{
"cells": [
{
"cell_type": "markdown",
"id": "03338ae6",
"metadata": {},
"source": [
"# Statistiques\n",
"\n",
"### Préparation des données et insertion dans les dataframe.\n",
"Ainsi aue le nettoyage des données (suppression des données redondantes et les données non renseignées) "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ad4af851",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd \n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import matplotlib.patches as mpatches\n",
"import re\n",
"import plotly.express as px\n",
"\n",
"data = pd.read_csv(r'./csv/Report_2022.csv')\n",
"df_2022 = pd.DataFrame(data)\n",
"df_2022 = df_2022.drop_duplicates()\n",
"df_2022 = df_2022.dropna()"
]
},
{
"cell_type": "markdown",
"id": "7dbda889",
"metadata": {},
"source": [
"## Map mondiales des scores globalaux"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f66aef89",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
" \n",
" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"coloraxis": "coloraxis",
"customdata": [
[
156,
"Asia Pacific"
],
[
103,
"Europe"
],
[
134,
"Arab States"
],
[
53,
"Europe"
],
[
99,
"Africa"
],
[
29,
"South America"
],
[
51,
"Europe"
],
[
39,
"Asia Pacific"
],
[
31,
"Europe"
],
[
154,
"Asia Pacific"
],
[
167,
"Arab States"
],
[
162,
"Asia Pacific"
],
[
153,
"Europe"
],
[
23,
"Europe"
],
[
47,
"South America"
],
[
121,
"Africa"
],
[
33,
"Asia Pacific"
],
[
126,
"South America"
],
[
67,
"Europe"
],
[
95,
"Africa"
],
[
110,
"South America"
],
[
144,
"Asia Pacific"
],
[
91,
"Europe"
],
[
41,
"Africa"
],
[
107,
"Africa"
],
[
36,
"Africa"
],
[
142,
"Asia Pacific"
],
[
118,
"Africa"
],
[
19,
"North America"
],
[
101,
"Africa"
],
[
104,
"Africa"
],
[
82,
"South America"
],
[
175,
"Asia Pacific"
],
[
145,
"South America"
],
[
83,
"Arab States"
],
[
93,
"Africa"
],
[
8,
"South America"
],
[
48,
"Europe"
],
[
173,
"South America"
],
[
65,
"Europe"
],
[
20,
"Europe"
],
[
125,
"Africa"
],
[
2,
"Europe"
],
[
164,
"Arab States"
],
[
30,
"South America"
],
[
68,
"South America"
],
[
168,
"Middle East"
],
[
112,
"South America"
],
[
141,
"Africa"
],
[
179,
"Africa"
],
[
4,
"Europe"
],
[
131,
"Africa"
],
[
114,
"Africa"
],
[
102,
"Asia Pacific"
],
[
5,
"Europe"
],
[
26,
"Europe"
],
[
105,
"Africa"
],
[
50,
"Africa"
],
[
89,
"Europe"
],
[
16,
"Europe"
],
[
60,
"Africa"
],
[
108,
"Europe"
],
[
124,
"South America"
],
[
84,
"Africa"
],
[
92,
"Africa"
],
[
34,
"South America"
],
[
70,
"South America"
],
[
165,
"South America"
],
[
148,
"Asia Pacific"
],
[
85,
"Europe"
],
[
15,
"Europe"
],
[
150,
"Asia Pacific"
],
[
117,
"Asia Pacific"
],
[
178,
"Middle East"
],
[
172,
"Middle East"
],
[
6,
"Europe"
],
[
86,
"Middle East"
],
[
58,
"Europe"
],
[
37,
"Africa"
],
[
12,
"South America"
],
[
71,
"Asia Pacific"
],
[
120,
"Middle East"
],
[
122,
"Asia Pacific"
],
[
69,
"Africa"
],
[
61,
"Europe"
],
[
158,
"Middle East"
],
[
72,
"Asia Pacific"
],
[
161,
"Asia Pacific"
],
[
22,
"Europe"
],
[
130,
"Middle East"
],
[
88,
"Africa"
],
[
75,
"Africa"
],
[
143,
"Middle East"
],
[
10,
"Europe"
],
[
9,
"Europe"
],
[
21,
"Europe"
],
[
98,
"Africa"
],
[
80,
"Africa"
],
[
113,
"Asia Pacific"
],
[
87,
"Asia Pacific"
],
[
111,
"Africa"
],
[
78,
"Europe"
],
[
97,
"Arab States"
],
[
64,
"Africa"
],
[
127,
"South America"
],
[
40,
"Europe"
],
[
90,
"Asia Pacific"
],
[
63,
"Europe"
],
[
135,
"Arab States"
],
[
116,
"Africa"
],
[
176,
"Asia Pacific"
],
[
18,
"Africa"
],
[
76,
"Asia Pacific"
],
[
28,
"Europe"
],
[
11,
"Asia Pacific"
],
[
160,
"South al America"
],
[
59,
"Africa"
],
[
129,
"Africa"
],
[
180,
"Asia Pacific"
],
[
57,
"Europe"
],
[
81,
"Europe"
],
[
1,
"Europe"
],
[
163,
"Middle East"
],
[
157,
"Asia Pacific"
],
[
170,
"Middle East"
],
[
74,
"South America"
],
[
62,
"Asia Pacific"
],
[
96,
"South America"
],
[
77,
"South America"
],
[
147,
"Asia Pacific"
],
[
66,
"Europe"
],
[
7,
"Europe"
],
[
119,
"Middle East"
],
[
56,
"Europe"
],
[
155,
"Europe"
],
[
136,
"Africa"
],
[
45,
"Asia Pacific"
],
[
166,
"Middle East"
],
[
73,
"Africa"
],
[
79,
"Europe"
],
[
13,
"Africa"
],
[
46,
"Africa"
],
[
139,
"Asia Pacific"
],
[
27,
"Europe"
],
[
54,
"Europe"
],
[
140,
"Arab States"
],
[
35,
"Africa"
],
[
43,
"Asia Pacific"
],
[
128,
"Africa"
],
[
32,
"Europe"
],
[
146,
"Asia Pacific"
],
[
151,
"Arab States"
],
[
52,
"South America"
],
[
3,
"Europe"
],
[
14,
"Europe"
],
[
171,
"Middle East"
],
[
38,
"Asia Pacific"
],
[
152,
"Asia Pacific"
],
[
123,
"Africa"
],
[
115,
"Asia Pacific"
],
[
17,
"Asia Pacific"
],
[
100,
"Africa"
],
[
49,
"Asia Pacific"
],
[
25,
"South America"
],
[
94,
"Arab States"
],
[
149,
"Europe"
],
[
177,
"Asia Pacific"
],
[
132,
"Africa"
],
[
106,
"Europe"
],
[
138,
"Middle East"
],
[
24,
"Europe"
],
[
42,
"North America"
],
[
44,
"South America"
],
[
133,
"Asia Pacific"
],
[
159,
"South America"
],
[
174,
"Asia Pacific"
],
[
169,
"Middle East"
],
[
109,
"Africa"
],
[
137,
"Africa"
]
],
"geo": "geo",
"hovertemplate": "%{hovertext}
ISO_Code=%{location}
Position_2022=%{customdata[0]}
Region=%{customdata[1]}
Global_Score=%{z}