Merge pull request 'managing_missing_values' (#16) from managing_missing_values into master

Reviewed-on: #16
pull/21/head
Dorian HODIN 10 months ago
commit ab78d8b544

@ -0,0 +1,69 @@
import pandas as pd
from sklearn.impute import KNNImputer
from sklearn.linear_model import LinearRegression
import numpy as np
import load_csv as l
def convert_categorical_to_numeric(data):
for column in data.columns:
if data[column].nunique() <= 15:
data[column] = data[column].astype('category')
data[column] = data[column].cat.codes.replace(-1, np.nan) + 1
else:
data = data.drop(column, axis=1)
return data
def drop_high_null_percentage(data, threshold=0.5):
missing_percentage = data.isnull().mean()
data = data.loc[:, missing_percentage <= threshold]
return data
def replace_with_mean(data):
return data.apply(lambda col: col.fillna(col.mean()) if col.dtype.kind in 'biufc' else col)
def replace_with_median(data):
return data.apply(lambda col: col.fillna(col.median()) if col.dtype.kind in 'biufc' else col)
def replace_with_mode(data):
return data.apply(lambda col: col.fillna(col.mode()[0]) if col.mode().size > 0 else col)
def impute_with_knn(data, n_neighbors=5):
imputer = KNNImputer(n_neighbors=n_neighbors)
return pd.DataFrame(imputer.fit_transform(data), columns=data.columns)
def impute_with_regression(data):
for column in data.columns:
if data[column].isnull().sum() > 0:
train_data = data[data[column].notna()]
test_data = data[data[column].isna()]
if not train_data.empty and not test_data.empty:
regressor = LinearRegression()
regressor.fit(train_data.drop(column, axis=1), train_data[column])
data.loc[data[column].isna(), column] = regressor.predict(test_data.drop(column, axis=1))
return data
"""
Parameters:
- data: Pandas DataFrame with the data
- method: Method to handle missing values ('drop', 'mean', 'median', 'mode', 'knn', 'regression')
- n_neighbors: Number of neighbors to use for KNN imputation (only used if method='knn')
"""
def handle_missing_values(data, method, n_neighbors=5):
data = drop_high_null_percentage(data)
data = convert_categorical_to_numeric(data)
if method == 'mean':
return replace_with_mean(data)
elif method == 'median':
return replace_with_median(data)
elif method == 'mode':
return replace_with_mode(data)
elif method == 'knn':
return impute_with_knn(data, n_neighbors=n_neighbors)
elif method == 'regression':
return impute_with_regression(data)
else:
raise ValueError("Unknown method")
Loading…
Cancel
Save