Compare commits

...

8 Commits

Author SHA1 Message Date
Dorian HODIN 62b2a6a16b Mise à jour de 'README.md'
continuous-integration/drone/push Build is passing Details
10 months ago
Dorian HODIN 5aef52baf5 Supprimer 'blood-transfusion/blood-transfusion/transfusion.names'
continuous-integration/drone/push Build is passing Details
10 months ago
remrem 40be24a556 Merge pull request 'streamlit' (#24) from streamlit into master
continuous-integration/drone/push Build is passing Details
10 months ago
remrem f180558394 fixes
continuous-integration/drone/push Build is passing Details
10 months ago
Dorian HODIN 59289df22f removing print
continuous-integration/drone/push Build is passing Details
10 months ago
Dorian HODIN c9ffc016d7 correcting convert to numeric function
continuous-integration/drone/push Build is passing Details
10 months ago
remrem d317fd3ad9 correlation_matrix vue + code reorganisation
continuous-integration/drone/push Build is passing Details
10 months ago
remrem a0bc85974f Merge pull request 'add PCA for dimensions reduction on clustering' (#23) from data_treatment into master
continuous-integration/drone/push Build is passing Details
10 months ago

@ -14,6 +14,12 @@ Dataset : https://catalog.data.gov/dataset/crash-reporting-drivers-data
Lien du site déployé : https://codefirst.iut.uca.fr/containers/Picksteel-pow/ (ne pas oublier le /) Lien du site déployé : https://codefirst.iut.uca.fr/containers/Picksteel-pow/ (ne pas oublier le /)
Pour lancer le projet en local, depuis le dossier src faite :
'''
streamlit run /home.py
'''
ATTENTION : Ne pas run le ficher home.py depuis le dossier racine du projet, mais bien une fois dans le dossier src.
# Développeurs 🧑‍💻 # Développeurs 🧑‍💻
- Rémi ARNAL : remi.arnal@etu.uca.fr - Rémi ARNAL : remi.arnal@etu.uca.fr

@ -90,7 +90,6 @@ def launch_cluster_dbscan(df, array_columns, dimensions=2):
return visualize_clusters_3d(X, labels_dbscan, title="DBSCAN Clustering 3D") return visualize_clusters_3d(X, labels_dbscan, title="DBSCAN Clustering 3D")
else: else:
return visualize_clusters_2d(X, labels_dbscan, title="DBSCAN Clustering") return visualize_clusters_2d(X, labels_dbscan, title="DBSCAN Clustering")
return stats_dbscan
def launch_cluster(df, array_columns): def launch_cluster(df, array_columns):
X = df[array_columns].values X = df[array_columns].values

@ -6,7 +6,9 @@ import load_csv as l
def convert_categorical_to_numeric(data): def convert_categorical_to_numeric(data):
for column in data.columns: for column in data.columns:
if data[column].nunique() <= 15: if pd.api.types.is_numeric_dtype(data[column]):
continue
elif data[column].nunique() <= 15:
data[column] = data[column].astype('category') data[column] = data[column].astype('category')
data[column] = data[column].cat.codes.replace(-1, np.nan) + 1 data[column] = data[column].cat.codes.replace(-1, np.nan) + 1
else: else:

@ -1,6 +1,10 @@
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score
import numpy as np
import matplotlib.pyplot as plt
def getColumnsForPredictionAndPredict(df,columns, columnGoal, algoOfPrediction): def getColumnsForPredictionAndPredict(df,columns, columnGoal, algoOfPrediction):
predictors = df[columns] predictors = df[columns]
@ -14,4 +18,20 @@ def getColumnsForPredictionAndPredict(df,columns, columnGoal, algoOfPrediction):
raise NameError("No method name : \"" + algoOfPrediction + "\"") raise NameError("No method name : \"" + algoOfPrediction + "\"")
model.fit(predictors, target) model.fit(predictors, target)
return model.predict(predictors) prediction = model.predict(predictors)
return prediction
def correlation_matrix(df, columns):
new_df = df[columns]
correlations = new_df.corr()
print(correlations)
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(correlations, vmin=-1, vmax=1)
fig.colorbar(cax)
ticks = np.arange(0,new_df.shape[1],1)
ax.set_xticks(ticks)
ax.set_yticks(ticks)
ax.set_xticklabels(list(new_df))
ax.set_yticklabels(list(new_df))
return fig

@ -1,6 +1,8 @@
import streamlit as st import streamlit as st
import pandas as pd import pandas as pd
import sys import sys
import matplotlib.pyplot as plt
import numpy as np
sys.path.append('./back/') sys.path.append('./back/')
import clustering_csv as cc import clustering_csv as cc
@ -10,15 +12,15 @@ def handle_column_multiselect(df, method_name):
selected_columns = st.multiselect(f"Select the columns you want for {method_name}:", df.columns.tolist(), placeholder="Select dataset columns") selected_columns = st.multiselect(f"Select the columns you want for {method_name}:", df.columns.tolist(), placeholder="Select dataset columns")
return selected_columns return selected_columns
def display_prediction_results(df, targetCol, sourceColumns, method): def df_prediction_results(df, targetCol, sourceColumns, method):
original_col = df[targetCol] original_col = df[targetCol]
predicted_col = p.getColumnsForPredictionAndPredict(df, sourceColumns, targetCol, method) predicted_col = p.getColumnsForPredictionAndPredict(df, sourceColumns, targetCol, method)
new_df = pd.DataFrame() new_df = pd.DataFrame()
new_df['Original'] = original_col new_df['Original'] = original_col
new_df['Predicted'] = predicted_col new_df['Predicted'] = predicted_col
st.dataframe(new_df) return new_df
if 'df' in st.session_state: if 'df' in st.session_state:
df = st.session_state.df df = st.session_state.df
@ -37,15 +39,16 @@ if 'df' in st.session_state:
dimensions = 2 dimensions = 2
tab_names = ["K-means", "DBSCAN"] tab_names = ["K-means", "DBSCAN"]
tab11, tab12 = st.tabs(tab_names) cluster_tabs = st.tabs(tab_names)
with tab11: for idx, tab in enumerate(cluster_tabs):
if st.button(f"Start {tab_names[0]}"): if tab.button(f"Start {tab_names[idx]}"):
st.pyplot(cc.launch_cluster_knn(df, selected_columns, dimensions=dimensions)) if tab_names[idx] == "K-means":
fig = cc.launch_cluster_knn(df, selected_columns, dimensions=dimensions)
else:
fig = cc.launch_cluster_dbscan(df, selected_columns, dimensions)
with tab12: tab.pyplot(fig)
if st.button(f"Start {tab_names[1]}"):
st.pyplot(cc.launch_cluster_dbscan(df, selected_columns, dimensions))
with tab2: with tab2:
st.header("Predictions") st.header("Predictions")
@ -60,16 +63,12 @@ if 'df' in st.session_state:
selected_columns_p = handle_column_multiselect(df, "predictions") selected_columns_p = handle_column_multiselect(df, "predictions")
tab_names = ["Linear Regression", "Random Forest"] tab_names = ["Linear Regression", "Random Forest"]
tab21, tab22 = st.tabs(tab_names) prediction_tabs = st.tabs(tab_names)
with tab21: for idx, tab in enumerate(prediction_tabs):
if st.button(f"Start {tab_names[0]}"): if tab.button(f"Start {tab_names[idx]}"):
st.write(target_column) tab.pyplot(p.correlation_matrix(df, selected_columns_p+[target_column]))
st.write(selected_columns_p) tmp_df = df_prediction_results(df, target_column, selected_columns_p, tab_names[idx])
display_prediction_results(df, target_column, selected_columns_p, tab_names[0]) tab.dataframe(tmp_df)
with tab22:
if st.button(f"Start {tab_names[1]}"):
display_prediction_results(df, target_column, selected_columns_p, tab_names[1])
else: else:
st.write("Please clean your dataset.") st.write("Please clean your dataset.")

@ -0,0 +1,749 @@
Recency (months),Frequency (times),Monetary (c.c. blood),Time (months),"whether he/she donated blood in March 2007"
2 ,50,12500,98 ,1
0 ,13,3250,28 ,1
1 ,16,4000,35 ,1
2 ,20,5000,45 ,1
1 ,24,6000,77 ,0
4 ,4,1000,4 ,0
2 ,7,1750,14 ,1
1 ,12,3000,35 ,0
2 ,9,2250,22 ,1
5 ,46,11500,98 ,1
4 ,23,5750,58 ,0
0 ,3,750,4 ,0
2 ,10,2500,28 ,1
1 ,13,3250,47 ,0
2 ,6,1500,15 ,1
2 ,5,1250,11 ,1
2 ,14,3500,48 ,1
2 ,15,3750,49 ,1
2 ,6,1500,15 ,1
2 ,3,750,4 ,1
2 ,3,750,4 ,1
4 ,11,2750,28 ,0
2 ,6,1500,16 ,1
2 ,6,1500,16 ,1
9 ,9,2250,16 ,0
4 ,14,3500,40 ,0
4 ,6,1500,14 ,0
4 ,12,3000,34 ,1
4 ,5,1250,11 ,1
4 ,8,2000,21 ,0
1 ,14,3500,58 ,0
4 ,10,2500,28 ,1
4 ,10,2500,28 ,1
4 ,9,2250,26 ,1
2 ,16,4000,64 ,0
2 ,8,2000,28 ,1
2 ,12,3000,47 ,1
4 ,6,1500,16 ,1
2 ,14,3500,57 ,1
4 ,7,1750,22 ,1
2 ,13,3250,53 ,1
2 ,5,1250,16 ,0
2 ,5,1250,16 ,1
2 ,5,1250,16 ,0
4 ,20,5000,69 ,1
4 ,9,2250,28 ,1
2 ,9,2250,36 ,0
2 ,2,500,2 ,0
2 ,2,500,2 ,0
2 ,2,500,2 ,0
2 ,11,2750,46 ,0
2 ,11,2750,46 ,1
2 ,6,1500,22 ,0
2 ,12,3000,52 ,0
4 ,5,1250,14 ,1
4 ,19,4750,69 ,1
4 ,8,2000,26 ,1
2 ,7,1750,28 ,1
2 ,16,4000,81 ,0
3 ,6,1500,21 ,0
2 ,7,1750,29 ,0
2 ,8,2000,35 ,1
2 ,10,2500,49 ,0
4 ,5,1250,16 ,1
2 ,3,750,9 ,1
3 ,16,4000,74 ,0
2 ,4,1000,14 ,1
0 ,2,500,4 ,0
4 ,7,1750,25 ,0
1 ,9,2250,51 ,0
2 ,4,1000,16 ,0
2 ,4,1000,16 ,0
4 ,17,4250,71 ,1
2 ,2,500,4 ,0
2 ,2,500,4 ,1
2 ,2,500,4 ,1
2 ,4,1000,16 ,1
2 ,2,500,4 ,0
2 ,2,500,4 ,0
2 ,2,500,4 ,0
4 ,6,1500,23 ,1
2 ,4,1000,16 ,0
2 ,4,1000,16 ,0
2 ,4,1000,16 ,0
2 ,6,1500,28 ,1
2 ,6,1500,28 ,0
4 ,2,500,4 ,0
4 ,2,500,4 ,0
4 ,2,500,4 ,0
2 ,7,1750,35 ,1
4 ,2,500,4 ,1
4 ,2,500,4 ,0
4 ,2,500,4 ,0
4 ,2,500,4 ,0
12 ,11,2750,23 ,0
4 ,7,1750,28 ,0
3 ,17,4250,86 ,0
4 ,9,2250,38 ,1
4 ,4,1000,14 ,1
5 ,7,1750,26 ,1
4 ,8,2000,34 ,1
2 ,13,3250,76 ,1
4 ,9,2250,40 ,0
2 ,5,1250,26 ,0
2 ,5,1250,26 ,0
6 ,17,4250,70 ,0
0 ,8,2000,59 ,0
3 ,5,1250,26 ,0
2 ,3,750,14 ,0
2 ,10,2500,64 ,0
4 ,5,1250,23 ,1
4 ,9,2250,46 ,0
4 ,5,1250,23 ,0
4 ,8,2000,40 ,1
2 ,12,3000,82 ,0
11 ,24,6000,64 ,0
2 ,7,1750,46 ,1
4 ,11,2750,61 ,0
1 ,7,1750,57 ,0
2 ,11,2750,79 ,1
2 ,3,750,16 ,1
4 ,5,1250,26 ,1
2 ,6,1500,41 ,1
2 ,5,1250,33 ,1
2 ,4,1000,26 ,0
2 ,5,1250,34 ,0
4 ,8,2000,46 ,1
2 ,4,1000,26 ,0
4 ,8,2000,48 ,1
2 ,2,500,10 ,1
4 ,5,1250,28 ,0
2 ,12,3000,95 ,0
2 ,2,500,10 ,0
4 ,6,1500,35 ,0
2 ,11,2750,88 ,0
2 ,3,750,19 ,0
2 ,5,1250,37 ,0
2 ,12,3000,98 ,0
9 ,5,1250,19 ,0
2 ,2,500,11 ,0
2 ,9,2250,74 ,0
5 ,14,3500,86 ,0
4 ,3,750,16 ,0
4 ,3,750,16 ,0
4 ,2,500,9 ,1
4 ,3,750,16 ,1
6 ,3,750,14 ,0
2 ,2,500,11 ,0
2 ,2,500,11 ,1
2 ,2,500,11 ,0
2 ,7,1750,58 ,1
4 ,6,1500,39 ,0
4 ,11,2750,78 ,0
2 ,1,250,2 ,1
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,1
2 ,1,250,2 ,1
2 ,1,250,2 ,1
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
11 ,10,2500,35 ,0
11 ,4,1000,16 ,1
4 ,5,1250,33 ,1
4 ,6,1500,41 ,1
2 ,3,750,22 ,0
4 ,4,1000,26 ,1
10 ,4,1000,16 ,0
2 ,4,1000,35 ,0
4 ,12,3000,88 ,0
13 ,8,2000,26 ,0
11 ,9,2250,33 ,0
4 ,5,1250,34 ,0
4 ,4,1000,26 ,0
8 ,15,3750,77 ,0
4 ,5,1250,35 ,1
4 ,7,1750,52 ,0
4 ,7,1750,52 ,0
2 ,4,1000,35 ,0
11 ,11,2750,42 ,0
2 ,2,500,14 ,0
2 ,5,1250,47 ,1
9 ,8,2000,38 ,1
4 ,6,1500,47 ,0
11 ,7,1750,29 ,0
9 ,9,2250,45 ,0
4 ,6,1500,52 ,0
4 ,7,1750,58 ,0
6 ,2,500,11 ,1
4 ,7,1750,58 ,0
11 ,9,2250,38 ,0
11 ,6,1500,26 ,0
2 ,2,500,16 ,0
2 ,7,1750,76 ,0
11 ,6,1500,27 ,0
11 ,3,750,14 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,1
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,1
4 ,1,250,4 ,1
4 ,1,250,4 ,0
4 ,1,250,4 ,1
4 ,1,250,4 ,1
4 ,1,250,4 ,0
4 ,3,750,24 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,1
4 ,1,250,4 ,0
10 ,8,2000,39 ,0
14 ,7,1750,26 ,0
8 ,10,2500,63 ,0
11 ,3,750,15 ,0
4 ,2,500,14 ,0
2 ,4,1000,43 ,0
8 ,9,2250,58 ,0
8 ,8,2000,52 ,1
11 ,22,5500,98 ,0
4 ,3,750,25 ,1
11 ,17,4250,79 ,1
9 ,2,500,11 ,0
4 ,5,1250,46 ,0
11 ,12,3000,58 ,0
7 ,12,3000,86 ,0
11 ,2,500,11 ,0
11 ,2,500,11 ,0
11 ,2,500,11 ,0
2 ,6,1500,75 ,0
11 ,8,2000,41 ,1
11 ,3,750,16 ,1
12 ,13,3250,59 ,0
2 ,3,750,35 ,0
16 ,8,2000,28 ,0
11 ,7,1750,37 ,0
4 ,3,750,28 ,0
12 ,12,3000,58 ,0
4 ,4,1000,41 ,0
11 ,14,3500,73 ,1
2 ,2,500,23 ,0
2 ,3,750,38 ,1
4 ,5,1250,58 ,0
4 ,4,1000,43 ,1
3 ,2,500,23 ,0
11 ,8,2000,46 ,0
4 ,7,1750,82 ,0
13 ,4,1000,21 ,0
16 ,11,2750,40 ,0
16 ,7,1750,28 ,0
7 ,2,500,16 ,0
4 ,5,1250,58 ,0
4 ,5,1250,58 ,0
4 ,4,1000,46 ,0
14 ,13,3250,57 ,0
4 ,3,750,34 ,0
14 ,18,4500,78 ,0
11 ,8,2000,48 ,0
14 ,16,4000,70 ,0
14 ,4,1000,22 ,1
14 ,5,1250,26 ,0
8 ,2,500,16 ,0
11 ,5,1250,33 ,0
11 ,2,500,14 ,0
4 ,2,500,23 ,0
9 ,2,500,16 ,1
14 ,5,1250,28 ,1
14 ,3,750,19 ,1
14 ,4,1000,23 ,1
16 ,12,3000,50 ,0
11 ,4,1000,28 ,0
11 ,5,1250,35 ,0
11 ,5,1250,35 ,0
2 ,4,1000,70 ,0
14 ,5,1250,28 ,0
14 ,2,500,14 ,0
14 ,2,500,14 ,0
14 ,2,500,14 ,0
14 ,2,500,14 ,0
14 ,2,500,14 ,0
14 ,2,500,14 ,0
2 ,3,750,52 ,0
14 ,6,1500,34 ,0
11 ,5,1250,37 ,1
4 ,5,1250,74 ,0
11 ,3,750,23 ,0
16 ,4,1000,23 ,0
16 ,3,750,19 ,0
11 ,5,1250,38 ,0
11 ,2,500,16 ,0
12 ,9,2250,60 ,0
9 ,1,250,9 ,0
9 ,1,250,9 ,0
4 ,2,500,29 ,0
11 ,2,500,17 ,0
14 ,4,1000,26 ,0
11 ,9,2250,72 ,1
11 ,5,1250,41 ,0
15 ,16,4000,82 ,0
9 ,5,1250,51 ,1
11 ,4,1000,34 ,0
14 ,8,2000,50 ,1
16 ,7,1750,38 ,0
14 ,2,500,16 ,0
2 ,2,500,41 ,0
14 ,16,4000,98 ,0
14 ,4,1000,28 ,1
16 ,7,1750,39 ,0
14 ,7,1750,47 ,0
16 ,6,1500,35 ,0
16 ,6,1500,35 ,1
11 ,7,1750,62 ,1
16 ,2,500,16 ,0
16 ,3,750,21 ,1
11 ,3,750,28 ,0
11 ,7,1750,64 ,0
11 ,1,250,11 ,1
9 ,3,750,34 ,0
14 ,4,1000,30 ,0
23 ,38,9500,98 ,0
11 ,6,1500,58 ,0
11 ,1,250,11 ,0
11 ,1,250,11 ,0
11 ,1,250,11 ,0
11 ,1,250,11 ,0
11 ,1,250,11 ,0
11 ,1,250,11 ,0
11 ,1,250,11 ,0
11 ,1,250,11 ,0
11 ,2,500,21 ,0
11 ,5,1250,50 ,0
11 ,2,500,21 ,0
16 ,4,1000,28 ,0
4 ,2,500,41 ,0
16 ,6,1500,40 ,0
14 ,3,750,26 ,0
9 ,2,500,26 ,0
21 ,16,4000,64 ,0
14 ,6,1500,51 ,0
11 ,2,500,24 ,0
4 ,3,750,71 ,0
21 ,13,3250,57 ,0
11 ,6,1500,71 ,0
14 ,2,500,21 ,1
23 ,15,3750,57 ,0
14 ,4,1000,38 ,0
11 ,2,500,26 ,0
16 ,5,1250,40 ,1
4 ,2,500,51 ,1
14 ,3,750,31 ,0
4 ,2,500,52 ,0
9 ,4,1000,65 ,0
14 ,4,1000,40 ,0
11 ,3,750,40 ,1
14 ,5,1250,50 ,0
14 ,1,250,14 ,0
14 ,1,250,14 ,0
14 ,1,250,14 ,0
14 ,1,250,14 ,0
14 ,1,250,14 ,0
14 ,1,250,14 ,0
14 ,1,250,14 ,0
14 ,1,250,14 ,0
14 ,7,1750,72 ,0
14 ,1,250,14 ,0
14 ,1,250,14 ,0
9 ,3,750,52 ,0
14 ,7,1750,73 ,0
11 ,4,1000,58 ,0
11 ,4,1000,59 ,0
4 ,2,500,59 ,0
11 ,4,1000,61 ,0
16 ,4,1000,40 ,0
16 ,10,2500,89 ,0
21 ,2,500,21 ,1
21 ,3,750,26 ,0
16 ,8,2000,76 ,0
21 ,3,750,26 ,1
18 ,2,500,23 ,0
23 ,5,1250,33 ,0
23 ,8,2000,46 ,0
16 ,3,750,34 ,0
14 ,5,1250,64 ,0
14 ,3,750,41 ,0
16 ,1,250,16 ,0
16 ,1,250,16 ,0
16 ,1,250,16 ,0
16 ,1,250,16 ,0
16 ,1,250,16 ,0
16 ,1,250,16 ,0
16 ,1,250,16 ,0
16 ,4,1000,45 ,0
16 ,1,250,16 ,0
16 ,1,250,16 ,0
16 ,1,250,16 ,0
16 ,1,250,16 ,0
16 ,1,250,16 ,0
16 ,2,500,26 ,0
21 ,2,500,23 ,0
16 ,2,500,27 ,0
21 ,2,500,23 ,0
21 ,2,500,23 ,0
14 ,4,1000,57 ,0
16 ,5,1250,60 ,0
23 ,2,500,23 ,0
14 ,5,1250,74 ,0
23 ,3,750,28 ,0
16 ,3,750,40 ,0
9 ,2,500,52 ,0
9 ,2,500,52 ,0
16 ,7,1750,87 ,1
14 ,4,1000,64 ,0
14 ,2,500,35 ,0
16 ,7,1750,93 ,0
21 ,2,500,25 ,0
14 ,3,750,52 ,0
23 ,14,3500,93 ,0
18 ,8,2000,95 ,0
16 ,3,750,46 ,0
11 ,3,750,76 ,0
11 ,2,500,52 ,0
11 ,3,750,76 ,0
23 ,12,3000,86 ,0
21 ,3,750,35 ,0
23 ,2,500,26 ,0
23 ,2,500,26 ,0
23 ,8,2000,64 ,0
16 ,3,750,50 ,0
23 ,3,750,33 ,0
21 ,3,750,38 ,0
23 ,2,500,28 ,0
21 ,1,250,21 ,0
21 ,1,250,21 ,0
21 ,1,250,21 ,0
21 ,1,250,21 ,0
21 ,1,250,21 ,0
21 ,1,250,21 ,0
21 ,1,250,21 ,0
21 ,1,250,21 ,0
21 ,1,250,21 ,0
21 ,1,250,21 ,1
21 ,1,250,21 ,0
21 ,1,250,21 ,0
21 ,5,1250,60 ,0
23 ,4,1000,45 ,0
21 ,4,1000,52 ,0
22 ,1,250,22 ,1
11 ,2,500,70 ,0
23 ,5,1250,58 ,0
23 ,3,750,40 ,0
23 ,3,750,41 ,0
14 ,3,750,83 ,0
21 ,2,500,35 ,0
26 ,5,1250,49 ,1
23 ,6,1500,70 ,0
23 ,1,250,23 ,0
23 ,1,250,23 ,0
23 ,1,250,23 ,0
23 ,1,250,23 ,0
23 ,1,250,23 ,0
23 ,1,250,23 ,0
23 ,1,250,23 ,0
23 ,1,250,23 ,0
23 ,4,1000,53 ,0
21 ,6,1500,86 ,0
23 ,3,750,48 ,0
21 ,2,500,41 ,0
21 ,3,750,64 ,0
16 ,2,500,70 ,0
21 ,3,750,70 ,0
23 ,4,1000,87 ,0
23 ,3,750,89 ,0
23 ,2,500,87 ,0
35 ,3,750,64 ,0
38 ,1,250,38 ,0
38 ,1,250,38 ,0
40 ,1,250,40 ,0
74 ,1,250,74 ,0
2 ,43,10750,86 ,1
6 ,22,5500,28 ,1
2 ,34,8500,77 ,1
2 ,44,11000,98 ,0
0 ,26,6500,76 ,1
2 ,41,10250,98 ,1
3 ,21,5250,42 ,1
2 ,11,2750,23 ,0
2 ,21,5250,52 ,1
2 ,13,3250,32 ,1
4 ,4,1000,4 ,1
2 ,11,2750,26 ,0
2 ,11,2750,28 ,0
3 ,14,3500,35 ,0
4 ,16,4000,38 ,1
4 ,6,1500,14 ,0
3 ,5,1250,12 ,1
4 ,33,8250,98 ,1
3 ,10,2500,33 ,1
4 ,10,2500,28 ,1
2 ,11,2750,40 ,1
2 ,11,2750,41 ,1
4 ,13,3250,39 ,1
1 ,10,2500,43 ,1
4 ,9,2250,28 ,0
2 ,4,1000,11 ,0
2 ,5,1250,16 ,1
2 ,15,3750,64 ,0
5 ,24,6000,79 ,0
2 ,6,1500,22 ,1
4 ,5,1250,16 ,1
2 ,4,1000,14 ,1
4 ,8,2000,28 ,0
2 ,4,1000,14 ,0
2 ,6,1500,26 ,0
4 ,5,1250,16 ,1
2 ,7,1750,32 ,1
2 ,6,1500,26 ,1
2 ,8,2000,38 ,1
2 ,2,500,4 ,1
2 ,6,1500,28 ,1
2 ,10,2500,52 ,0
4 ,16,4000,70 ,1
4 ,2,500,4 ,1
1 ,14,3500,95 ,0
4 ,2,500,4 ,1
7 ,14,3500,48 ,0
2 ,3,750,11 ,0
2 ,12,3000,70 ,1
4 ,7,1750,32 ,1
4 ,4,1000,16 ,0
2 ,6,1500,35 ,1
4 ,6,1500,28 ,1
2 ,3,750,14 ,0
2 ,4,1000,23 ,0
4 ,4,1000,18 ,0
5 ,6,1500,28 ,0
4 ,6,1500,30 ,0
14 ,5,1250,14 ,0
3 ,8,2000,50 ,0
4 ,11,2750,64 ,1
4 ,9,2250,52 ,0
4 ,16,4000,98 ,1
7 ,10,2500,47 ,0
4 ,14,3500,86 ,0
2 ,9,2250,75 ,0
4 ,6,1500,35 ,0
4 ,9,2250,55 ,0
4 ,6,1500,35 ,1
2 ,6,1500,45 ,0
2 ,6,1500,47 ,0
4 ,2,500,9 ,0
2 ,2,500,11 ,1
2 ,2,500,11 ,0
2 ,2,500,11 ,1
4 ,6,1500,38 ,1
3 ,4,1000,29 ,1
9 ,9,2250,38 ,0
11 ,5,1250,18 ,0
2 ,3,750,21 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,1
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,1
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
2 ,1,250,2 ,0
11 ,11,2750,38 ,0
2 ,3,750,22 ,0
9 ,11,2750,49 ,1
5 ,11,2750,75 ,0
3 ,5,1250,38 ,0
3 ,1,250,3 ,1
4 ,6,1500,43 ,0
2 ,3,750,24 ,0
12 ,11,2750,39 ,0
2 ,2,500,14 ,0
4 ,6,1500,46 ,0
9 ,3,750,14 ,0
14 ,8,2000,26 ,0
4 ,2,500,13 ,0
4 ,11,2750,95 ,0
2 ,7,1750,77 ,0
2 ,7,1750,77 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,1
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,0
4 ,1,250,4 ,1
4 ,1,250,4 ,0
4 ,7,1750,62 ,0
4 ,1,250,4 ,0
4 ,4,1000,34 ,1
11 ,6,1500,28 ,0
13 ,3,750,14 ,1
7 ,5,1250,35 ,0
9 ,9,2250,54 ,0
11 ,2,500,11 ,0
2 ,5,1250,63 ,0
7 ,11,2750,89 ,0
8 ,9,2250,64 ,0
2 ,2,500,22 ,0
6 ,3,750,26 ,0
12 ,15,3750,71 ,0
13 ,3,750,16 ,0
11 ,16,4000,89 ,0
4 ,5,1250,58 ,0
14 ,7,1750,35 ,0
11 ,4,1000,27 ,0
7 ,9,2250,89 ,1
11 ,8,2000,52 ,1
7 ,5,1250,52 ,0
11 ,6,1500,41 ,0
10 ,5,1250,38 ,0
14 ,2,500,14 ,1
14 ,2,500,14 ,0
14 ,2,500,14 ,0
2 ,2,500,33 ,0
11 ,3,750,23 ,0
14 ,8,2000,46 ,0
9 ,1,250,9 ,0
16 ,5,1250,27 ,0
14 ,4,1000,26 ,0
4 ,2,500,30 ,0
14 ,3,750,21 ,0
16 ,16,4000,77 ,0
4 ,2,500,31 ,0
14 ,8,2000,50 ,0
11 ,3,750,26 ,0
14 ,7,1750,45 ,0
15 ,5,1250,33 ,0
16 ,2,500,16 ,0
16 ,3,750,21 ,0
11 ,8,2000,72 ,0
11 ,1,250,11 ,0
11 ,1,250,11 ,0
11 ,1,250,11 ,0
11 ,1,250,11 ,1
11 ,1,250,11 ,0
2 ,3,750,75 ,1
2 ,3,750,77 ,0
16 ,4,1000,28 ,0
16 ,15,3750,87 ,0
16 ,14,3500,83 ,0
16 ,10,2500,62 ,0
16 ,3,750,23 ,0
14 ,3,750,26 ,0
23 ,19,4750,62 ,0
11 ,7,1750,75 ,0
14 ,3,750,28 ,0
20 ,14,3500,69 ,1
4 ,2,500,46 ,0
11 ,2,500,25 ,0
11 ,3,750,37 ,0
16 ,4,1000,33 ,0
21 ,7,1750,38 ,0
13 ,7,1750,76 ,0
16 ,6,1500,50 ,0
14 ,3,750,33 ,0
14 ,1,250,14 ,0
14 ,1,250,14 ,0
14 ,1,250,14 ,0
14 ,1,250,14 ,0
14 ,1,250,14 ,0
14 ,1,250,14 ,0
17 ,7,1750,58 ,1
14 ,3,750,35 ,0
14 ,3,750,35 ,0
16 ,7,1750,64 ,0
21 ,2,500,21 ,0
16 ,3,750,35 ,0
16 ,1,250,16 ,0
16 ,1,250,16 ,0
16 ,1,250,16 ,0
16 ,1,250,16 ,0
16 ,1,250,16 ,0
14 ,2,500,29 ,0
11 ,4,1000,74 ,0
11 ,2,500,38 ,1
21 ,6,1500,48 ,0
23 ,2,500,23 ,0
23 ,6,1500,45 ,0
14 ,2,500,35 ,1
16 ,6,1500,81 ,0
16 ,4,1000,58 ,0
16 ,5,1250,71 ,0
21 ,2,500,26 ,0
21 ,3,750,35 ,0
21 ,3,750,35 ,0
23 ,8,2000,69 ,0
21 ,3,750,38 ,0
23 ,3,750,35 ,0
21 ,3,750,40 ,0
23 ,2,500,28 ,0
21 ,1,250,21 ,0
21 ,1,250,21 ,0
25 ,6,1500,50 ,0
21 ,1,250,21 ,0
21 ,1,250,21 ,0
23 ,3,750,39 ,0
21 ,2,500,33 ,0
14 ,3,750,79 ,0
23 ,1,250,23 ,1
23 ,1,250,23 ,0
23 ,1,250,23 ,0
23 ,1,250,23 ,0
23 ,1,250,23 ,0
23 ,1,250,23 ,0
23 ,1,250,23 ,0
23 ,4,1000,52 ,0
23 ,1,250,23 ,0
23 ,7,1750,88 ,0
16 ,3,750,86 ,0
23 ,2,500,38 ,0
21 ,2,500,52 ,0
23 ,3,750,62 ,0
39 ,1,250,39 ,0
72 ,1,250,72 ,0
Loading…
Cancel
Save