtwMvAJcPrUpJ0hv0+Sp9VdXL3eHi7qeAC4BbuvYtwLphFChJGqzXGniSY5PcD+wB7gD+Hnixqia7Lk8ApwylQknSQL0CvKpeq6pzgNVMfYn+HX1vkGRDkvEk4xMTE4dWpSTpDWb1FEpVvQjcBbwfWJFkUXdqNfDkQcZsrqrRqhodGRk5nFolSQfo8xTKSJIV3f7xwC8DDzMV5B/vuo0B24dUoyRpgEUzd+FkYEuSY5kK/Jur6ktJvgn8zyS/B9wHXDfEOiVJ08wY4FX1APDuAe2PMbUeLklaAL6JKUmNMsAlqVF91sCl5qzZdNu8jHn8yotmPUaaKwa4fioZrDoauIQiSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuI5qGzduZMmSJSRhyZIlbNy4caFLknozwHXU2rhxI9dccw0rVqwAYMWKFVxzzTWGuJphgOuode2117J8+XJuvPFGXnnlFW688UaWL1/Otddeu9ClSb0Y4DpqTU5OsnXrVtauXcvixYtZu3YtW7duZXJycqFLk3rp81HjU5PcleSbSR5K8qmu/cQkdyR5pNueMPxypbl1ww03cNZZZ3Hsscdy1llnccMNNyx0SVJvfWbgk8B/qqpfAN4HfDLJLwCbgB1VdQawozuWmrF06VK2bdvG+eefz969ezn//PPZtm0bS5cuXejSpF5SVbMbkGwH/rT7+WBVPZ3kZODuqjrzzcaOjo7W+Pj4IRcrzaVTTz2V559/nsnJSV599VUWL17MokWLWLlyJd/97ncXujzpx5LsrKrR6e2zWgNPsoapL9TfA6yqqqe7U88Aqw4yZkOS8STjExMTs6taGqKnnnqK9evXc8wxU/8ZHHPMMaxfv56nnnpqgSuT+uk9A0/yVuArwO9X1ReSvFhVKw44/0JVvek6uDNwHUlOPfVUXnrpJU444QR2797NaaedxgsvvMCyZcucgeuIclgz8CSLgb8CtlbVF7rmZ7ulE7rtnrkqVpoP+/bt4+WXX2bjxo2v2+7bt2+hS5N66fMUSoDrgIer6o8OOHUrMNbtjwHb5748aXj27t3LFVdcwfXXX8+yZcu4/vrrueKKK9i7d+9Clyb10mcG/gHg3wIXJLm/+/kIcCXwy0keAT7UHUtNWbt2Lbt27eK1115j165drF27dqFLknpbNFOHqvoqkIOcvnBuy5Hmz+rVqxkbG2Pr1q2cd955fPWrX2VsbIzVq1cvdGlSL76JqaPWVVddxeTkJJdddhlLlizhsssuY3JykquuumqhS5N6McB11Lr00ku5+uqrf/ziztKlS7n66qu59NJLF7gyqZ9Zv8hzOHyMUJJmb05e5JEkHTkMcElqlAEuSY0ywCWpUQa4JDVqXp9CSTIB7J63G0r9nQQ8t9BFSAdxWlWNTG+c1wCXjlRJxgc9piUdyVxCkaRGGeCS1CgDXJqyeaELkGbLNXBJapQzcElqlAEuSY0ywHVESbIqybYkjyXZmeT/J/nV7twHk3xphvG/k+Q/z/KeLx+k/b8meSjJA92XqP7lbK4rDduMX+SR5kv3/dW/BrZU1b/p2k4DPrYAtbwf+Cjwnqr6UZKTgOMO85qLqmpyTgqUcAauI8sFwCtVde3+hqraXVV/Mr1jkhOT/HU3O/7bJO864PTZ3cz9kSS/2fV/a5IdSb6e5MEkF89Qy8nAc1X1o66O56rqqe5av5jk/yX5RpKvJVmWZEmSv+yufV+StV3f9UluTXInsCPJ0iTXd+Pu61GHdFDOwHUk+RfA13v2/SxwX1WtS3IB8N+Bc7pz7wLeBywF7ktyG7AH+NWq+n43m/7bJLfWwR/Duh34b0n+Dvgb4Kaq+kqS44CbgF+vqnuT/AzwQ+BTQFXVO5O8A7g9yc9313oP8K6q2pvkD4A7q+qyJCuAryX5m6r6Qc9/bunHnIHriJXkz7pZ7r0DTp8H/A+AqroTWNmFKcD2qvphVT0H3AWcy9SHuf8gyQNMBfIpwKqD3buqXgbeC2wAJoCbkqwHzgSerqp7u37f75ZFzgNu6Nq+xdTf/Nkf4HdU1d5u/8PApiT3A3cDS4C3zebfi7SfM3AdSR4Cfm3/QVV9spstz/Y7fNNn1QX8BjACvLeqXk3yOFPhefCLVL3GVMjeneRBYAzYOctaAA6cXQf4tar69iFcR3odZ+A6ktwJLEny7w9oe8tB+v5fpkKZJB9kar36+925i7s16ZXAB4F7geXAni681wKnvVkhSc5McsYBTecwNav+NnBykl/s+i1LsmhaPT/P1Kx6UEj/H2Bj9wtbkrz7zeqQ3owzcB0xqqqSrAM+n+QKppYufgB8ekD33wGu75ZE9jE1O97vAaaWTk4CfreqnkqyFfjf3Ux6HPjWDOW8FfiTbp16EngU2FBVryT59e7c8Uytf38IuAb48+76k8D67umV6df9XeCPgQeSHAP8A1NPu0iz5qv0ktQol1AkqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWrUPwEV1KEomT4FgAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"df['Global Score'].plot.box()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "a588fc72",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Country | \n",
" ISO Code | \n",
" Region | \n",
" Position 2021 | \n",
" Position 2020 | \n",
" Global Score | \n",
" With Abuses | \n",
" Without Abuses | \n",
" Journalist Killed | \n",
" Media Workers Killed | \n",
" Journalist Imprisoned | \n",
" Media Workers Imprisoned | \n",
" Situation | \n",
"
\n",
" \n",
" \n",
" \n",
" 3 | \n",
" Andorra | \n",
" AND | \n",
" Europe | \n",
" 39 | \n",
" 37 | \n",
" 76.68 | \n",
" 100.00 | \n",
" 76.68 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 7 | \n",
" Australia | \n",
" AUS | \n",
" Asia Pacific | \n",
" 25 | \n",
" 26 | \n",
" 80.21 | \n",
" 100.00 | \n",
" 80.21 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 8 | \n",
" Austria | \n",
" AUT | \n",
" Europe | \n",
" 17 | \n",
" 18 | \n",
" 83.66 | \n",
" 89.01 | \n",
" 83.66 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 13 | \n",
" Belgium | \n",
" BEL | \n",
" Europe | \n",
" 11 | \n",
" 12 | \n",
" 88.31 | \n",
" 93.07 | \n",
" 88.31 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 19 | \n",
" Botswana | \n",
" BWA | \n",
" Africa | \n",
" 38 | \n",
" 39 | \n",
" 76.75 | \n",
" 93.07 | \n",
" 76.75 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 23 | \n",
" Burkina Faso | \n",
" BFA | \n",
" Africa | \n",
" 37 | \n",
" 38 | \n",
" 76.83 | \n",
" 93.07 | \n",
" 76.83 | \n",
" 2 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 25 | \n",
" Cabo Verde | \n",
" CPV | \n",
" Africa | \n",
" 27 | \n",
" 25 | \n",
" 79.91 | \n",
" 100.00 | \n",
" 79.91 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 28 | \n",
" Canada | \n",
" CAN | \n",
" North America | \n",
" 14 | \n",
" 16 | \n",
" 84.75 | \n",
" 100.00 | \n",
" 84.75 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 36 | \n",
" Costa Rica | \n",
" CRI | \n",
" South America | \n",
" 5 | \n",
" 7 | \n",
" 91.24 | \n",
" 89.01 | \n",
" 91.79 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 39 | \n",
" Cyprus | \n",
" CYP | \n",
" Europe | \n",
" 26 | \n",
" 27 | \n",
" 80.15 | \n",
" 83.91 | \n",
" 80.15 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 40 | \n",
" Czech Republic | \n",
" CZE | \n",
" Europe | \n",
" 40 | \n",
" 40 | \n",
" 76.62 | \n",
" 100.00 | \n",
" 76.62 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 42 | \n",
" Denmark | \n",
" DNK | \n",
" Europe | \n",
" 4 | \n",
" 3 | \n",
" 91.43 | \n",
" 100.00 | \n",
" 91.43 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 50 | \n",
" Estonia | \n",
" EST | \n",
" Europe | \n",
" 15 | \n",
" 14 | \n",
" 84.75 | \n",
" 100.00 | \n",
" 84.75 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 54 | \n",
" Finland | \n",
" FIN | \n",
" Europe | \n",
" 2 | \n",
" 2 | \n",
" 93.01 | \n",
" 100.00 | \n",
" 93.01 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 55 | \n",
" France | \n",
" FRA | \n",
" Europe | \n",
" 34 | \n",
" 34 | \n",
" 77.40 | \n",
" 58.10 | \n",
" 82.11 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 59 | \n",
" Germany | \n",
" DEU | \n",
" Europe | \n",
" 13 | \n",
" 11 | \n",
" 84.76 | \n",
" 56.69 | \n",
" 91.75 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 60 | \n",
" Ghana | \n",
" GHA | \n",
" Africa | \n",
" 30 | \n",
" 30 | \n",
" 78.67 | \n",
" 82.08 | \n",
" 78.67 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 70 | \n",
" Iceland | \n",
" ISL | \n",
" Europe | \n",
" 16 | \n",
" 15 | \n",
" 84.63 | \n",
" 100.00 | \n",
" 84.63 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 75 | \n",
" Ireland | \n",
" IRL | \n",
" Europe | \n",
" 12 | \n",
" 13 | \n",
" 88.09 | \n",
" 100.00 | \n",
" 88.09 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 77 | \n",
" Italy | \n",
" ITA | \n",
" Europe | \n",
" 41 | \n",
" 41 | \n",
" 76.61 | \n",
" 72.27 | \n",
" 77.37 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 79 | \n",
" Jamaica | \n",
" JAM | \n",
" South America | \n",
" 7 | \n",
" 6 | \n",
" 90.04 | \n",
" 100.00 | \n",
" 90.04 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 88 | \n",
" Latvia | \n",
" LVA | \n",
" Europe | \n",
" 22 | \n",
" 22 | \n",
" 80.74 | \n",
" 100.00 | \n",
" 80.74 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 93 | \n",
" Liechtenstein | \n",
" LIE | \n",
" Europe | \n",
" 23 | \n",
" 24 | \n",
" 80.51 | \n",
" 100.00 | \n",
" 80.51 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 94 | \n",
" Lithuania | \n",
" LTU | \n",
" Europe | \n",
" 28 | \n",
" 28 | \n",
" 79.85 | \n",
" 100.00 | \n",
" 79.85 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 95 | \n",
" Luxembourg | \n",
" LUX | \n",
" Europe | \n",
" 20 | \n",
" 17 | \n",
" 82.44 | \n",
" 100.00 | \n",
" 82.44 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 111 | \n",
" Namibia | \n",
" NAM | \n",
" Africa | \n",
" 24 | \n",
" 23 | \n",
" 80.28 | \n",
" 89.01 | \n",
" 80.28 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 113 | \n",
" Netherlands | \n",
" NLD | \n",
" Europe | \n",
" 6 | \n",
" 5 | \n",
" 90.33 | \n",
" 86.14 | \n",
" 91.26 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 114 | \n",
" New Zealand | \n",
" NZL | \n",
" Asia Pacific | \n",
" 8 | \n",
" 9 | \n",
" 89.96 | \n",
" 100.00 | \n",
" 89.96 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 121 | \n",
" Norway | \n",
" NOR | \n",
" Europe | \n",
" 1 | \n",
" 1 | \n",
" 93.28 | \n",
" 100.00 | \n",
" 93.28 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 122 | \n",
" OECS | \n",
" NaN | \n",
" NaN | \n",
" 45 | \n",
" 44 | \n",
" 76.02 | \n",
" 100.00 | \n",
" 76.03 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 127 | \n",
" Papua New Guinea | \n",
" PNG | \n",
" Asia Pacific | \n",
" 47 | \n",
" 46 | \n",
" 75.12 | \n",
" 100.00 | \n",
" 75.12 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 132 | \n",
" Portugal | \n",
" PRT | \n",
" Europe | \n",
" 9 | \n",
" 10 | \n",
" 89.89 | \n",
" 100.00 | \n",
" 89.89 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 134 | \n",
" Romania | \n",
" ROU | \n",
" Europe | \n",
" 48 | \n",
" 48 | \n",
" 75.09 | \n",
" 100.00 | \n",
" 75.09 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 137 | \n",
" Samoa | \n",
" WSM | \n",
" Asia Pacific | \n",
" 21 | \n",
" 21 | \n",
" 80.76 | \n",
" 100.00 | \n",
" 80.76 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 144 | \n",
" Slovakia | \n",
" SVK | \n",
" Europe | \n",
" 35 | \n",
" 33 | \n",
" 76.98 | \n",
" 100.00 | \n",
" 76.98 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 145 | \n",
" Slovenia | \n",
" SVN | \n",
" Europe | \n",
" 36 | \n",
" 32 | \n",
" 76.90 | \n",
" 93.07 | \n",
" 76.90 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 147 | \n",
" South Africa | \n",
" ZAF | \n",
" Africa | \n",
" 32 | \n",
" 31 | \n",
" 78.41 | \n",
" 54.36 | \n",
" 84.39 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 148 | \n",
" South Korea | \n",
" KOR | \n",
" Asia Pacific | \n",
" 42 | \n",
" 42 | \n",
" 76.57 | \n",
" 100.00 | \n",
" 76.57 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 150 | \n",
" Spain | \n",
" ESP | \n",
" Europe | \n",
" 29 | \n",
" 29 | \n",
" 79.56 | \n",
" 76.02 | \n",
" 80.30 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 153 | \n",
" Suriname | \n",
" SUR | \n",
" South America | \n",
" 19 | \n",
" 20 | \n",
" 83.05 | \n",
" 100.00 | \n",
" 83.05 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 154 | \n",
" Sweden | \n",
" SWE | \n",
" Europe | \n",
" 3 | \n",
" 4 | \n",
" 92.76 | \n",
" 100.00 | \n",
" 92.76 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 155 | \n",
" Switzerland | \n",
" CHE | \n",
" Europe | \n",
" 10 | \n",
" 8 | \n",
" 89.45 | \n",
" 93.07 | \n",
" 89.45 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Good | \n",
"
\n",
" \n",
" 157 | \n",
" Taiwan | \n",
" TWN | \n",
" Asia Pacific | \n",
" 43 | \n",
" 43 | \n",
" 76.14 | \n",
" 100.00 | \n",
" 76.14 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 163 | \n",
" Tonga | \n",
" TON | \n",
" Asia Pacific | \n",
" 46 | \n",
" 50 | \n",
" 75.41 | \n",
" 100.00 | \n",
" 75.41 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 164 | \n",
" Trinidad and Tobago | \n",
" TTO | \n",
" South America | \n",
" 31 | \n",
" 36 | \n",
" 78.45 | \n",
" 100.00 | \n",
" 78.45 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 171 | \n",
" United Kingdom | \n",
" GBR | \n",
" Europe | \n",
" 33 | \n",
" 35 | \n",
" 78.41 | \n",
" 86.14 | \n",
" 78.35 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 172 | \n",
" United States | \n",
" USA | \n",
" North America | \n",
" 44 | \n",
" 45 | \n",
" 76.07 | \n",
" 60.30 | \n",
" 79.97 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
" 173 | \n",
" Uruguay | \n",
" URY | \n",
" South America | \n",
" 18 | \n",
" 19 | \n",
" 83.62 | \n",
" 100.00 | \n",
" 83.62 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Satisfactory | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Country ISO Code Region Position 2021 \\\n",
"3 Andorra AND Europe 39 \n",
"7 Australia AUS Asia Pacific 25 \n",
"8 Austria AUT Europe 17 \n",
"13 Belgium BEL Europe 11 \n",
"19 Botswana BWA Africa 38 \n",
"23 Burkina Faso BFA Africa 37 \n",
"25 Cabo Verde CPV Africa 27 \n",
"28 Canada CAN North America 14 \n",
"36 Costa Rica CRI South America 5 \n",
"39 Cyprus CYP Europe 26 \n",
"40 Czech Republic CZE Europe 40 \n",
"42 Denmark DNK Europe 4 \n",
"50 Estonia EST Europe 15 \n",
"54 Finland FIN Europe 2 \n",
"55 France FRA Europe 34 \n",
"59 Germany DEU Europe 13 \n",
"60 Ghana GHA Africa 30 \n",
"70 Iceland ISL Europe 16 \n",
"75 Ireland IRL Europe 12 \n",
"77 Italy ITA Europe 41 \n",
"79 Jamaica JAM South America 7 \n",
"88 Latvia LVA Europe 22 \n",
"93 Liechtenstein LIE Europe 23 \n",
"94 Lithuania LTU Europe 28 \n",
"95 Luxembourg LUX Europe 20 \n",
"111 Namibia NAM Africa 24 \n",
"113 Netherlands NLD Europe 6 \n",
"114 New Zealand NZL Asia Pacific 8 \n",
"121 Norway NOR Europe 1 \n",
"122 OECS NaN NaN 45 \n",
"127 Papua New Guinea PNG Asia Pacific 47 \n",
"132 Portugal PRT Europe 9 \n",
"134 Romania ROU Europe 48 \n",
"137 Samoa WSM Asia Pacific 21 \n",
"144 Slovakia SVK Europe 35 \n",
"145 Slovenia SVN Europe 36 \n",
"147 South Africa ZAF Africa 32 \n",
"148 South Korea KOR Asia Pacific 42 \n",
"150 Spain ESP Europe 29 \n",
"153 Suriname SUR South America 19 \n",
"154 Sweden SWE Europe 3 \n",
"155 Switzerland CHE Europe 10 \n",
"157 Taiwan TWN Asia Pacific 43 \n",
"163 Tonga TON Asia Pacific 46 \n",
"164 Trinidad and Tobago TTO South America 31 \n",
"171 United Kingdom GBR Europe 33 \n",
"172 United States USA North America 44 \n",
"173 Uruguay URY South America 18 \n",
"\n",
" Position 2020 Global Score With Abuses Without Abuses \\\n",
"3 37 76.68 100.00 76.68 \n",
"7 26 80.21 100.00 80.21 \n",
"8 18 83.66 89.01 83.66 \n",
"13 12 88.31 93.07 88.31 \n",
"19 39 76.75 93.07 76.75 \n",
"23 38 76.83 93.07 76.83 \n",
"25 25 79.91 100.00 79.91 \n",
"28 16 84.75 100.00 84.75 \n",
"36 7 91.24 89.01 91.79 \n",
"39 27 80.15 83.91 80.15 \n",
"40 40 76.62 100.00 76.62 \n",
"42 3 91.43 100.00 91.43 \n",
"50 14 84.75 100.00 84.75 \n",
"54 2 93.01 100.00 93.01 \n",
"55 34 77.40 58.10 82.11 \n",
"59 11 84.76 56.69 91.75 \n",
"60 30 78.67 82.08 78.67 \n",
"70 15 84.63 100.00 84.63 \n",
"75 13 88.09 100.00 88.09 \n",
"77 41 76.61 72.27 77.37 \n",
"79 6 90.04 100.00 90.04 \n",
"88 22 80.74 100.00 80.74 \n",
"93 24 80.51 100.00 80.51 \n",
"94 28 79.85 100.00 79.85 \n",
"95 17 82.44 100.00 82.44 \n",
"111 23 80.28 89.01 80.28 \n",
"113 5 90.33 86.14 91.26 \n",
"114 9 89.96 100.00 89.96 \n",
"121 1 93.28 100.00 93.28 \n",
"122 44 76.02 100.00 76.03 \n",
"127 46 75.12 100.00 75.12 \n",
"132 10 89.89 100.00 89.89 \n",
"134 48 75.09 100.00 75.09 \n",
"137 21 80.76 100.00 80.76 \n",
"144 33 76.98 100.00 76.98 \n",
"145 32 76.90 93.07 76.90 \n",
"147 31 78.41 54.36 84.39 \n",
"148 42 76.57 100.00 76.57 \n",
"150 29 79.56 76.02 80.30 \n",
"153 20 83.05 100.00 83.05 \n",
"154 4 92.76 100.00 92.76 \n",
"155 8 89.45 93.07 89.45 \n",
"157 43 76.14 100.00 76.14 \n",
"163 50 75.41 100.00 75.41 \n",
"164 36 78.45 100.00 78.45 \n",
"171 35 78.41 86.14 78.35 \n",
"172 45 76.07 60.30 79.97 \n",
"173 19 83.62 100.00 83.62 \n",
"\n",
" Journalist Killed Media Workers Killed Journalist Imprisoned \\\n",
"3 0 0 0 \n",
"7 0 0 0 \n",
"8 0 0 0 \n",
"13 0 0 0 \n",
"19 0 0 0 \n",
"23 2 0 0 \n",
"25 0 0 0 \n",
"28 0 0 0 \n",
"36 0 0 0 \n",
"39 0 0 0 \n",
"40 0 0 0 \n",
"42 0 0 0 \n",
"50 0 0 0 \n",
"54 0 0 0 \n",
"55 0 0 0 \n",
"59 0 0 0 \n",
"60 0 0 1 \n",
"70 0 0 0 \n",
"75 0 0 0 \n",
"77 0 0 0 \n",
"79 0 0 0 \n",
"88 0 0 0 \n",
"93 0 0 0 \n",
"94 0 0 0 \n",
"95 0 0 0 \n",
"111 0 0 0 \n",
"113 1 0 0 \n",
"114 0 0 0 \n",
"121 0 0 0 \n",
"122 0 0 0 \n",
"127 0 0 0 \n",
"132 0 0 0 \n",
"134 0 0 0 \n",
"137 0 0 0 \n",
"144 0 0 0 \n",
"145 0 0 0 \n",
"147 0 0 0 \n",
"148 0 0 0 \n",
"150 0 0 0 \n",
"153 0 0 0 \n",
"154 0 0 0 \n",
"155 0 0 0 \n",
"157 0 0 0 \n",
"163 0 0 0 \n",
"164 0 0 0 \n",
"171 0 0 0 \n",
"172 0 0 0 \n",
"173 0 0 0 \n",
"\n",
" Media Workers Imprisoned Situation \n",
"3 0 Satisfactory \n",
"7 0 Satisfactory \n",
"8 0 Satisfactory \n",
"13 0 Good \n",
"19 0 Satisfactory \n",
"23 0 Satisfactory \n",
"25 0 Satisfactory \n",
"28 0 Satisfactory \n",
"36 0 Good \n",
"39 0 Satisfactory \n",
"40 0 Satisfactory \n",
"42 0 Good \n",
"50 0 Satisfactory \n",
"54 0 Good \n",
"55 0 Satisfactory \n",
"59 0 Satisfactory \n",
"60 0 Satisfactory \n",
"70 0 Satisfactory \n",
"75 0 Good \n",
"77 0 Satisfactory \n",
"79 0 Good \n",
"88 0 Satisfactory \n",
"93 0 Satisfactory \n",
"94 0 Satisfactory \n",
"95 0 Satisfactory \n",
"111 0 Satisfactory \n",
"113 0 Good \n",
"114 0 Good \n",
"121 0 Good \n",
"122 0 Satisfactory \n",
"127 0 Satisfactory \n",
"132 0 Good \n",
"134 0 Satisfactory \n",
"137 0 Satisfactory \n",
"144 0 Satisfactory \n",
"145 0 Satisfactory \n",
"147 0 Satisfactory \n",
"148 0 Satisfactory \n",
"150 0 Satisfactory \n",
"153 0 Satisfactory \n",
"154 0 Good \n",
"155 0 Good \n",
"157 0 Satisfactory \n",
"163 0 Satisfactory \n",
"164 0 Satisfactory \n",
"171 0 Satisfactory \n",
"172 0 Satisfactory \n",
"173 0 Satisfactory "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Paysbon est toujours un DataFrame : \n"
]
}
],
"source": [
"Score=df[\"Global Score\"] # df[label_colonne] sélectionne une colonne (renvoie la Series correspondante)\n",
"Paysbon = df.loc[Score > 75] # df.loc[critère] sélectionne un sous-échantillon de lignes.\n",
" # Le critère de sélection doit lui-même être calculé à partir d'une Series.\n",
"display(Paysbon)\n",
"print(\"Paysbon est toujours un DataFrame : \", type(Paysbon))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "fb2a2980",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"moyenne des Score: 64.91827777777779\n",
"écart-type des Score: 15.831010824369084\n",
"quantiles des prix:\n"
]
},
{
"data": {
"text/plain": [
"0.10 44.4750\n",
"0.25 56.1800\n",
"0.50 68.3100\n",
"0.75 75.5625\n",
"0.90 83.1070\n",
"Name: Global Score, dtype: float64"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEWCAYAAACT7WsrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmB0lEQVR4nO3deZgdZZ328e9NRFkCRLZ+2TQMIogEkLQsymg3OIiIoAwqCGrcIjoqvMZRdFTch3EGHZARRYS4ElcGJqCCSARUlgSBhFWEMBIQZA0dEAnc7x9V/XJozumu7j6nT6Vzf67rXH1qv7tOd/+6qp56SraJiIhoZo1uB4iIiPpKkYiIiJZSJCIioqUUiYiIaClFIiIiWkqRiIiIllIkImpE0ixJl1Scd4Gkd45xO3MlfW4sy8bqJUUiJiVJe0n6raQHJd0n6TeSXlyDXL2S5ku6X9IDkq6T9HlJz+52tohmUiRi0pG0PjAf+AqwIbAF8Gng0TZvZ8oo538JsAD4DbC97WnAfsBKYOd2ZotolxSJmIyeD2D7DNuP237E9nm2rxmcQdK7JF0v6aHyv/ldy/EvKE/jPCDpWkkHNiwzV9LJks6VtALol7S5pJ9I+oukWyV9YJhcXwROt/2vtu8qM/6v7WNtL2i2gKSXSLqiPCK6oiw0jbaRdLmk5ZLOkrRhw7I/kvTnctmLJL1wlPsxIkUiJqWbgMclfUvSq4aeypH0euBTwFuA9YEDgXslrQn8D3AesCnwfuB7krZrWPxNwOeB9YDflvNfTXG0sg9wtKRXDg0kaV1gT+AnVb+J8g/+OcCJwEbAl4BzJG3UMNtbgLcDm1EckZzYMO1nwLbl93Il8L2q244YlCIRk47t5cBegIFvAH+RdLaknnKWdwJftH2FCzfbvg3YA5gKHGf7b7Z/RXHa6rCG1Z9l+ze2nwBmAJvY/kw5/y3l9g5tEuvZFL9vfx4cIemL5RHLCkkfb7LMq4E/2P6O7ZW2zwBuAF7TMM93bC+xvQL4BPCGwdNgtk+z/ZDtRymK4s6SNqi8IyNIkYhJyvb1tmfZ3hLYEdgc+M9y8lbAH5sstjnwp7IADLqN4ihh0J8a3j8X2Lz8Q/+ApAeAjwE9PN39wBMU//EPZvxweV3iTOAZLfLcNmTccHluA9YENpY0RdJxkv4oaTmwtJxn4ybbiWgpRSImPds3AHMpigUUf1i3aTLrHcBWkhp/L54DLGtcXcP7PwG32p7W8FrP9v5NMqwALgMOHkX0OygKUaOhebYaMu0x4B6K02IHAa8ANgCml/NoFNuPSJGIyUfS9pLmSNqyHN6K4pTRpeUspwIfkjRThedJei7FH/GHgQ9LWlNSH8WpnXktNnU58JCkj0hau/zvfcdhmtp+GHi7pGMkbVpm2xLYusX85wLPl/QmSc+Q9EZgB4pTYIOOkLSDpHWAzwA/tv04xTWTR4F7gXWAL7TeYxGtpUjEZPQQsDtwWdkK6VJgCTAHwPaPKC4+f7+c97+BDW3/jaIovIriv/GvAm8pj0SepvxjfACwC3BrucypFP+5N5v/EmBv4GXATeXpqZ9TNIv9SpP57y3XP4fij/2HgQNs39Mw23cojpL+DKwFDLau+jbF6adlwHU8WSAjRkV56FBERLSSI4mIiGgpRSIiIlpKkYiIiJZSJCIioqVmN/CssjbeeGNPnz69retcsWIF6667blvX2W7JOH51zwfJ2C51z9iNfIsWLbrH9iZNJ9qeNK+ZM2e63S688MK2r7PdknH86p7PTsZ2qXvGbuQDFrrF39WcboqIiJZSJCIioqUUiYiIaClFIiIiWkqRiIiIllIkIiKipRSJiIhoKUUiIiJaSpGIiIiWJlW3HBFRH9OPOafp+KXHvXqCk8R45EgiIiJaqlwkJO0l6W3l+00ktXoub0RETBKVioSkY4GPAB8tR60JfLdToSIioh6qHkm8DjgQWAFg+w5gvU6FioiIeqhaJP5WdidrAEn17Yw9IiLapmqR+KGkrwPTJL0L+CXwjc7FioiIOhixCawkAT8AtgeWA9sBn7R9foezRUREl41YJGxb0rm2ZwApDBERq5Gqp5uulPTijiaJiIjaqXrH9e7A4ZJuo2jhJIqDjJ06liwiIrquapF4ZUdTRERELVU63WT7NmAa8JryNa0cFxERk1jVO66PAr4HbFq+vivp/RWWO03S3ZKWNIz7gaSrytdSSVe1WHappMXlfAsrfTcREdFWVU83vQPY3fYKAEn/BvwO+MoIy80FTgK+PTjC9hsH30s6HnhwmOX7bd9TMWNERLRZ1SIh4PGG4cfLccOyfZGk6U1XWNx/8QZg74oZIiJigqnobWOEmaQPAm8FzixHvRaYa/s/Kyw7HZhve8ch418GfMl2b4vlbgXup+gK5Ou2T2kx32xgNkBPT8/MefPmjfj9jMbAwABTp05t6zrbLRnHr+75YNXLuHhZ85MEM7bYYCIjPU3d92M38vX39y9q+be4SpEAkLQrsFc5eLHt31dcbjrNi8TJwM22j2+x3Ba2l0nalOImvvfbvmi4bfX29nrhwvZevliwYAF9fX1tXWe7JeP41T0frHoZ6/rQobrvx27kk9SySFQ63SRpD+Ba21eWw+tL2t32ZWMM9AzgYGBmq3lsLyu/3i3pTGA3YNgiERER7VX1juuTgYGG4YFy3Fi9ArjB9u3NJkpaV9J6g++BfYElzeaNiIjOqVok5IbzUrafoFrngGdQtILaTtLtkt5RTjoUOGPIvJtLOrcc7AEukXQ1cDlwju2fV8waERFtUrV10y2SPsCTRw/vBW4ZaSHbh7UYP6vJuDuA/cv3twA7V8wWEREdUvVI4kjgJcAy4HaKvpxmdypURETUQ6UjCdt3U5wiioiI1UjVbjm+WLZoWlPSBZL+IumIToeLiIjuqnq6aV/by4EDgKXA84B/7lSoiIioh6pFYvC01KuBH9kerr+liIiYJKq2bpov6QbgEeA9kjYB/tq5WBERUQdVnydxDEXrpl7bjwEPAwd1MlhERHRf1SMJbN/X8H4FxWNMIyJiEqt6TSIiIlZDKRIREdFS1fskJOkISZ8sh58jabfORouIiG6reiTxVWBPYLAvpoeA/+pIooiIqI2qF653t72rpN8D2L5f0jM7mCsiImqg6pHEY5KmUDxKlPI+iSc6lioiImqhapE4keL51ptK+jxwCfCFjqWKiIhaqNoL7PckLQL2AQS81vb1HU0WERFdV/lmOuAu4OJymbUl7Tr4zOuIiJicKhUJSZ8FZgF/pLwuUX7duzOxIiKiDqpek3gDsI3tPtv95WvEAiHpNEl3S1rSMO5TkpZJuqp87d9i2f0k3SjpZknHVMwZERFtVLVILAGmjWH9c4H9moz/su1dyte5QyeWLan+C3gVsANwmKQdxrD9iIgYh6rXJP4V+H15RPDo4EjbBw63kO2LJE0fQ67dgJtt3wIgaR5Fr7PXjWFdERExRrI98kzStcDXgcU03B9h+9cVlp0OzLe9Yzn8KYrrG8uBhcAc2/cPWeYQYD/b7yyH30xxQ9/7mqx/NjAboKenZ+a8efNG/H5GY2BggKlTp7Z1ne2WjONX93yw6mVcvKz5s8lmbLHBREZ6mrrvx27k6+/vX2S7t9m0qkcSD9s+sU15TgY+S3Hh+7PA8cDbx7oy26cApwD09va6r6+vDRGftGDBAtq9znZLxvGrez5Y9TLOOuacpvMsPbxv4gI1Uff9WLd8VYvExZL+FTibp55uGnUTWNt3Db6X9A1gfpPZlgFbNQxvWY6LiIgJVLVIvKj8ukfDuDE1gZW0me07y8HXUVwUH+oKYFtJW1MUh0OBN412WxERMT5V77juH8vKJZ0B9AEbS7odOBbok7QLRZFZCry7nHdz4FTb+9teKel9wC+AKcBptq8dS4aIiBi7qjfT9VD01bS57VeVzVH3tP3N4ZazfViT0U2XsX0HsH/D8LnA05rHRkTExBn2PglJ/1y+nUvxX/3m5fBNwNEdSxUREbXQskhIOhq4uRzc2PYPKZu/2l4JPN7xdBER0VXDHUn8EDigfL9C0kY8+TyJPYDmjaAjImLSaHlNwvYdko4sBz9I0fx1G0m/ATYBDpmAfBER0UXDXri2/Vj59UpJLwe2o3iexI2D0yIiYvKq2rppCkXLo+nlMvtKwvaXOpgtIiK6rOrNdP8D/JUhfTdFRMTkVrVIbGl7p44miYiI2qn6PImfSdq3o0kiIqJ2qh5JXAqcKWkN4DGKi9e2vX7HkkVERNdVLRJfAvYEFrvKAygiImJSqHq66U/AkhSIiIjVS9UjiVuABZJ+xlOfJ5EmsBERk1jVInFr+Xpm+YqIiNVA1edJfLrTQSIion6qXpOIiIjVUIpERES0lCIREREtVSoSkp4v6QJJS8rhnSR9vMJyp0m6e3C5cty/S7pB0jWSzpQ0rcWySyUtlnSVpIUVv5+IiGijqkcS3wA+SnG3NbavAQ6tsNxcYL8h484Hdiz7grqpXG8r/bZ3sd1bMWdERLRR1SKxju3Lh4xbOdJCti8C7hsy7rzy8adQdPexZcUMERExwaoWiXskbcOTjy89BLizDdt/O/CzFtMMnCdpkaTZbdhWRESMkqr0tCHp74BTgJcA91PcWHeE7aUVlp0OzLe945Dx/wL0Agc36+5D0ha2l0nalOIU1fvLI5Oh880GZgP09PTMnDdv3ojfz2gMDAwwderUtq6z3ZJx/OqeD1a9jIuXPdh0nhlbbDCRkZ6m7vuxG/n6+/sXtTqtX6lI/P+ZpXWBNWw/NIplpjOkSEiaBbwb2Mf2wxXW8SlgwPZ/DDdfb2+vFy5s7zXuBQsW0NfX19Z1tlsyjl/d88Gql3H6Mec0nWfpca+ewERPV/f92I18kloWiWHvuJb0wRbjgbH13SRpP+DDwMtbFYjGYlS+3xf4zGi3FRER4zNStxzrjWflks4A+oCNJd0OHEvRmulZwPllsbnU9pGSNgdOtb0/0EPx/IrBjN+3/fPxZImIiNEbtkiMt88m24c1Gf3NFvPeAexfvr8F2Hk8246IiPHLHdcREdFSikRERLRUtVuOrauMi4iIyaXqkcRPmoz7cTuDRERE/YzUBHZ74IXABpIObpi0PrBWJ4NFRET3jdQEdjvgAGAa8JqG8Q8B7+pQpoiIqImRmsCeBZwlaU/bv5ugTBERUROVnnEN3CzpY8D0xmVsv70ToSIioh6qFomzgIuBXwKPdy5ORETUSdUisY7tj3Q0SURE1E7VJrDzJe3f0SQREVE7VY8kjgI+JulRikeYCrDt9TuWLCJWCY1dgs+ZsZJZLboIj1VTpSJhe1y9wUZExKqp6pEEkp4NbEvDTXTNnhQXERGTR6UiIemdFKectgSuAvYAfgfs3bFkERHRdVUvXB8FvBi4zXY/8CLggU6FioiIeqhaJP5q+68Akp5l+waKLjsiImISq3pN4nZJ04D/pnjs6P3AbZ0KFRER9VC1ddPryrefknQhsAGQZ05HRExyVR86dLykHQBs/9r22bb/VmG50yTdLWlJw7gNJZ0v6Q/l12e3WPat5Tx/kPTWqt9QRES0T9VrEtcD35B0maQjJW1Qcbm5wH5Dxh0DXGB7W+CCcvgpJG0IHAvsDuwGHNuqmEREROdUKhK2T7X9UuAtFD3BXiPp+5L6R1juIuC+IaMPAr5Vvv8W8Nomi74SON/2fbbvB87n6cUmIiI6TLarzShNoXgA0duArYAfAnsBK2wfOsxy04H5tncshx+wPa18L+D+weGGZT4ErGX7c+XwJ4BHbP9Hk/XPBmYD9PT0zJw3b16l76eqgYEBpk6d2tZ1tlsyjl/d80H3My5e9uCI8/SsDXc9Mvw8M7aoeiJi5G2PZV3d3o8j6Ua+/v7+RbZ7m02rejPdlykKxK+AL9i+vJz0b5JuHGsw25ZUrUq1XscpwCkAvb297uvrG8/qnmbBggW0e53tlozjV/d80P2MVfpkmjNjJccvHv7PytLD+9q27bGsq9v7cSR1y1f1msQ1wC62391QIAbtNspt3iVpM4Dy691N5llGcbQyaMtyXERETKCq1yROB54paTdJLxt8ldNGPgZ9qrOBwdZKb6V4oNFQvwD2lfTs8oL1vuW4iIiYQB3tu0nSGUAfsLGk2ylaLB0H/FDSOyhuyHtDOW8vcKTtd9q+T9JngSvKVX3G9tAL4BER0WGjeZ7Ei4FLbfdL2h74wkgL2T6sxaR9msy7EHhnw/BpwGkV80VERAek76aIiGgpfTdFRERL6bspIiJaqvxkukG2f92JIBERUT9Vr0lERMRqaNRHEhExetOHuVt56XGvnsAkEaNTtavwdSWtUb5/vqQDJa3Z2WgREdFtVU83XQSsJWkL4DzgzRTdgEdExCRWtUjI9sPAwcBXbb8eeGHnYkVERB1ULhKS9gQOBwZPrk7pTKSIiKiLqkXiKOCjwJm2r5X0d8CFnYsVERF1ULV10/22DxwcsH0L8IHORIqIiLqoeiTxVUmXS3rvKJ5vHRERq7iqz5P4e+AIigcBLSqfb71vR5NFRETXVb7j2vZNwMeBjwAvB06QdIOkgzsVLiIiuqvqzXQ7lc+5vp7iQUOvsf2C8v2XO5gvIiK6qOqF668ApwIfs/3I4Ejbd0j6eEeSRdRYq2420sVGvU0/5hzmzFjJrCGfXz631qp2Ff7yYaZ9p31xIiKiTqqebtpW0o8lXSfplsHXWDcqaTtJVzW8lks6esg8fZIebJjnk2PdXkREjE3V002nA8dSXH/oB97GOLoZt30jsAuApCnAMuDMJrNebPuAsW4nIiLGp+of+rVtX0DRh9Nttj8FtOsk3j7AH23ncagRETUj2yPPJP0W2Av4MfAriv/8j7O93bgDSKcBV9o+acj4PuAnwO3AHcCHbF/bZPnZwGyAnp6emfPmzRtvpKcYGBhg6tSpbV1nuyXj+I023+JlDzYdP2OL5veatpp/uGWG6vY+HO57GNSzNtz1yPDzVP1+q2x7tOtavOzBphnHkqlTuvE59/f3L7Ld22xa1SLxYormr9OAz1I84/qLti8dTzBJz6QoAC+0fdeQaesDT9gekLQ/cILtbYdbX29vrxcuXDieSE+zYMEC+vr62rrOdkvG8RttvtG2bmrHQ4e6vQ+H+x4GzZmxkuMXD38WeywtidrVmmywddPQjHVq3dSNz1lSyyJRtXXTFeWK1gA+YPuhNmV7FcVRxF1DJ9he3vD+XElflbSx7XvatO2IiBhB1dZNvZIWA9cAiyVdLWlmG7Z/GHBGi23+H0kq3+9WZr23DduMiIiKqrZuOg14r+2LASTtRdHiaaexbljSusA/AO9uGHckgO2vAYcA75G0EngEONRVzo1FRETbVC0Sjw8WCADbl5R/vMfM9gpgoyHjvtbw/iTgpKHLRUTExKlaJH4t6esUp4YMvBFYIGlXANtXdihfRHRIlQvREVWLxM7l12OHjH8RRdHYu22JIiKiNqq2burvdJCIiKifMXetERERk1+KREREtJQiERERLVW9mW4dSZ+Q9I1yeFtJ6Z01ImKSq3okcTrwKLBnObwM+FxHEkVERG1ULRLb2P4i8BiA7YcBdSxVRETUQtUi8TdJa1PcE4GkbSiOLCIiYhKrejPdscDPga0kfQ94KTCrU6EihmpXV9GtLF72ILOabKNOXUgP6vS+6KbcBV4/VW+mO1/SlcAeFKeZjkqX3RERk9+wRWKwb6YGd5ZfnyPpOemzKSJichvpSOL48utaQC9wNcWRxE7AQp5s7RQREZPQsBeubfeX/TbdCexqu9f2TIqO/ZZNRMCIiOieqq2btrO9eHDA9hLgBZ2JFBERdVG1ddM1kk4FvlsOH07xKNOIiJjEqhaJtwHvAY4qhy8CTu5IooiIqI2qTWD/Cny5fLWFpKXAQ8DjwErbvUOmCzgB2B94GJiV1lQREROr6pFEp/QPc7/Fq4Bty9fuFEcuu09UsIiIqHdX4QcB33bhUmCapM26HSoiYnUi26NbQFoDmGp7+bg2LN0K3E/RH9TXbZ8yZPp84Djbl5TDFwAfsb1wyHyzgdkAPT09M+fNmzeeWE8zMDDA1KlT27rOdlsdMi5e9mDT8TO22GDM62x0930Pctcj1dc/2jyt5h/NMj1r0zTjSOtpZbhMYzVSRhg+52gzjWV/N8vYrp+jdujG73N/f/+ioaf8B1U63STp+8CRFNcPrgDWl3SC7X8fR669bC+TtClwvqQbbF802pWUxeUUgN7eXvf19Y0j0tMtWLCAdq+z3VaHjM36VQJYevjY19noK987i+MXP/3XodX6R5un1fyjWWbOjJVNM460nlaGyzRWI2WE4XOONtNY9nezjO36OWqHuv0+Vz3dtEN55PBa4GfA1sCbx7Nh28vKr3cDZwK7DZllGbBVw/CW5Aa+iIgJVbVIrClpTYoicbbtxyi7DR8LSetKWm/wPbAvsGTIbGcDb1FhD+BB23cSERETpmrrpq8DSyn6brpI0nOB8VyT6AHOLFq58gzg+7Z/LulIANtfA86laP56M0UT2LeNY3sRETEGVe+TOBE4sWHUbZL6x7pR27cAOzcZ/7WG9wb+aazbiIiI8at0uklSj6RvSvpZObwD8NaOJouIiK6rek1iLvALYPNy+Cbg6A7kiYiIGqlaJDa2/UPgCQDbKymaw0ZExCRWtUiskLQRZYumwdZGHUsVERG1ULV10wcpmqRuI+k3wCbAIR1LFRERtTBikZA0BXh5+dqO4vGlN5b3SkSsUqa3uBN3zowJDjKBWn3PMXat9unS41497vXMmbGSvrGE6pARTzfZfhw4zPZK29faXpICERGxeqh6uuk3kk4CfgCsGByZ5ztERExuVYvELuXXzzSMM7B3W9NEREStVL3jesx3V0dExKqr6h3XG0k6UdKVkhZJOqFsEhsREZNY1fsk5gF/Af6RounrXyiuT0RExCRW9ZrEZrY/2zD8OUlv7ESgiIioj6pHEudJOlTSGuXrDRR9OUVExCQ27JGEpIcoWjGJokO/75aT1gAGgA91MlxERHTXsEXC9noTFSQiIuqn6jUJJO0ETG9cxvZPO5CpK1rdZj93v3UnOEnUyUR0aZFuM8au0/uuW5/NWLY72i5BqqpUJCSdBuwEXEvZXTjFaahJUyQiIuLpqh5J7GF7h3ZtVNJWwLcpnnVt4BTbJwyZpw84C7i1HPVT2413fEdERIdVLRK/k7SD7evatN2VwBzbV0paD1gk6fwm67/Y9gFt2mZERIxS1SLxbYpC8WfgUYrWTra901g2avtO4M7y/UOSrge2ANpVhCIiog2qFolvAm8GFvPkNYm2kDQdeBFwWZPJe0q6GrgD+JDta9u57YiIGJ5sjzyT9Dvbe7Z949JU4NfA54e2lJK0PvCE7QFJ+wMn2N62yTpmA7MBenp6Zs6bN29MWRYva/401q03mMLUqVPHtM6JMjAwMOkztvp8ZmyxQVvW07M23PXIqGNVztNqu6MxUsZObruqKvtxuM9sIrI2y9iufdeOn8ex/iyOdtuN+vv7F9nubTatapH4KjAN+B+K003A+JrASloTmA/8wvaXKsy/FOi1fU+reXp7e71w4cIx5RmuCWxfX9+Y1jlRFixYMOkzdvJJYFA8Dez4xZVbhLfUKk87mlKOlLGT266qyn4c7jObiKzNMrZr37XryXRj+VkcTxNYSS2LRNUka1MUh30bxo25CawkUZzCur5VgZD0f4C7bFvSbhR3ed87lu1FRMTYVH2exNvavN2XUl7jkHRVOe5jwHPK7X2NorfZ90haCTwCHOoqhz0REdE2VW+m2xL4CsUfd4CLgaNs3z6Wjdq+hKKF1HDznAScNJb1R0REe1Q93XQ68H3g9eXwEeW4f+hEqDpZvOxBZjU5b9ipW+CrGHoec86Mlcw65pyOZ2rXdYHojHTvUV+r8mdTtavwTWyfbntl+ZoLbNLBXBERUQNVi8S9ko6QNKV8HUEuIkdETHpVi8TbgTcAf6a4U/oQoN0XsyMiomaqtm66DTiww1kiIqJmRnoy3SeHmewhz72OiIhJZqQjiRVNxq0LvAPYCEiRiIiYxEZ6fOnxg+/LLr2PorgWMQ84vtVyERExOYx4TULShsAHgcOBbwG72r6/08EiIqL7Rrom8e/AwcApwAzbAxOSKiIiamGkJrBzgM2BjwN3SFpevh6StLzz8SIioptGuiZR9T6K1c5wt9m3q/vqbnV3MdouBMayLzrdTUG3ukFYlbtfmCh13Ed1zFQXKQIREdFSikRERLSUIhERES2lSEREREspEhER0VKKREREtJQiERERLXWtSEjaT9KNkm6WdEyT6c+S9INy+mWSpnchZkTEaq0rRULSFOC/gFcBOwCHSdphyGzvAO63/Tzgy8C/TWzKiIjo1pHEbsDNtm+x/TeKXmUPGjLPQRQdCgL8GNhHkiYwY0TEak+2J36j0iHAfrbfWQ6/Gdjd9vsa5llSznN7OfzHcp57hqxrNjC7HNwOuLHNcTcG7hlxru5KxvGrez5Ixnape8Zu5Huu7U2aTaj0+NI6s30KRS+1HSFpoe3eTq2/HZJx/OqeD5KxXeqesW75unW6aRmwVcPwluW4pvNIegawAXDvhKSLiAige0XiCmBbSVtLeiZwKHD2kHnOBt5avj8E+JW7cW4sImI11pXTTbZXSnof8AtgCnCa7WslfQZYaPts4JvAdyTdDNxHUUi6oWOnstooGcev7vkgGdul7hlrla8rF64jImLVkDuuIyKipRSJiIhoKUWigaStJF0o6TpJ10o6qhy/oaTzJf2h/PrsLuVbS9Llkq4u8326HL912XXJzWVXJs/sRr4hWadI+r2k+XXMKGmppMWSrpK0sBxXi8+5IeM0ST+WdIOk6yXtWZeMkrYr993ga7mko+uSryHn/y1/V5ZIOqP8Harbz+JRZb5rJR1djqvNfkyReKqVwBzbOwB7AP9UdhdyDHCB7W2BC8rhbngU2Nv2zsAuwH6S9qDosuTLZRcm91N0adJtRwHXNwzXMWO/7V0a2qTX5XMedALwc9vbAztT7M9aZLR9Y7nvdgFmAg8DZ9YlH4CkLYAPAL22d6RoJHMoNfpZlLQj8C6KXih2Bg6Q9DxqtB+xnVeLF3AW8A8Ud3FvVo7bDLixBtnWAa4Edqe4O/MZ5fg9gV90OduWFD/YewPzAdUw41Jg4yHjavM5U9wXdCtl45I6ZmzItC/wm7rlA7YA/gRsSNGScz7wyjr9LAKvB77ZMPwJ4MN12o85kmih7HX2RcBlQI/tO8tJfwZ6uphriqSrgLuB84E/Ag/YXlnOcjvFL0c3/SfFD/oT5fBG1C+jgfMkLSq7doEafc7A1sBfgNPL03anSlqXemUcdChwRvm+NvlsLwP+A/hf4E7gQWAR9fpZXAL8vaSNJK0D7E9xE3Ft9mOKRBOSpgI/AY62vbxxmovS3rV2w7Yfd3GIvyXFIer23crSjKQDgLttL+p2lhHsZXtXip6I/0nSyxondvtzpvjPd1fgZNsvAlYw5JRDDTJSns8/EPjR0Gndzleexz+IouBuDqwL7NetPM3Yvp7i9Nd5wM+Bq4DHh8zT1f2YIjGEpDUpCsT3bP+0HH2XpM3K6ZtR/BffVbYfAC6kOFyeVnZdAs27OJlILwUOlLSUonffvSnOrdcp4+B/mdi+m+Jc+m7U63O+Hbjd9mXl8I8pikadMkJRZK+0fVc5XKd8rwButf0X248BP6X4+azbz+I3bc+0/TKKayQ3UaP9mCLRQJIo7vS+3vaXGiY1dhHyVoprFRNO0iaSppXv16a4XnI9RbE4pNv5AGx/1PaWtqdTnIb4le3DqVFGSetKWm/wPcU59SXU5HMGsP1n4E+StitH7QNcR40ylg7jyVNNUK98/wvsIWmd8nd7cB/W5mcRQNKm5dfnAAcD36dO+7FbF0Pq+AL2ojisu4bisO8qinOEG1FciP0D8Etgwy7l2wn4fZlvCfDJcvzfAZcDN1Mc9j+r2/uyzNUHzK9bxjLL1eXrWuBfyvG1+Jwbcu4CLCw/7/8Gnl2njBSnb+4FNmgYV5t8ZZ5PAzeUvy/fAZ5Vp5/FMuPFFMXramCfuu3HdMsREREt5XRTRES0lCIREREtpUhERERLKRIREdFSikRERLSUIhGTnqR/KXvYvKbssXT3bmcarbLbhgslDUg6aci0mWWPtjdLOrG8J6BWPYnGqitFIiY1SXsCBwC72t6J4i7cP41znR1/7G+TbfyVovO3DzWZ/WSKnkS3LV+DXU/UpyfRWGWlSMRktxlwj+1HAWzfY/sOAEkvlvRbFc/nuFzSeuXzBk4v/zP/vaT+ct5Zks6W9CvggvKu7dPK5X4v6aChG5a0maSLyqOXJZL+vhw/0DDPIZLmlu/nSvqapMuALzauy/YK25dQFIunbANY3/alLm56+jbw2nLyQcC3yvffahgfUVnH/yOK6LLzgE9KuoniztUf2P512THdD4A32r5C0vrAIxTPwbDtGZK2p+gp9vnlunYFdrJ9n6QvUHQ58vayq5TLJf3S9oqGbb+Johvqz0uaQtG9+0i2BF5i+/ER5yxsQdHP06DGXk1r05NorLpyJBGTmu0BiofizKboevsHkmYB2wF32r6inG+5i+6j9wK+W467AbgNGCwS59u+r3y/L3BM2W37AmAt4DlDNn8F8DZJnwJm2H6oQuQfjaJAVFYeZaR7hRi1HEnEpFf+0V0ALJC0mKLDtLF0Zd54lCDgH23fOMx2Lyq7IH81MFfSl2x/m6f+sV5rmG1UsYzi6GNQY6+md0nazPad3e5JNFZdOZKISU3Fs5i3bRi1C8XRwY3AZpJeXM63Xnmx+GLg8HLc8ymODpoVgl8A729oSfSiJtt+LnCX7W8Ap1KcroLij/cLJK0BvG483195Omm5pD3KLG/hyR5D69OTaKyyciQRk91U4CvldYOVFD1/zrb9N0lvLKetTXE94hXAV4GTyyOOlcAs24+WtaDRZymewHdN+cf+VopWVI36gH+W9BgwQPEHHIpWRvMpTn8tLDOOqHxGx/rAMyW9FtjX9nXAe4G5wNrAz8oXwHHADyW9g6IwvqHKdiIapRfYiIhoKaebIiKipRSJiIhoKUUiIiJaSpGIiIiWUiQiIqKlFImIiGgpRSIiIlr6fx0vUTnWWF77AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"Score=df[\"Global Score\"]\n",
"print(\"moyenne des Score:\",Score.mean())\n",
"print(\"écart-type des Score:\",Score.std())\n",
"print(\"quantiles des prix:\")\n",
"display(df['Global Score'].quantile([0.1,0.25,0.5,0.75,0.90]))\n",
"Score.hist(bins=50)\n",
"plt.title(\"Score Global\")\n",
"plt.xlabel(\"Score sur 100\")\n",
"plt.ylabel(\"Nombres de pays ayant le même score\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "177f7309",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Country | \n",
" ISO Code | \n",
" Region | \n",
" Position 2021 | \n",
" Position 2020 | \n",
" Global Score | \n",
" With Abuses | \n",
" Without Abuses | \n",
" Journalist Killed | \n",
" Media Workers Killed | \n",
" Journalist Imprisoned | \n",
" Media Workers Imprisoned | \n",
" Situation | \n",
"
\n",
" \n",
" \n",
" \n",
" 9 | \n",
" Azerbaijan | \n",
" AZE | \n",
" Asia Pacific | \n",
" 167 | \n",
" 168 | \n",
" 41.23 | \n",
" 49.76 | \n",
" 41.23 | \n",
" 2 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 10 | \n",
" Bahrain | \n",
" BHR | \n",
" Arab States | \n",
" 168 | \n",
" 169 | \n",
" 38.90 | \n",
" 35.09 | \n",
" 39.89 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 32 | \n",
" China | \n",
" CHN | \n",
" Asia Pacific | \n",
" 177 | \n",
" 177 | \n",
" 21.28 | \n",
" 18.23 | \n",
" 21.90 | \n",
" 1 | \n",
" 1 | \n",
" 3 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 38 | \n",
" Cuba | \n",
" CUB | \n",
" South America | \n",
" 171 | \n",
" 171 | \n",
" 36.06 | \n",
" 100.00 | \n",
" 36.07 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 43 | \n",
" Djibouti | \n",
" DJI | \n",
" Arab States | \n",
" 176 | \n",
" 176 | \n",
" 21.38 | \n",
" 89.01 | \n",
" 21.38 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 46 | \n",
" Egypt | \n",
" EGY | \n",
" Middle East | \n",
" 166 | \n",
" 166 | \n",
" 43.83 | \n",
" 35.87 | \n",
" 45.33 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 48 | \n",
" Equatorial Guinea | \n",
" GNQ | \n",
" Africa | \n",
" 164 | \n",
" 165 | \n",
" 44.33 | \n",
" 100.00 | \n",
" 44.33 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 49 | \n",
" Eritrea | \n",
" ERI | \n",
" Africa | \n",
" 180 | \n",
" 178 | \n",
" 18.55 | \n",
" 26.95 | \n",
" 17.95 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 73 | \n",
" Iran | \n",
" IRN | \n",
" Middle East | \n",
" 174 | \n",
" 173 | \n",
" 27.30 | \n",
" 32.61 | \n",
" 29.89 | \n",
" 0 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 74 | \n",
" Iraq | \n",
" IRQ | \n",
" Middle East | \n",
" 163 | \n",
" 162 | \n",
" 44.43 | \n",
" 35.29 | \n",
" 46.43 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 87 | \n",
" Laos | \n",
" LAO | \n",
" Asia Pacific | \n",
" 172 | \n",
" 172 | \n",
" 29.44 | \n",
" 42.47 | \n",
" 29.44 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 92 | \n",
" Libya | \n",
" LBY | \n",
" Middle East | \n",
" 165 | \n",
" 164 | \n",
" 44.27 | \n",
" 53.95 | \n",
" 44.27 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 118 | \n",
" North Korea | \n",
" PRK | \n",
" Asia Pacific | \n",
" 179 | \n",
" 180 | \n",
" 18.72 | \n",
" 48.07 | \n",
" 18.72 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 138 | \n",
" Saudi Arabia | \n",
" SAU | \n",
" Middle East | \n",
" 170 | \n",
" 170 | \n",
" 37.27 | \n",
" 28.93 | \n",
" 38.85 | \n",
" 0 | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 143 | \n",
" Singapore | \n",
" SGP | \n",
" Asia Pacific | \n",
" 160 | \n",
" 158 | \n",
" 44.80 | \n",
" 100.00 | \n",
" 44.80 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 146 | \n",
" Somalia | \n",
" SOM | \n",
" Arab States | \n",
" 161 | \n",
" 163 | \n",
" 44.53 | \n",
" 54.57 | \n",
" 44.53 | \n",
" 2 | \n",
" 0 | \n",
" 3 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 156 | \n",
" Syria | \n",
" SYR | \n",
" Middle East | \n",
" 173 | \n",
" 174 | \n",
" 29.37 | \n",
" 17.41 | \n",
" 31.89 | \n",
" 1 | \n",
" 0 | \n",
" 10 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 158 | \n",
" Tajikistan | \n",
" TJK | \n",
" Asia Pacific | \n",
" 162 | \n",
" 161 | \n",
" 44.48 | \n",
" 52.64 | \n",
" 44.48 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 167 | \n",
" Turkmenistan | \n",
" TKM | \n",
" Asia Pacific | \n",
" 178 | \n",
" 179 | \n",
" 19.97 | \n",
" 100.00 | \n",
" 19.97 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 176 | \n",
" Vietnam | \n",
" VNM | \n",
" Asia Pacific | \n",
" 175 | \n",
" 175 | \n",
" 21.54 | \n",
" 31.96 | \n",
" 24.82 | \n",
" 0 | \n",
" 0 | \n",
" 24 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
" 177 | \n",
" Yemen | \n",
" YEM | \n",
" Middle East | \n",
" 169 | \n",
" 167 | \n",
" 37.65 | \n",
" 46.67 | \n",
" 37.65 | \n",
" 4 | \n",
" 0 | \n",
" 5 | \n",
" 0 | \n",
" Very Serious | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Country ISO Code Region Position 2021 Position 2020 \\\n",
"9 Azerbaijan AZE Asia Pacific 167 168 \n",
"10 Bahrain BHR Arab States 168 169 \n",
"32 China CHN Asia Pacific 177 177 \n",
"38 Cuba CUB South America 171 171 \n",
"43 Djibouti DJI Arab States 176 176 \n",
"46 Egypt EGY Middle East 166 166 \n",
"48 Equatorial Guinea GNQ Africa 164 165 \n",
"49 Eritrea ERI Africa 180 178 \n",
"73 Iran IRN Middle East 174 173 \n",
"74 Iraq IRQ Middle East 163 162 \n",
"87 Laos LAO Asia Pacific 172 172 \n",
"92 Libya LBY Middle East 165 164 \n",
"118 North Korea PRK Asia Pacific 179 180 \n",
"138 Saudi Arabia SAU Middle East 170 170 \n",
"143 Singapore SGP Asia Pacific 160 158 \n",
"146 Somalia SOM Arab States 161 163 \n",
"156 Syria SYR Middle East 173 174 \n",
"158 Tajikistan TJK Asia Pacific 162 161 \n",
"167 Turkmenistan TKM Asia Pacific 178 179 \n",
"176 Vietnam VNM Asia Pacific 175 175 \n",
"177 Yemen YEM Middle East 169 167 \n",
"\n",
" Global Score With Abuses Without Abuses Journalist Killed \\\n",
"9 41.23 49.76 41.23 2 \n",
"10 38.90 35.09 39.89 0 \n",
"32 21.28 18.23 21.90 1 \n",
"38 36.06 100.00 36.07 0 \n",
"43 21.38 89.01 21.38 0 \n",
"46 43.83 35.87 45.33 0 \n",
"48 44.33 100.00 44.33 0 \n",
"49 18.55 26.95 17.95 0 \n",
"73 27.30 32.61 29.89 0 \n",
"74 44.43 35.29 46.43 0 \n",
"87 29.44 42.47 29.44 0 \n",
"92 44.27 53.95 44.27 0 \n",
"118 18.72 48.07 18.72 0 \n",
"138 37.27 28.93 38.85 0 \n",
"143 44.80 100.00 44.80 0 \n",
"146 44.53 54.57 44.53 2 \n",
"156 29.37 17.41 31.89 1 \n",
"158 44.48 52.64 44.48 0 \n",
"167 19.97 100.00 19.97 0 \n",
"176 21.54 31.96 24.82 0 \n",
"177 37.65 46.67 37.65 4 \n",
"\n",
" Media Workers Killed Journalist Imprisoned Media Workers Imprisoned \\\n",
"9 0 1 0 \n",
"10 0 0 0 \n",
"32 1 3 0 \n",
"38 0 2 0 \n",
"43 0 0 0 \n",
"46 0 0 0 \n",
"48 0 0 0 \n",
"49 0 0 0 \n",
"73 0 3 0 \n",
"74 0 2 0 \n",
"87 0 0 0 \n",
"92 0 0 0 \n",
"118 0 0 0 \n",
"138 0 2 0 \n",
"143 0 0 0 \n",
"146 0 3 0 \n",
"156 0 10 0 \n",
"158 0 0 0 \n",
"167 0 0 0 \n",
"176 0 24 0 \n",
"177 0 5 0 \n",
"\n",
" Situation \n",
"9 Very Serious \n",
"10 Very Serious \n",
"32 Very Serious \n",
"38 Very Serious \n",
"43 Very Serious \n",
"46 Very Serious \n",
"48 Very Serious \n",
"49 Very Serious \n",
"73 Very Serious \n",
"74 Very Serious \n",
"87 Very Serious \n",
"92 Very Serious \n",
"118 Very Serious \n",
"138 Very Serious \n",
"143 Very Serious \n",
"146 Very Serious \n",
"156 Very Serious \n",
"158 Very Serious \n",
"167 Very Serious \n",
"176 Very Serious \n",
"177 Very Serious "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"position est toujours un DataFrame : \n"
]
}
],
"source": [
"Pos = df[\"Global Score\"] # df[label_colonne] sélectionne une colonne (renvoie la Series correspondante)\n",
"Position = df.loc[Pos < 45] # df.loc[critère] sélectionne un sous-échantillon de lignes. # Le critère de sélection doit lui-même être calculé à partir d'une Series.\n",
"display(Position)\n",
"print(\"position est toujours un DataFrame : \", type(Position))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2812820d",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "30e593f8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}