|
|
|
@ -135,7 +135,7 @@ def list_fighters(df, limit_date):
|
|
|
|
|
return fighters
|
|
|
|
|
|
|
|
|
|
# Last year when data fight was not full and correct
|
|
|
|
|
fighters = list_fighters(df,'2016-01-01')
|
|
|
|
|
fighters = list_fighters(df,'2015-01-01')
|
|
|
|
|
|
|
|
|
|
def build_df(df, fighters, i):
|
|
|
|
|
arr = [select_fight_row(df, fighters[f], i) for f in range(len(fighters)) if select_fight_row(df, fighters[f], i) is not None]
|
|
|
|
@ -145,11 +145,26 @@ def build_df(df, fighters, i):
|
|
|
|
|
df_fights['title_bout'] = df_fights['title_bout'].map({True: 1, False: 0})
|
|
|
|
|
df_fights.drop(['R_fighter', 'B_fighter', 'date'], axis=1, inplace=True)
|
|
|
|
|
return df_fights
|
|
|
|
|
|
|
|
|
|
def build_df_all_but_last(df, fighters):
|
|
|
|
|
|
|
|
|
|
cols = [col for col in df]
|
|
|
|
|
df_fights=pd.DataFrame(columns=cols)
|
|
|
|
|
for f in range(len(fighters)):
|
|
|
|
|
for i in range(10000):
|
|
|
|
|
fight_row = select_fight_row(df, fighters[f], i)
|
|
|
|
|
if fight_row is None:
|
|
|
|
|
break
|
|
|
|
|
fight_row = list(fight_row)
|
|
|
|
|
dfTemp = pd.DataFrame(data=[fight_row], columns=cols)
|
|
|
|
|
df_fights = df_fights._append(dfTemp, ignore_index=True)
|
|
|
|
|
df_fights.drop_duplicates(inplace=True)
|
|
|
|
|
df_fights['title_bout'] = df_fights['title_bout'].map({True: 1, False: 0})
|
|
|
|
|
df_fights.drop(['R_fighter', 'B_fighter', 'date'], axis=1, inplace=True)
|
|
|
|
|
return df_fights
|
|
|
|
|
|
|
|
|
|
df_train = build_df(df, fighters, 0)
|
|
|
|
|
df_test = build_df(df, fighters, 1)
|
|
|
|
|
|
|
|
|
|
# print(df_train.head(5))
|
|
|
|
|
df_train = build_df_all_but_last(df, fighters)
|
|
|
|
|
df_test = build_df(df, fighters,-1)
|
|
|
|
|
|
|
|
|
|
preprocessor = make_column_transformer((OrdinalEncoder(), ['weight_class', 'B_Stance', 'R_Stance']), remainder='passthrough')
|
|
|
|
|
|
|
|
|
|