parent
a00557b687
commit
4d5461f73d
@ -0,0 +1,83 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from sklearn.impute import KNNImputer
|
||||||
|
from sklearn.linear_model import LinearRegression
|
||||||
|
import numpy as np
|
||||||
|
import load_csv as l
|
||||||
|
|
||||||
|
def convert_categorical_to_numeric(data):
|
||||||
|
for column in data.columns:
|
||||||
|
if data[column].nunique() <= 15:
|
||||||
|
data[column] = data[column].astype('category')
|
||||||
|
data[column] = data[column].cat.codes.replace(-1, np.nan) + 1
|
||||||
|
else:
|
||||||
|
data = data.drop(column, axis=1)
|
||||||
|
return data
|
||||||
|
|
||||||
|
def drop_high_null_percentage(data, threshold=0.5):
|
||||||
|
missing_percentage = data.isnull().mean()
|
||||||
|
data = data.loc[:, missing_percentage <= threshold]
|
||||||
|
return data
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def replace_with_mean(data, column):
|
||||||
|
data[column] = data[column].fillna(data[column].mean())
|
||||||
|
return data
|
||||||
|
|
||||||
|
def replace_with_median(data, column):
|
||||||
|
data[column] = data[column].fillna(data[column].median())
|
||||||
|
return data
|
||||||
|
|
||||||
|
def replace_with_mode(data, column):
|
||||||
|
mode_value = data[column].mode()
|
||||||
|
if not mode_value.empty:
|
||||||
|
data[column] = data[column].fillna(mode_value[0])
|
||||||
|
return data
|
||||||
|
|
||||||
|
def impute_with_knn(data, column, n_neighbors=5):
|
||||||
|
imputer = KNNImputer(n_neighbors=n_neighbors)
|
||||||
|
data[[column]] = imputer.fit_transform(data[[column]])
|
||||||
|
return data
|
||||||
|
|
||||||
|
def impute_with_regression(data, column):
|
||||||
|
if data[column].isnull().sum() > 0:
|
||||||
|
train_data = data[data[column].notna()]
|
||||||
|
test_data = data[data[column].isna()]
|
||||||
|
if not train_data.empty and not test_data.empty:
|
||||||
|
regressor = LinearRegression()
|
||||||
|
regressor.fit(train_data.drop(column, axis=1), train_data[column])
|
||||||
|
data.loc[data[column].isna(), column] = regressor.predict(test_data.drop(column, axis=1))
|
||||||
|
return data
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
Parameters:
|
||||||
|
- data: Pandas DataFrame with the data
|
||||||
|
- method: Method to handle missing values ('drop', 'mean', 'median', 'mode', 'knn', 'regression')
|
||||||
|
- n_neighbors: Number of neighbors to use for KNN imputation (only used if method='knn')
|
||||||
|
"""
|
||||||
|
def handle_missing_values(data, method, column, n_neighbors=5):
|
||||||
|
|
||||||
|
data = drop_high_null_percentage(data)
|
||||||
|
data = convert_categorical_to_numeric(data)
|
||||||
|
|
||||||
|
if method == 'mean':
|
||||||
|
return replace_with_mean(data, column)
|
||||||
|
elif method == 'median':
|
||||||
|
return replace_with_median(data, column)
|
||||||
|
elif method == 'mode':
|
||||||
|
return replace_with_mode(data, column)
|
||||||
|
elif method == 'knn':
|
||||||
|
return impute_with_knn(data, column, n_neighbors=n_neighbors)
|
||||||
|
elif method == 'regression':
|
||||||
|
return impute_with_regression(data, column)
|
||||||
|
elif method == 'drop_high_null':
|
||||||
|
return drop_high_null_percentage(data)
|
||||||
|
else:
|
||||||
|
raise ValueError("Unknown method")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
data = l.return_csv('./data.csv')
|
||||||
|
cleaned_data = handle_missing_values(data, method='mode', column='Route Type')
|
||||||
|
print(cleaned_data)
|
Loading…
Reference in new issue