|
|
|
@ -6,10 +6,13 @@ sys.path.append('./back/')
|
|
|
|
|
import clustering_csv as cc
|
|
|
|
|
import prediction as p
|
|
|
|
|
|
|
|
|
|
def display_prediction_results(df, targetCol):
|
|
|
|
|
df_cols.remove(col)
|
|
|
|
|
original_col = df[col]
|
|
|
|
|
predicted_col = p.getColumnsForPredictionAndPredict(df, df_cols, "Route Type", "Linear Regression")
|
|
|
|
|
def handle_column_multiselect(df, method_name):
|
|
|
|
|
selected_columns = st.multiselect(f"Select the columns you want for {method_name}:", df.columns.tolist(), placeholder="Select dataset columns")
|
|
|
|
|
return selected_columns
|
|
|
|
|
|
|
|
|
|
def display_prediction_results(df, targetCol, sourceColumns, method):
|
|
|
|
|
original_col = df[targetCol]
|
|
|
|
|
predicted_col = p.getColumnsForPredictionAndPredict(df, sourceColumns, targetCol, method)
|
|
|
|
|
|
|
|
|
|
new_df = pd.DataFrame()
|
|
|
|
|
new_df['Original'] = original_col
|
|
|
|
@ -19,22 +22,50 @@ def display_prediction_results(df, targetCol):
|
|
|
|
|
|
|
|
|
|
if 'df' in st.session_state:
|
|
|
|
|
df = st.session_state.df
|
|
|
|
|
df_cols = df.columns.tolist()
|
|
|
|
|
|
|
|
|
|
st.write("# 🔮 Prediction")
|
|
|
|
|
|
|
|
|
|
if st.button("K-means"):
|
|
|
|
|
st.pyplot(cc.launch_cluster_knn(df, ["Route Type", "Traffic Control"]))
|
|
|
|
|
tab1, tab2 = st.tabs(["Clustering", "Predictions"])
|
|
|
|
|
|
|
|
|
|
with tab1:
|
|
|
|
|
st.header("Clustering")
|
|
|
|
|
selected_columns = handle_column_multiselect(df, "clustering")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tab_names = ["K-means", "DBSCAN"]
|
|
|
|
|
tab11, tab12 = st.tabs(tab_names)
|
|
|
|
|
|
|
|
|
|
with tab11:
|
|
|
|
|
if st.button(f"Start {tab_names[0]}"):
|
|
|
|
|
st.pyplot(cc.launch_cluster_knn(df, selected_columns))
|
|
|
|
|
|
|
|
|
|
with tab12:
|
|
|
|
|
if st.button(f"Start {tab_names[1]}"):
|
|
|
|
|
st.pyplot(cc.launch_cluster_dbscan(df, selected_columns))
|
|
|
|
|
|
|
|
|
|
with tab2:
|
|
|
|
|
st.header("Predictions")
|
|
|
|
|
target_column = st.selectbox(
|
|
|
|
|
"Target column:",
|
|
|
|
|
df.columns.tolist(),
|
|
|
|
|
index=None,
|
|
|
|
|
placeholder="Select target column"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if st.button("DBSCAN"):
|
|
|
|
|
st.pyplot(cc.launch_cluster_dbscan(df, ["Route Type", "Traffic Control"]))
|
|
|
|
|
if target_column != None:
|
|
|
|
|
selected_columns_p = handle_column_multiselect(df, "predictions")
|
|
|
|
|
|
|
|
|
|
tab_names = ["Linear Regression", "Random Forest"]
|
|
|
|
|
tab21, tab22 = st.tabs(tab_names)
|
|
|
|
|
|
|
|
|
|
if st.button("Linear Regression"):
|
|
|
|
|
col = "Route Type"
|
|
|
|
|
display_prediction_results(df, col)
|
|
|
|
|
with tab21:
|
|
|
|
|
if st.button(f"Start {tab_names[0]}"):
|
|
|
|
|
st.write(target_column)
|
|
|
|
|
st.write(selected_columns_p)
|
|
|
|
|
display_prediction_results(df, target_column, selected_columns_p, tab_names[0])
|
|
|
|
|
|
|
|
|
|
if st.button("Random Forest"):
|
|
|
|
|
col = "Route Type"
|
|
|
|
|
display_prediction_results(df, col)
|
|
|
|
|
with tab22:
|
|
|
|
|
if st.button(f"Start {tab_names[1]}"):
|
|
|
|
|
display_prediction_results(df, target_column, selected_columns_p, tab_names[1])
|
|
|
|
|
else:
|
|
|
|
|
st.write("Please clean your dataset.")
|
|
|
|
|