|
|
|
@ -70,7 +70,7 @@ def launch_cluster(df,array_columns):
|
|
|
|
|
# Appliquer DBSCAN
|
|
|
|
|
dbscan = DBSCAN(eps=0.2, min_samples=5)
|
|
|
|
|
labels_dbscan = dbscan.fit_predict(X)
|
|
|
|
|
# stats_dbscan = calculate_cluster_statistics_dbscan(X, labels_dbscan)
|
|
|
|
|
stats_dbscan = calculate_cluster_statistics_dbscan(X, labels_dbscan)
|
|
|
|
|
# for stat in stats_dbscan:
|
|
|
|
|
# print(f"Cluster {stat['cluster']}: {stat['num_points']} points, Density: {stat['density']}")
|
|
|
|
|
if len(array_columns) == 3:
|
|
|
|
@ -79,4 +79,5 @@ def launch_cluster(df,array_columns):
|
|
|
|
|
else:
|
|
|
|
|
visualize_clusters_2d(X, labels_kmeans, centers_kmeans, title="K-Means Clustering")
|
|
|
|
|
visualize_clusters_2d(X, labels_dbscan, title="DBSCAN Clustering")
|
|
|
|
|
return stats_kmeans,stats_dbscan
|
|
|
|
|
|
|
|
|
|