Compare commits
No commits in common. 'master' and 'managing_missing_values' have entirely different histories.
master
...
managing_m
@ -1,31 +0,0 @@
|
|||||||
kind: pipeline
|
|
||||||
type: docker
|
|
||||||
name: Pow
|
|
||||||
|
|
||||||
trigger:
|
|
||||||
event:
|
|
||||||
- push
|
|
||||||
|
|
||||||
steps:
|
|
||||||
|
|
||||||
- name: build-pow
|
|
||||||
image: plugins/docker
|
|
||||||
settings:
|
|
||||||
dockerfile: ./src/Dockerfile
|
|
||||||
context: ./src
|
|
||||||
registry: hub.codefirst.iut.uca.fr
|
|
||||||
repo: hub.codefirst.iut.uca.fr/dorian.hodin/pow
|
|
||||||
username:
|
|
||||||
from_secret: SECRET_USERNAME
|
|
||||||
password:
|
|
||||||
from_secret: SECRET_PASSWD
|
|
||||||
|
|
||||||
- name: deploy-pow
|
|
||||||
image: hub.codefirst.iut.uca.fr/thomas.bellembois/codefirst-dockerproxy-clientdrone:latest
|
|
||||||
environment:
|
|
||||||
IMAGENAME: hub.codefirst.iut.uca.fr/dorian.hodin/pow:latest
|
|
||||||
CONTAINERNAME: pow
|
|
||||||
COMMAND: create
|
|
||||||
OVERWRITE: true
|
|
||||||
ADMINS: dorianhodin,aurianjault,remiarnal
|
|
||||||
depends_on: [ build-pow ]
|
|
@ -1,2 +0,0 @@
|
|||||||
[client]
|
|
||||||
showSidebarNavigation = false
|
|
@ -1,11 +0,0 @@
|
|||||||
FROM python:3.9
|
|
||||||
|
|
||||||
WORKDIR /app
|
|
||||||
COPY . .
|
|
||||||
|
|
||||||
RUN pip install --upgrade pip
|
|
||||||
RUN pip install streamlit matplotlib pandas scikit-learn ydata-profiling
|
|
||||||
|
|
||||||
EXPOSE 8080
|
|
||||||
|
|
||||||
ENTRYPOINT ["streamlit", "run", "home.py", "--server.address=0.0.0.0", "--server.port=8080"]
|
|
@ -1,37 +0,0 @@
|
|||||||
from sklearn.model_selection import train_test_split
|
|
||||||
from sklearn.linear_model import LinearRegression
|
|
||||||
from sklearn.ensemble import RandomForestRegressor
|
|
||||||
from sklearn.metrics import f1_score
|
|
||||||
from sklearn.metrics import accuracy_score
|
|
||||||
import numpy as np
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
|
|
||||||
def getColumnsForPredictionAndPredict(df,columns, columnGoal, algoOfPrediction):
|
|
||||||
predictors = df[columns]
|
|
||||||
target = df[columnGoal]
|
|
||||||
|
|
||||||
if algoOfPrediction == "Linear Regression":
|
|
||||||
model = LinearRegression()
|
|
||||||
elif algoOfPrediction == "Random Forest":
|
|
||||||
model = RandomForestRegressor(n_estimators=100)
|
|
||||||
else:
|
|
||||||
raise NameError("No method name : \"" + algoOfPrediction + "\"")
|
|
||||||
|
|
||||||
model.fit(predictors, target)
|
|
||||||
prediction = model.predict(predictors)
|
|
||||||
return prediction
|
|
||||||
|
|
||||||
def correlation_matrix(df, columns):
|
|
||||||
new_df = df[columns]
|
|
||||||
correlations = new_df.corr()
|
|
||||||
print(correlations)
|
|
||||||
fig = plt.figure()
|
|
||||||
ax = fig.add_subplot(111)
|
|
||||||
cax = ax.matshow(correlations, vmin=-1, vmax=1)
|
|
||||||
fig.colorbar(cax)
|
|
||||||
ticks = np.arange(0,new_df.shape[1],1)
|
|
||||||
ax.set_xticks(ticks)
|
|
||||||
ax.set_yticks(ticks)
|
|
||||||
ax.set_xticklabels(list(new_df))
|
|
||||||
ax.set_yticklabels(list(new_df))
|
|
||||||
return fig
|
|
@ -1,52 +0,0 @@
|
|||||||
import streamlit as st
|
|
||||||
from io import StringIO
|
|
||||||
# from ydata_profiling import ProfileReport
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
def statistics(df):
|
|
||||||
nan_counts = df.isnull().sum(axis=1).sum()
|
|
||||||
|
|
||||||
st.write("*Number of columns*:", len(df.columns))
|
|
||||||
st.write("*Number of rows*:", len(df.index))
|
|
||||||
|
|
||||||
st.write("*Nan Counts*: ", nan_counts)
|
|
||||||
st.write(df.isna().sum())
|
|
||||||
|
|
||||||
def display_df_first_and_lasts_lines(df):
|
|
||||||
fl = df.head(10)
|
|
||||||
ll = df.tail(10)
|
|
||||||
concat = pd.concat([fl, ll])
|
|
||||||
st.dataframe(concat)
|
|
||||||
|
|
||||||
def nav_bar():
|
|
||||||
st.page_link("./home.py", label="Import", icon="⬆️", help=None)
|
|
||||||
st.page_link("pages/clean.py", label="Clean", icon="🧼", help=None)
|
|
||||||
st.page_link("pages/visualize.py", label="Visualize", icon="👁️", help=None)
|
|
||||||
st.page_link("pages/prediction.py", label="Predict", icon="🔮", help=None)
|
|
||||||
|
|
||||||
def clean_dataframe(line):
|
|
||||||
# Call to function to clean data
|
|
||||||
line.empty()
|
|
||||||
line.write("Dataframe has been cleaned")
|
|
||||||
|
|
||||||
def main():
|
|
||||||
nav_bar()
|
|
||||||
st.write("# Pow: Your data analyser")
|
|
||||||
|
|
||||||
uploaded_file = st.file_uploader("Choose a file")
|
|
||||||
if uploaded_file is not None:
|
|
||||||
df = pd.read_csv(uploaded_file)
|
|
||||||
st.session_state.original_df = df
|
|
||||||
st.write("## Dataframe (10 first/last lines)")
|
|
||||||
display_df_first_and_lasts_lines(df)
|
|
||||||
|
|
||||||
st.write("## Statistics")
|
|
||||||
statistics(df)
|
|
||||||
|
|
||||||
# profile = ProfileReport(df, title='Pandas Profiling Report', explorative=True)
|
|
||||||
# profile.to_widgets()
|
|
||||||
|
|
||||||
if st.button("Next"):
|
|
||||||
st.switch_page("pages/clean.py")
|
|
||||||
|
|
||||||
main()
|
|
@ -1,43 +0,0 @@
|
|||||||
import streamlit as st
|
|
||||||
import sys
|
|
||||||
sys.path.append('./back/')
|
|
||||||
|
|
||||||
import managing_missing_values as mmv
|
|
||||||
import load_csv as lc
|
|
||||||
|
|
||||||
if 'original_df' in st.session_state:
|
|
||||||
df = st.session_state.original_df
|
|
||||||
|
|
||||||
st.write("# 🧼 Data cleaning")
|
|
||||||
|
|
||||||
st.write("## Missing data")
|
|
||||||
rm_empty_rows_or_cols = st.checkbox("Remove empty rows or columns", True)
|
|
||||||
|
|
||||||
st.write("#### Replace missing values")
|
|
||||||
replace_methods = ["mean","median","mode","knn","regression"]
|
|
||||||
replace_method = st.radio('Choose an option:', replace_methods)
|
|
||||||
|
|
||||||
st.write("## Normalize data")
|
|
||||||
normalize_methods = ["min-max","z-score","robust"]
|
|
||||||
normalize_method = st.radio('Choose an option:', normalize_methods)
|
|
||||||
|
|
||||||
is_cleaned = st.button("Clean dataset")
|
|
||||||
if is_cleaned:
|
|
||||||
if rm_empty_rows_or_cols:
|
|
||||||
st.write("- Removing hight null percentage values")
|
|
||||||
df = mmv.drop_high_null_percentage(df)
|
|
||||||
st.dataframe(df)
|
|
||||||
|
|
||||||
st.write("- Handle missing values with method:", replace_method)
|
|
||||||
df = mmv.handle_missing_values(df, replace_method)
|
|
||||||
st.session_state.df = df
|
|
||||||
st.dataframe(df)
|
|
||||||
|
|
||||||
st.write("- Normalize with method:", normalize_method)
|
|
||||||
df = lc.handle_normalization(df, normalize_method)
|
|
||||||
st.session_state.df = df
|
|
||||||
st.dataframe(df)
|
|
||||||
|
|
||||||
st.switch_page("pages/visualize.py")
|
|
||||||
else:
|
|
||||||
st.write("Please upload you dataset.")
|
|
@ -1,74 +0,0 @@
|
|||||||
import streamlit as st
|
|
||||||
import pandas as pd
|
|
||||||
import sys
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import numpy as np
|
|
||||||
sys.path.append('./back/')
|
|
||||||
|
|
||||||
import clustering_csv as cc
|
|
||||||
import prediction as p
|
|
||||||
|
|
||||||
def handle_column_multiselect(df, method_name):
|
|
||||||
selected_columns = st.multiselect(f"Select the columns you want for {method_name}:", df.columns.tolist(), placeholder="Select dataset columns")
|
|
||||||
return selected_columns
|
|
||||||
|
|
||||||
def df_prediction_results(df, targetCol, sourceColumns, method):
|
|
||||||
original_col = df[targetCol]
|
|
||||||
predicted_col = p.getColumnsForPredictionAndPredict(df, sourceColumns, targetCol, method)
|
|
||||||
|
|
||||||
new_df = pd.DataFrame()
|
|
||||||
new_df['Original'] = original_col
|
|
||||||
new_df['Predicted'] = predicted_col
|
|
||||||
|
|
||||||
return new_df
|
|
||||||
|
|
||||||
if 'df' in st.session_state:
|
|
||||||
df = st.session_state.df
|
|
||||||
|
|
||||||
st.write("# 🔮 Prediction")
|
|
||||||
|
|
||||||
tab1, tab2 = st.tabs(["Clustering", "Predictions"])
|
|
||||||
|
|
||||||
with tab1:
|
|
||||||
st.header("Clustering")
|
|
||||||
selected_columns = handle_column_multiselect(df, "clustering")
|
|
||||||
|
|
||||||
if len(selected_columns) >= 3:
|
|
||||||
dimensions = st.radio("Reduce to dimensions X with PCA:",[2,3],index=0)
|
|
||||||
else:
|
|
||||||
dimensions = 2
|
|
||||||
|
|
||||||
tab_names = ["K-means", "DBSCAN"]
|
|
||||||
cluster_tabs = st.tabs(tab_names)
|
|
||||||
|
|
||||||
for idx, tab in enumerate(cluster_tabs):
|
|
||||||
if tab.button(f"Start {tab_names[idx]}"):
|
|
||||||
if tab_names[idx] == "K-means":
|
|
||||||
fig = cc.launch_cluster_knn(df, selected_columns, dimensions=dimensions)
|
|
||||||
else:
|
|
||||||
fig = cc.launch_cluster_dbscan(df, selected_columns, dimensions)
|
|
||||||
|
|
||||||
tab.pyplot(fig)
|
|
||||||
|
|
||||||
with tab2:
|
|
||||||
st.header("Predictions")
|
|
||||||
target_column = st.selectbox(
|
|
||||||
"Target column:",
|
|
||||||
df.columns.tolist(),
|
|
||||||
index=None,
|
|
||||||
placeholder="Select target column"
|
|
||||||
)
|
|
||||||
|
|
||||||
if target_column != None:
|
|
||||||
selected_columns_p = handle_column_multiselect(df, "predictions")
|
|
||||||
|
|
||||||
tab_names = ["Linear Regression", "Random Forest"]
|
|
||||||
prediction_tabs = st.tabs(tab_names)
|
|
||||||
|
|
||||||
for idx, tab in enumerate(prediction_tabs):
|
|
||||||
if tab.button(f"Start {tab_names[idx]}"):
|
|
||||||
tab.pyplot(p.correlation_matrix(df, selected_columns_p+[target_column]))
|
|
||||||
tmp_df = df_prediction_results(df, target_column, selected_columns_p, tab_names[idx])
|
|
||||||
tab.dataframe(tmp_df)
|
|
||||||
else:
|
|
||||||
st.write("Please clean your dataset.")
|
|
@ -1,32 +0,0 @@
|
|||||||
import streamlit as st
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
|
|
||||||
import sys
|
|
||||||
sys.path.append('./back/')
|
|
||||||
|
|
||||||
import show_csv as sc
|
|
||||||
|
|
||||||
if 'df' in st.session_state:
|
|
||||||
|
|
||||||
df = st.session_state.df
|
|
||||||
df_columns = df.columns.tolist()
|
|
||||||
|
|
||||||
st.write("# 📊 Visualization")
|
|
||||||
|
|
||||||
st.write("## Histograms")
|
|
||||||
hist_tabs = st.tabs(df_columns)
|
|
||||||
|
|
||||||
for idx, tab in enumerate(hist_tabs):
|
|
||||||
tab.write("##### "+df_columns[idx])
|
|
||||||
tab.pyplot(sc.histo_col(df, df_columns[idx]))
|
|
||||||
|
|
||||||
st.write("## Box & Whisker")
|
|
||||||
baw_tabs = st.tabs(df_columns)
|
|
||||||
|
|
||||||
for idx, tab in enumerate(baw_tabs):
|
|
||||||
tab.write("##### "+df_columns[idx])
|
|
||||||
fig, ax = plt.subplots()
|
|
||||||
df[df_columns[idx]].plot(kind='box')
|
|
||||||
tab.pyplot(fig)
|
|
||||||
else:
|
|
||||||
st.write('Please clean your dataset.')
|
|
@ -1,749 +0,0 @@
|
|||||||
Recency (months),Frequency (times),Monetary (c.c. blood),Time (months),"whether he/she donated blood in March 2007"
|
|
||||||
2 ,50,12500,98 ,1
|
|
||||||
0 ,13,3250,28 ,1
|
|
||||||
1 ,16,4000,35 ,1
|
|
||||||
2 ,20,5000,45 ,1
|
|
||||||
1 ,24,6000,77 ,0
|
|
||||||
4 ,4,1000,4 ,0
|
|
||||||
2 ,7,1750,14 ,1
|
|
||||||
1 ,12,3000,35 ,0
|
|
||||||
2 ,9,2250,22 ,1
|
|
||||||
5 ,46,11500,98 ,1
|
|
||||||
4 ,23,5750,58 ,0
|
|
||||||
0 ,3,750,4 ,0
|
|
||||||
2 ,10,2500,28 ,1
|
|
||||||
1 ,13,3250,47 ,0
|
|
||||||
2 ,6,1500,15 ,1
|
|
||||||
2 ,5,1250,11 ,1
|
|
||||||
2 ,14,3500,48 ,1
|
|
||||||
2 ,15,3750,49 ,1
|
|
||||||
2 ,6,1500,15 ,1
|
|
||||||
2 ,3,750,4 ,1
|
|
||||||
2 ,3,750,4 ,1
|
|
||||||
4 ,11,2750,28 ,0
|
|
||||||
2 ,6,1500,16 ,1
|
|
||||||
2 ,6,1500,16 ,1
|
|
||||||
9 ,9,2250,16 ,0
|
|
||||||
4 ,14,3500,40 ,0
|
|
||||||
4 ,6,1500,14 ,0
|
|
||||||
4 ,12,3000,34 ,1
|
|
||||||
4 ,5,1250,11 ,1
|
|
||||||
4 ,8,2000,21 ,0
|
|
||||||
1 ,14,3500,58 ,0
|
|
||||||
4 ,10,2500,28 ,1
|
|
||||||
4 ,10,2500,28 ,1
|
|
||||||
4 ,9,2250,26 ,1
|
|
||||||
2 ,16,4000,64 ,0
|
|
||||||
2 ,8,2000,28 ,1
|
|
||||||
2 ,12,3000,47 ,1
|
|
||||||
4 ,6,1500,16 ,1
|
|
||||||
2 ,14,3500,57 ,1
|
|
||||||
4 ,7,1750,22 ,1
|
|
||||||
2 ,13,3250,53 ,1
|
|
||||||
2 ,5,1250,16 ,0
|
|
||||||
2 ,5,1250,16 ,1
|
|
||||||
2 ,5,1250,16 ,0
|
|
||||||
4 ,20,5000,69 ,1
|
|
||||||
4 ,9,2250,28 ,1
|
|
||||||
2 ,9,2250,36 ,0
|
|
||||||
2 ,2,500,2 ,0
|
|
||||||
2 ,2,500,2 ,0
|
|
||||||
2 ,2,500,2 ,0
|
|
||||||
2 ,11,2750,46 ,0
|
|
||||||
2 ,11,2750,46 ,1
|
|
||||||
2 ,6,1500,22 ,0
|
|
||||||
2 ,12,3000,52 ,0
|
|
||||||
4 ,5,1250,14 ,1
|
|
||||||
4 ,19,4750,69 ,1
|
|
||||||
4 ,8,2000,26 ,1
|
|
||||||
2 ,7,1750,28 ,1
|
|
||||||
2 ,16,4000,81 ,0
|
|
||||||
3 ,6,1500,21 ,0
|
|
||||||
2 ,7,1750,29 ,0
|
|
||||||
2 ,8,2000,35 ,1
|
|
||||||
2 ,10,2500,49 ,0
|
|
||||||
4 ,5,1250,16 ,1
|
|
||||||
2 ,3,750,9 ,1
|
|
||||||
3 ,16,4000,74 ,0
|
|
||||||
2 ,4,1000,14 ,1
|
|
||||||
0 ,2,500,4 ,0
|
|
||||||
4 ,7,1750,25 ,0
|
|
||||||
1 ,9,2250,51 ,0
|
|
||||||
2 ,4,1000,16 ,0
|
|
||||||
2 ,4,1000,16 ,0
|
|
||||||
4 ,17,4250,71 ,1
|
|
||||||
2 ,2,500,4 ,0
|
|
||||||
2 ,2,500,4 ,1
|
|
||||||
2 ,2,500,4 ,1
|
|
||||||
2 ,4,1000,16 ,1
|
|
||||||
2 ,2,500,4 ,0
|
|
||||||
2 ,2,500,4 ,0
|
|
||||||
2 ,2,500,4 ,0
|
|
||||||
4 ,6,1500,23 ,1
|
|
||||||
2 ,4,1000,16 ,0
|
|
||||||
2 ,4,1000,16 ,0
|
|
||||||
2 ,4,1000,16 ,0
|
|
||||||
2 ,6,1500,28 ,1
|
|
||||||
2 ,6,1500,28 ,0
|
|
||||||
4 ,2,500,4 ,0
|
|
||||||
4 ,2,500,4 ,0
|
|
||||||
4 ,2,500,4 ,0
|
|
||||||
2 ,7,1750,35 ,1
|
|
||||||
4 ,2,500,4 ,1
|
|
||||||
4 ,2,500,4 ,0
|
|
||||||
4 ,2,500,4 ,0
|
|
||||||
4 ,2,500,4 ,0
|
|
||||||
12 ,11,2750,23 ,0
|
|
||||||
4 ,7,1750,28 ,0
|
|
||||||
3 ,17,4250,86 ,0
|
|
||||||
4 ,9,2250,38 ,1
|
|
||||||
4 ,4,1000,14 ,1
|
|
||||||
5 ,7,1750,26 ,1
|
|
||||||
4 ,8,2000,34 ,1
|
|
||||||
2 ,13,3250,76 ,1
|
|
||||||
4 ,9,2250,40 ,0
|
|
||||||
2 ,5,1250,26 ,0
|
|
||||||
2 ,5,1250,26 ,0
|
|
||||||
6 ,17,4250,70 ,0
|
|
||||||
0 ,8,2000,59 ,0
|
|
||||||
3 ,5,1250,26 ,0
|
|
||||||
2 ,3,750,14 ,0
|
|
||||||
2 ,10,2500,64 ,0
|
|
||||||
4 ,5,1250,23 ,1
|
|
||||||
4 ,9,2250,46 ,0
|
|
||||||
4 ,5,1250,23 ,0
|
|
||||||
4 ,8,2000,40 ,1
|
|
||||||
2 ,12,3000,82 ,0
|
|
||||||
11 ,24,6000,64 ,0
|
|
||||||
2 ,7,1750,46 ,1
|
|
||||||
4 ,11,2750,61 ,0
|
|
||||||
1 ,7,1750,57 ,0
|
|
||||||
2 ,11,2750,79 ,1
|
|
||||||
2 ,3,750,16 ,1
|
|
||||||
4 ,5,1250,26 ,1
|
|
||||||
2 ,6,1500,41 ,1
|
|
||||||
2 ,5,1250,33 ,1
|
|
||||||
2 ,4,1000,26 ,0
|
|
||||||
2 ,5,1250,34 ,0
|
|
||||||
4 ,8,2000,46 ,1
|
|
||||||
2 ,4,1000,26 ,0
|
|
||||||
4 ,8,2000,48 ,1
|
|
||||||
2 ,2,500,10 ,1
|
|
||||||
4 ,5,1250,28 ,0
|
|
||||||
2 ,12,3000,95 ,0
|
|
||||||
2 ,2,500,10 ,0
|
|
||||||
4 ,6,1500,35 ,0
|
|
||||||
2 ,11,2750,88 ,0
|
|
||||||
2 ,3,750,19 ,0
|
|
||||||
2 ,5,1250,37 ,0
|
|
||||||
2 ,12,3000,98 ,0
|
|
||||||
9 ,5,1250,19 ,0
|
|
||||||
2 ,2,500,11 ,0
|
|
||||||
2 ,9,2250,74 ,0
|
|
||||||
5 ,14,3500,86 ,0
|
|
||||||
4 ,3,750,16 ,0
|
|
||||||
4 ,3,750,16 ,0
|
|
||||||
4 ,2,500,9 ,1
|
|
||||||
4 ,3,750,16 ,1
|
|
||||||
6 ,3,750,14 ,0
|
|
||||||
2 ,2,500,11 ,0
|
|
||||||
2 ,2,500,11 ,1
|
|
||||||
2 ,2,500,11 ,0
|
|
||||||
2 ,7,1750,58 ,1
|
|
||||||
4 ,6,1500,39 ,0
|
|
||||||
4 ,11,2750,78 ,0
|
|
||||||
2 ,1,250,2 ,1
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,1
|
|
||||||
2 ,1,250,2 ,1
|
|
||||||
2 ,1,250,2 ,1
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
11 ,10,2500,35 ,0
|
|
||||||
11 ,4,1000,16 ,1
|
|
||||||
4 ,5,1250,33 ,1
|
|
||||||
4 ,6,1500,41 ,1
|
|
||||||
2 ,3,750,22 ,0
|
|
||||||
4 ,4,1000,26 ,1
|
|
||||||
10 ,4,1000,16 ,0
|
|
||||||
2 ,4,1000,35 ,0
|
|
||||||
4 ,12,3000,88 ,0
|
|
||||||
13 ,8,2000,26 ,0
|
|
||||||
11 ,9,2250,33 ,0
|
|
||||||
4 ,5,1250,34 ,0
|
|
||||||
4 ,4,1000,26 ,0
|
|
||||||
8 ,15,3750,77 ,0
|
|
||||||
4 ,5,1250,35 ,1
|
|
||||||
4 ,7,1750,52 ,0
|
|
||||||
4 ,7,1750,52 ,0
|
|
||||||
2 ,4,1000,35 ,0
|
|
||||||
11 ,11,2750,42 ,0
|
|
||||||
2 ,2,500,14 ,0
|
|
||||||
2 ,5,1250,47 ,1
|
|
||||||
9 ,8,2000,38 ,1
|
|
||||||
4 ,6,1500,47 ,0
|
|
||||||
11 ,7,1750,29 ,0
|
|
||||||
9 ,9,2250,45 ,0
|
|
||||||
4 ,6,1500,52 ,0
|
|
||||||
4 ,7,1750,58 ,0
|
|
||||||
6 ,2,500,11 ,1
|
|
||||||
4 ,7,1750,58 ,0
|
|
||||||
11 ,9,2250,38 ,0
|
|
||||||
11 ,6,1500,26 ,0
|
|
||||||
2 ,2,500,16 ,0
|
|
||||||
2 ,7,1750,76 ,0
|
|
||||||
11 ,6,1500,27 ,0
|
|
||||||
11 ,3,750,14 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,1
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,1
|
|
||||||
4 ,1,250,4 ,1
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,1
|
|
||||||
4 ,1,250,4 ,1
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,3,750,24 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,1
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
10 ,8,2000,39 ,0
|
|
||||||
14 ,7,1750,26 ,0
|
|
||||||
8 ,10,2500,63 ,0
|
|
||||||
11 ,3,750,15 ,0
|
|
||||||
4 ,2,500,14 ,0
|
|
||||||
2 ,4,1000,43 ,0
|
|
||||||
8 ,9,2250,58 ,0
|
|
||||||
8 ,8,2000,52 ,1
|
|
||||||
11 ,22,5500,98 ,0
|
|
||||||
4 ,3,750,25 ,1
|
|
||||||
11 ,17,4250,79 ,1
|
|
||||||
9 ,2,500,11 ,0
|
|
||||||
4 ,5,1250,46 ,0
|
|
||||||
11 ,12,3000,58 ,0
|
|
||||||
7 ,12,3000,86 ,0
|
|
||||||
11 ,2,500,11 ,0
|
|
||||||
11 ,2,500,11 ,0
|
|
||||||
11 ,2,500,11 ,0
|
|
||||||
2 ,6,1500,75 ,0
|
|
||||||
11 ,8,2000,41 ,1
|
|
||||||
11 ,3,750,16 ,1
|
|
||||||
12 ,13,3250,59 ,0
|
|
||||||
2 ,3,750,35 ,0
|
|
||||||
16 ,8,2000,28 ,0
|
|
||||||
11 ,7,1750,37 ,0
|
|
||||||
4 ,3,750,28 ,0
|
|
||||||
12 ,12,3000,58 ,0
|
|
||||||
4 ,4,1000,41 ,0
|
|
||||||
11 ,14,3500,73 ,1
|
|
||||||
2 ,2,500,23 ,0
|
|
||||||
2 ,3,750,38 ,1
|
|
||||||
4 ,5,1250,58 ,0
|
|
||||||
4 ,4,1000,43 ,1
|
|
||||||
3 ,2,500,23 ,0
|
|
||||||
11 ,8,2000,46 ,0
|
|
||||||
4 ,7,1750,82 ,0
|
|
||||||
13 ,4,1000,21 ,0
|
|
||||||
16 ,11,2750,40 ,0
|
|
||||||
16 ,7,1750,28 ,0
|
|
||||||
7 ,2,500,16 ,0
|
|
||||||
4 ,5,1250,58 ,0
|
|
||||||
4 ,5,1250,58 ,0
|
|
||||||
4 ,4,1000,46 ,0
|
|
||||||
14 ,13,3250,57 ,0
|
|
||||||
4 ,3,750,34 ,0
|
|
||||||
14 ,18,4500,78 ,0
|
|
||||||
11 ,8,2000,48 ,0
|
|
||||||
14 ,16,4000,70 ,0
|
|
||||||
14 ,4,1000,22 ,1
|
|
||||||
14 ,5,1250,26 ,0
|
|
||||||
8 ,2,500,16 ,0
|
|
||||||
11 ,5,1250,33 ,0
|
|
||||||
11 ,2,500,14 ,0
|
|
||||||
4 ,2,500,23 ,0
|
|
||||||
9 ,2,500,16 ,1
|
|
||||||
14 ,5,1250,28 ,1
|
|
||||||
14 ,3,750,19 ,1
|
|
||||||
14 ,4,1000,23 ,1
|
|
||||||
16 ,12,3000,50 ,0
|
|
||||||
11 ,4,1000,28 ,0
|
|
||||||
11 ,5,1250,35 ,0
|
|
||||||
11 ,5,1250,35 ,0
|
|
||||||
2 ,4,1000,70 ,0
|
|
||||||
14 ,5,1250,28 ,0
|
|
||||||
14 ,2,500,14 ,0
|
|
||||||
14 ,2,500,14 ,0
|
|
||||||
14 ,2,500,14 ,0
|
|
||||||
14 ,2,500,14 ,0
|
|
||||||
14 ,2,500,14 ,0
|
|
||||||
14 ,2,500,14 ,0
|
|
||||||
2 ,3,750,52 ,0
|
|
||||||
14 ,6,1500,34 ,0
|
|
||||||
11 ,5,1250,37 ,1
|
|
||||||
4 ,5,1250,74 ,0
|
|
||||||
11 ,3,750,23 ,0
|
|
||||||
16 ,4,1000,23 ,0
|
|
||||||
16 ,3,750,19 ,0
|
|
||||||
11 ,5,1250,38 ,0
|
|
||||||
11 ,2,500,16 ,0
|
|
||||||
12 ,9,2250,60 ,0
|
|
||||||
9 ,1,250,9 ,0
|
|
||||||
9 ,1,250,9 ,0
|
|
||||||
4 ,2,500,29 ,0
|
|
||||||
11 ,2,500,17 ,0
|
|
||||||
14 ,4,1000,26 ,0
|
|
||||||
11 ,9,2250,72 ,1
|
|
||||||
11 ,5,1250,41 ,0
|
|
||||||
15 ,16,4000,82 ,0
|
|
||||||
9 ,5,1250,51 ,1
|
|
||||||
11 ,4,1000,34 ,0
|
|
||||||
14 ,8,2000,50 ,1
|
|
||||||
16 ,7,1750,38 ,0
|
|
||||||
14 ,2,500,16 ,0
|
|
||||||
2 ,2,500,41 ,0
|
|
||||||
14 ,16,4000,98 ,0
|
|
||||||
14 ,4,1000,28 ,1
|
|
||||||
16 ,7,1750,39 ,0
|
|
||||||
14 ,7,1750,47 ,0
|
|
||||||
16 ,6,1500,35 ,0
|
|
||||||
16 ,6,1500,35 ,1
|
|
||||||
11 ,7,1750,62 ,1
|
|
||||||
16 ,2,500,16 ,0
|
|
||||||
16 ,3,750,21 ,1
|
|
||||||
11 ,3,750,28 ,0
|
|
||||||
11 ,7,1750,64 ,0
|
|
||||||
11 ,1,250,11 ,1
|
|
||||||
9 ,3,750,34 ,0
|
|
||||||
14 ,4,1000,30 ,0
|
|
||||||
23 ,38,9500,98 ,0
|
|
||||||
11 ,6,1500,58 ,0
|
|
||||||
11 ,1,250,11 ,0
|
|
||||||
11 ,1,250,11 ,0
|
|
||||||
11 ,1,250,11 ,0
|
|
||||||
11 ,1,250,11 ,0
|
|
||||||
11 ,1,250,11 ,0
|
|
||||||
11 ,1,250,11 ,0
|
|
||||||
11 ,1,250,11 ,0
|
|
||||||
11 ,1,250,11 ,0
|
|
||||||
11 ,2,500,21 ,0
|
|
||||||
11 ,5,1250,50 ,0
|
|
||||||
11 ,2,500,21 ,0
|
|
||||||
16 ,4,1000,28 ,0
|
|
||||||
4 ,2,500,41 ,0
|
|
||||||
16 ,6,1500,40 ,0
|
|
||||||
14 ,3,750,26 ,0
|
|
||||||
9 ,2,500,26 ,0
|
|
||||||
21 ,16,4000,64 ,0
|
|
||||||
14 ,6,1500,51 ,0
|
|
||||||
11 ,2,500,24 ,0
|
|
||||||
4 ,3,750,71 ,0
|
|
||||||
21 ,13,3250,57 ,0
|
|
||||||
11 ,6,1500,71 ,0
|
|
||||||
14 ,2,500,21 ,1
|
|
||||||
23 ,15,3750,57 ,0
|
|
||||||
14 ,4,1000,38 ,0
|
|
||||||
11 ,2,500,26 ,0
|
|
||||||
16 ,5,1250,40 ,1
|
|
||||||
4 ,2,500,51 ,1
|
|
||||||
14 ,3,750,31 ,0
|
|
||||||
4 ,2,500,52 ,0
|
|
||||||
9 ,4,1000,65 ,0
|
|
||||||
14 ,4,1000,40 ,0
|
|
||||||
11 ,3,750,40 ,1
|
|
||||||
14 ,5,1250,50 ,0
|
|
||||||
14 ,1,250,14 ,0
|
|
||||||
14 ,1,250,14 ,0
|
|
||||||
14 ,1,250,14 ,0
|
|
||||||
14 ,1,250,14 ,0
|
|
||||||
14 ,1,250,14 ,0
|
|
||||||
14 ,1,250,14 ,0
|
|
||||||
14 ,1,250,14 ,0
|
|
||||||
14 ,1,250,14 ,0
|
|
||||||
14 ,7,1750,72 ,0
|
|
||||||
14 ,1,250,14 ,0
|
|
||||||
14 ,1,250,14 ,0
|
|
||||||
9 ,3,750,52 ,0
|
|
||||||
14 ,7,1750,73 ,0
|
|
||||||
11 ,4,1000,58 ,0
|
|
||||||
11 ,4,1000,59 ,0
|
|
||||||
4 ,2,500,59 ,0
|
|
||||||
11 ,4,1000,61 ,0
|
|
||||||
16 ,4,1000,40 ,0
|
|
||||||
16 ,10,2500,89 ,0
|
|
||||||
21 ,2,500,21 ,1
|
|
||||||
21 ,3,750,26 ,0
|
|
||||||
16 ,8,2000,76 ,0
|
|
||||||
21 ,3,750,26 ,1
|
|
||||||
18 ,2,500,23 ,0
|
|
||||||
23 ,5,1250,33 ,0
|
|
||||||
23 ,8,2000,46 ,0
|
|
||||||
16 ,3,750,34 ,0
|
|
||||||
14 ,5,1250,64 ,0
|
|
||||||
14 ,3,750,41 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
16 ,4,1000,45 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
16 ,2,500,26 ,0
|
|
||||||
21 ,2,500,23 ,0
|
|
||||||
16 ,2,500,27 ,0
|
|
||||||
21 ,2,500,23 ,0
|
|
||||||
21 ,2,500,23 ,0
|
|
||||||
14 ,4,1000,57 ,0
|
|
||||||
16 ,5,1250,60 ,0
|
|
||||||
23 ,2,500,23 ,0
|
|
||||||
14 ,5,1250,74 ,0
|
|
||||||
23 ,3,750,28 ,0
|
|
||||||
16 ,3,750,40 ,0
|
|
||||||
9 ,2,500,52 ,0
|
|
||||||
9 ,2,500,52 ,0
|
|
||||||
16 ,7,1750,87 ,1
|
|
||||||
14 ,4,1000,64 ,0
|
|
||||||
14 ,2,500,35 ,0
|
|
||||||
16 ,7,1750,93 ,0
|
|
||||||
21 ,2,500,25 ,0
|
|
||||||
14 ,3,750,52 ,0
|
|
||||||
23 ,14,3500,93 ,0
|
|
||||||
18 ,8,2000,95 ,0
|
|
||||||
16 ,3,750,46 ,0
|
|
||||||
11 ,3,750,76 ,0
|
|
||||||
11 ,2,500,52 ,0
|
|
||||||
11 ,3,750,76 ,0
|
|
||||||
23 ,12,3000,86 ,0
|
|
||||||
21 ,3,750,35 ,0
|
|
||||||
23 ,2,500,26 ,0
|
|
||||||
23 ,2,500,26 ,0
|
|
||||||
23 ,8,2000,64 ,0
|
|
||||||
16 ,3,750,50 ,0
|
|
||||||
23 ,3,750,33 ,0
|
|
||||||
21 ,3,750,38 ,0
|
|
||||||
23 ,2,500,28 ,0
|
|
||||||
21 ,1,250,21 ,0
|
|
||||||
21 ,1,250,21 ,0
|
|
||||||
21 ,1,250,21 ,0
|
|
||||||
21 ,1,250,21 ,0
|
|
||||||
21 ,1,250,21 ,0
|
|
||||||
21 ,1,250,21 ,0
|
|
||||||
21 ,1,250,21 ,0
|
|
||||||
21 ,1,250,21 ,0
|
|
||||||
21 ,1,250,21 ,0
|
|
||||||
21 ,1,250,21 ,1
|
|
||||||
21 ,1,250,21 ,0
|
|
||||||
21 ,1,250,21 ,0
|
|
||||||
21 ,5,1250,60 ,0
|
|
||||||
23 ,4,1000,45 ,0
|
|
||||||
21 ,4,1000,52 ,0
|
|
||||||
22 ,1,250,22 ,1
|
|
||||||
11 ,2,500,70 ,0
|
|
||||||
23 ,5,1250,58 ,0
|
|
||||||
23 ,3,750,40 ,0
|
|
||||||
23 ,3,750,41 ,0
|
|
||||||
14 ,3,750,83 ,0
|
|
||||||
21 ,2,500,35 ,0
|
|
||||||
26 ,5,1250,49 ,1
|
|
||||||
23 ,6,1500,70 ,0
|
|
||||||
23 ,1,250,23 ,0
|
|
||||||
23 ,1,250,23 ,0
|
|
||||||
23 ,1,250,23 ,0
|
|
||||||
23 ,1,250,23 ,0
|
|
||||||
23 ,1,250,23 ,0
|
|
||||||
23 ,1,250,23 ,0
|
|
||||||
23 ,1,250,23 ,0
|
|
||||||
23 ,1,250,23 ,0
|
|
||||||
23 ,4,1000,53 ,0
|
|
||||||
21 ,6,1500,86 ,0
|
|
||||||
23 ,3,750,48 ,0
|
|
||||||
21 ,2,500,41 ,0
|
|
||||||
21 ,3,750,64 ,0
|
|
||||||
16 ,2,500,70 ,0
|
|
||||||
21 ,3,750,70 ,0
|
|
||||||
23 ,4,1000,87 ,0
|
|
||||||
23 ,3,750,89 ,0
|
|
||||||
23 ,2,500,87 ,0
|
|
||||||
35 ,3,750,64 ,0
|
|
||||||
38 ,1,250,38 ,0
|
|
||||||
38 ,1,250,38 ,0
|
|
||||||
40 ,1,250,40 ,0
|
|
||||||
74 ,1,250,74 ,0
|
|
||||||
2 ,43,10750,86 ,1
|
|
||||||
6 ,22,5500,28 ,1
|
|
||||||
2 ,34,8500,77 ,1
|
|
||||||
2 ,44,11000,98 ,0
|
|
||||||
0 ,26,6500,76 ,1
|
|
||||||
2 ,41,10250,98 ,1
|
|
||||||
3 ,21,5250,42 ,1
|
|
||||||
2 ,11,2750,23 ,0
|
|
||||||
2 ,21,5250,52 ,1
|
|
||||||
2 ,13,3250,32 ,1
|
|
||||||
4 ,4,1000,4 ,1
|
|
||||||
2 ,11,2750,26 ,0
|
|
||||||
2 ,11,2750,28 ,0
|
|
||||||
3 ,14,3500,35 ,0
|
|
||||||
4 ,16,4000,38 ,1
|
|
||||||
4 ,6,1500,14 ,0
|
|
||||||
3 ,5,1250,12 ,1
|
|
||||||
4 ,33,8250,98 ,1
|
|
||||||
3 ,10,2500,33 ,1
|
|
||||||
4 ,10,2500,28 ,1
|
|
||||||
2 ,11,2750,40 ,1
|
|
||||||
2 ,11,2750,41 ,1
|
|
||||||
4 ,13,3250,39 ,1
|
|
||||||
1 ,10,2500,43 ,1
|
|
||||||
4 ,9,2250,28 ,0
|
|
||||||
2 ,4,1000,11 ,0
|
|
||||||
2 ,5,1250,16 ,1
|
|
||||||
2 ,15,3750,64 ,0
|
|
||||||
5 ,24,6000,79 ,0
|
|
||||||
2 ,6,1500,22 ,1
|
|
||||||
4 ,5,1250,16 ,1
|
|
||||||
2 ,4,1000,14 ,1
|
|
||||||
4 ,8,2000,28 ,0
|
|
||||||
2 ,4,1000,14 ,0
|
|
||||||
2 ,6,1500,26 ,0
|
|
||||||
4 ,5,1250,16 ,1
|
|
||||||
2 ,7,1750,32 ,1
|
|
||||||
2 ,6,1500,26 ,1
|
|
||||||
2 ,8,2000,38 ,1
|
|
||||||
2 ,2,500,4 ,1
|
|
||||||
2 ,6,1500,28 ,1
|
|
||||||
2 ,10,2500,52 ,0
|
|
||||||
4 ,16,4000,70 ,1
|
|
||||||
4 ,2,500,4 ,1
|
|
||||||
1 ,14,3500,95 ,0
|
|
||||||
4 ,2,500,4 ,1
|
|
||||||
7 ,14,3500,48 ,0
|
|
||||||
2 ,3,750,11 ,0
|
|
||||||
2 ,12,3000,70 ,1
|
|
||||||
4 ,7,1750,32 ,1
|
|
||||||
4 ,4,1000,16 ,0
|
|
||||||
2 ,6,1500,35 ,1
|
|
||||||
4 ,6,1500,28 ,1
|
|
||||||
2 ,3,750,14 ,0
|
|
||||||
2 ,4,1000,23 ,0
|
|
||||||
4 ,4,1000,18 ,0
|
|
||||||
5 ,6,1500,28 ,0
|
|
||||||
4 ,6,1500,30 ,0
|
|
||||||
14 ,5,1250,14 ,0
|
|
||||||
3 ,8,2000,50 ,0
|
|
||||||
4 ,11,2750,64 ,1
|
|
||||||
4 ,9,2250,52 ,0
|
|
||||||
4 ,16,4000,98 ,1
|
|
||||||
7 ,10,2500,47 ,0
|
|
||||||
4 ,14,3500,86 ,0
|
|
||||||
2 ,9,2250,75 ,0
|
|
||||||
4 ,6,1500,35 ,0
|
|
||||||
4 ,9,2250,55 ,0
|
|
||||||
4 ,6,1500,35 ,1
|
|
||||||
2 ,6,1500,45 ,0
|
|
||||||
2 ,6,1500,47 ,0
|
|
||||||
4 ,2,500,9 ,0
|
|
||||||
2 ,2,500,11 ,1
|
|
||||||
2 ,2,500,11 ,0
|
|
||||||
2 ,2,500,11 ,1
|
|
||||||
4 ,6,1500,38 ,1
|
|
||||||
3 ,4,1000,29 ,1
|
|
||||||
9 ,9,2250,38 ,0
|
|
||||||
11 ,5,1250,18 ,0
|
|
||||||
2 ,3,750,21 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,1
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,1
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
2 ,1,250,2 ,0
|
|
||||||
11 ,11,2750,38 ,0
|
|
||||||
2 ,3,750,22 ,0
|
|
||||||
9 ,11,2750,49 ,1
|
|
||||||
5 ,11,2750,75 ,0
|
|
||||||
3 ,5,1250,38 ,0
|
|
||||||
3 ,1,250,3 ,1
|
|
||||||
4 ,6,1500,43 ,0
|
|
||||||
2 ,3,750,24 ,0
|
|
||||||
12 ,11,2750,39 ,0
|
|
||||||
2 ,2,500,14 ,0
|
|
||||||
4 ,6,1500,46 ,0
|
|
||||||
9 ,3,750,14 ,0
|
|
||||||
14 ,8,2000,26 ,0
|
|
||||||
4 ,2,500,13 ,0
|
|
||||||
4 ,11,2750,95 ,0
|
|
||||||
2 ,7,1750,77 ,0
|
|
||||||
2 ,7,1750,77 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,1
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,1,250,4 ,1
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,7,1750,62 ,0
|
|
||||||
4 ,1,250,4 ,0
|
|
||||||
4 ,4,1000,34 ,1
|
|
||||||
11 ,6,1500,28 ,0
|
|
||||||
13 ,3,750,14 ,1
|
|
||||||
7 ,5,1250,35 ,0
|
|
||||||
9 ,9,2250,54 ,0
|
|
||||||
11 ,2,500,11 ,0
|
|
||||||
2 ,5,1250,63 ,0
|
|
||||||
7 ,11,2750,89 ,0
|
|
||||||
8 ,9,2250,64 ,0
|
|
||||||
2 ,2,500,22 ,0
|
|
||||||
6 ,3,750,26 ,0
|
|
||||||
12 ,15,3750,71 ,0
|
|
||||||
13 ,3,750,16 ,0
|
|
||||||
11 ,16,4000,89 ,0
|
|
||||||
4 ,5,1250,58 ,0
|
|
||||||
14 ,7,1750,35 ,0
|
|
||||||
11 ,4,1000,27 ,0
|
|
||||||
7 ,9,2250,89 ,1
|
|
||||||
11 ,8,2000,52 ,1
|
|
||||||
7 ,5,1250,52 ,0
|
|
||||||
11 ,6,1500,41 ,0
|
|
||||||
10 ,5,1250,38 ,0
|
|
||||||
14 ,2,500,14 ,1
|
|
||||||
14 ,2,500,14 ,0
|
|
||||||
14 ,2,500,14 ,0
|
|
||||||
2 ,2,500,33 ,0
|
|
||||||
11 ,3,750,23 ,0
|
|
||||||
14 ,8,2000,46 ,0
|
|
||||||
9 ,1,250,9 ,0
|
|
||||||
16 ,5,1250,27 ,0
|
|
||||||
14 ,4,1000,26 ,0
|
|
||||||
4 ,2,500,30 ,0
|
|
||||||
14 ,3,750,21 ,0
|
|
||||||
16 ,16,4000,77 ,0
|
|
||||||
4 ,2,500,31 ,0
|
|
||||||
14 ,8,2000,50 ,0
|
|
||||||
11 ,3,750,26 ,0
|
|
||||||
14 ,7,1750,45 ,0
|
|
||||||
15 ,5,1250,33 ,0
|
|
||||||
16 ,2,500,16 ,0
|
|
||||||
16 ,3,750,21 ,0
|
|
||||||
11 ,8,2000,72 ,0
|
|
||||||
11 ,1,250,11 ,0
|
|
||||||
11 ,1,250,11 ,0
|
|
||||||
11 ,1,250,11 ,0
|
|
||||||
11 ,1,250,11 ,1
|
|
||||||
11 ,1,250,11 ,0
|
|
||||||
2 ,3,750,75 ,1
|
|
||||||
2 ,3,750,77 ,0
|
|
||||||
16 ,4,1000,28 ,0
|
|
||||||
16 ,15,3750,87 ,0
|
|
||||||
16 ,14,3500,83 ,0
|
|
||||||
16 ,10,2500,62 ,0
|
|
||||||
16 ,3,750,23 ,0
|
|
||||||
14 ,3,750,26 ,0
|
|
||||||
23 ,19,4750,62 ,0
|
|
||||||
11 ,7,1750,75 ,0
|
|
||||||
14 ,3,750,28 ,0
|
|
||||||
20 ,14,3500,69 ,1
|
|
||||||
4 ,2,500,46 ,0
|
|
||||||
11 ,2,500,25 ,0
|
|
||||||
11 ,3,750,37 ,0
|
|
||||||
16 ,4,1000,33 ,0
|
|
||||||
21 ,7,1750,38 ,0
|
|
||||||
13 ,7,1750,76 ,0
|
|
||||||
16 ,6,1500,50 ,0
|
|
||||||
14 ,3,750,33 ,0
|
|
||||||
14 ,1,250,14 ,0
|
|
||||||
14 ,1,250,14 ,0
|
|
||||||
14 ,1,250,14 ,0
|
|
||||||
14 ,1,250,14 ,0
|
|
||||||
14 ,1,250,14 ,0
|
|
||||||
14 ,1,250,14 ,0
|
|
||||||
17 ,7,1750,58 ,1
|
|
||||||
14 ,3,750,35 ,0
|
|
||||||
14 ,3,750,35 ,0
|
|
||||||
16 ,7,1750,64 ,0
|
|
||||||
21 ,2,500,21 ,0
|
|
||||||
16 ,3,750,35 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
16 ,1,250,16 ,0
|
|
||||||
14 ,2,500,29 ,0
|
|
||||||
11 ,4,1000,74 ,0
|
|
||||||
11 ,2,500,38 ,1
|
|
||||||
21 ,6,1500,48 ,0
|
|
||||||
23 ,2,500,23 ,0
|
|
||||||
23 ,6,1500,45 ,0
|
|
||||||
14 ,2,500,35 ,1
|
|
||||||
16 ,6,1500,81 ,0
|
|
||||||
16 ,4,1000,58 ,0
|
|
||||||
16 ,5,1250,71 ,0
|
|
||||||
21 ,2,500,26 ,0
|
|
||||||
21 ,3,750,35 ,0
|
|
||||||
21 ,3,750,35 ,0
|
|
||||||
23 ,8,2000,69 ,0
|
|
||||||
21 ,3,750,38 ,0
|
|
||||||
23 ,3,750,35 ,0
|
|
||||||
21 ,3,750,40 ,0
|
|
||||||
23 ,2,500,28 ,0
|
|
||||||
21 ,1,250,21 ,0
|
|
||||||
21 ,1,250,21 ,0
|
|
||||||
25 ,6,1500,50 ,0
|
|
||||||
21 ,1,250,21 ,0
|
|
||||||
21 ,1,250,21 ,0
|
|
||||||
23 ,3,750,39 ,0
|
|
||||||
21 ,2,500,33 ,0
|
|
||||||
14 ,3,750,79 ,0
|
|
||||||
23 ,1,250,23 ,1
|
|
||||||
23 ,1,250,23 ,0
|
|
||||||
23 ,1,250,23 ,0
|
|
||||||
23 ,1,250,23 ,0
|
|
||||||
23 ,1,250,23 ,0
|
|
||||||
23 ,1,250,23 ,0
|
|
||||||
23 ,1,250,23 ,0
|
|
||||||
23 ,4,1000,52 ,0
|
|
||||||
23 ,1,250,23 ,0
|
|
||||||
23 ,7,1750,88 ,0
|
|
||||||
16 ,3,750,86 ,0
|
|
||||||
23 ,2,500,38 ,0
|
|
||||||
21 ,2,500,52 ,0
|
|
||||||
23 ,3,750,62 ,0
|
|
||||||
39 ,1,250,39 ,0
|
|
||||||
72 ,1,250,72 ,0
|
|
Loading…
Reference in new issue