Merge remote-tracking branch 'origin' into streamlit

pull/21/head
remrem 10 months ago
commit 384f815b7e

@ -1,6 +1,6 @@
<div align = center>
<img src="https://codefirst.iut.uca.fr/git/Picksteel/Pow/raw/branch/master/Documentation/assets/PickaxePowBackground.png" width="1080" height="">
<img src="https://codefirst.iut.uca.fr/git/Picksteel/Pow/raw/branch/master/assets/PickaxePowBackground.png" width="1080" height="">
# **Pow**
</div>

Before

Width:  |  Height:  |  Size: 140 KiB

After

Width:  |  Height:  |  Size: 140 KiB

@ -1,7 +1,23 @@
#!/usr/bin/env python3
import sys
sys.path.append('./src/back/')
import load_csv as l
import show_csv as s
import clustering_csv as c
df = l.return_csv("./data.csv")
l.csv_value(df)
l.csv_value(df)
# l.csv_standardisation_Z(df,"Vehicle Year")
# l.csv_robust_normalize(df,"Speed Limit")
# s.histo_col(df,"Speed Limit")
# s.plotBoxWhisker(df)
l.csv_value()
c.launch_cluster(df,['Speed Limit','Vehicle Year'])

@ -0,0 +1,83 @@
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans, DBSCAN
from sklearn.datasets import make_blobs, make_moons
from mpl_toolkits.mplot3d import Axes3D
def visualize_clusters_2d(X, labels, centers=None, title="Clusters"):
plt.figure(figsize=(10, 7))
plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis')
if centers is not None:
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75)
plt.title(title)
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.show()
def visualize_clusters_3d(X, labels, centers=None, title="Clusters"):
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=labels, s=50, cmap='viridis')
if centers is not None:
ax.scatter(centers[:, 0], centers[:, 1], centers[:, 2], c='red', s=200, alpha=0.75)
ax.set_title(title)
ax.set_xlabel("Feature 1")
ax.set_ylabel("Feature 2")
ax.set_zlabel("Feature 3")
plt.show()
def calculate_cluster_statistics_kmeans(X, labels, centers):
unique_labels = np.unique(labels)
stats = []
for label in unique_labels:
cluster_points = X[labels == label]
num_points = len(cluster_points)
center = centers[label]
stats.append({
'cluster': label,
'num_points': num_points,
'center': center
})
return stats
def calculate_cluster_statistics_dbscan(X, labels):
unique_labels = np.unique(labels)
stats = []
for label in unique_labels:
if label == -1:
continue # Ignore noise
cluster_points = X[labels == label]
num_points = len(cluster_points)
density = num_points / (np.max(cluster_points, axis=0) - np.min(cluster_points, axis=0)).prod()
stats.append({
'cluster': label,
'num_points': num_points,
'density': density
})
return stats
def launch_cluster(df,array_columns):
X = df[array_columns].values
kmeans = KMeans(n_clusters=4, random_state=42)
labels_kmeans = kmeans.fit_predict(X)
centers_kmeans = kmeans.cluster_centers_
stats_kmeans = calculate_cluster_statistics_kmeans(X, labels_kmeans, centers_kmeans)
# for stat in stats_kmeans:
# print(f"Cluster {stat['cluster']}: {stat['num_points']} points, Center: {stat['center']}")
# Appliquer DBSCAN
dbscan = DBSCAN(eps=0.2, min_samples=5)
labels_dbscan = dbscan.fit_predict(X)
stats_dbscan = calculate_cluster_statistics_dbscan(X, labels_dbscan)
# for stat in stats_dbscan:
# print(f"Cluster {stat['cluster']}: {stat['num_points']} points, Density: {stat['density']}")
if len(array_columns) == 3:
visualize_clusters_3d(X, labels_kmeans, centers_kmeans, title="K-Means Clustering 3D")
visualize_clusters_3d(X, labels_dbscan, title="DBSCAN Clustering 3D")
else:
visualize_clusters_2d(X, labels_kmeans, centers_kmeans, title="K-Means Clustering")
visualize_clusters_2d(X, labels_dbscan, title="DBSCAN Clustering")
return stats_kmeans,stats_dbscan

@ -1,20 +1,48 @@
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
def return_csv(path):
df = pd.read_csv(path)
return df
def csv_value():
df = pd.read_csv('./data.csv')
# print(df.head())
def csv_value(df):
#print all detail
# df.info()
df.info()
# Print number of missing value for each column
# print(df.isna().sum())
print(df.isna().sum())
# Useless values
# Off-Road Description -> 156170
# Municipality -> 152979
# Related Non-Motorist -> 166642
# Non-Motorist Substance Abuse -> 167788
# Circumstance -> 140746
def csv_check(df):
for col in df:
print("-"*12)
print(col)
print("-"*12)
print(df[col].unique())
def csv_norm_min_max(df,col):
maValue = df[col].max
miValue = df[col].min
df[col] = (df[col] - df[col].min()) / (df[col].max() - df[col].min())
return df
def csv_standardisation_Z(df,col):
mean_col1 = df[col].mean()
std_col1 = df[col].std()
df[col] = (df[col] - mean_col1) / std_col1
return df[col]
def csv_robust_normalize(df, column):
# Calcul de la médiane et de l'IQR
median = df[column].median()
q1 = df[column].quantile(0.25)
q3 = df[column].quantile(0.75)
iqr = q3 - q1
# Application de la normalisation robuste
normalized_column = (df[column] - median) / iqr
df[column] = normalized_column
print (normalized_column)
return normalized_column

@ -0,0 +1,16 @@
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
def histo_col(df,colonne):
plt.figure()
plt.hist(df[colonne], bins=int(df[colonne].nunique()/4), alpha=0.7, color='blue', edgecolor='black')
plt.title(f"Histogramme de la colonne '{colonne}'")
plt.xlabel(colonne)
plt.ylabel("Fréquence")
plt.grid(True)
plt.show()
def plotBoxWhisker(df):
df.plot(kind='box', subplots=True, sharex=False, sharey=False)
plt.show()
Loading…
Cancel
Save